Sequential version

This code tests isomorphism by moving point 0 in the first set of origin. The second set of points is then searched for a pair of points whose distance is same as that of distance between points 0 & point 1 in first set. The second set of point is translated and rotated before checking for a point-to-point match between the two sets. This is all done sequentially.

Design of Parallel version of point SetIso.c

To parallelize this code we need to look in for places where operations can be performed simultaneously. The main program calls the checker function two times. The actual work in the whole program is done in the checker. Checker basically has two for loops that are nested within one another. Any iteration in the for-loop [Outer most] is independent of the next iteration. So iterations can be parallelized to work concurrently.

The way its been implemented is as follows

· The for-loop inside checker is converted into two threads that work simultaneously.

· One thread is spawned inside checker and the other thread is actually called as a function by the main thread.

· A Barrier needs to be initialized for two threads.

· I followed a method called Interleaving for allotting the iterations for each thread. The iterations are shared equally among the threads. Since we have numThreads as two in this program, all the iterations are interleaved between these two threads.

· I used a global array variable to collect the mapping value from each thread. Each thread has an index (or) Id. Depending on the number of threads that need to be spawned, the single global map array is allocated. Each thread uses a single array element in the array based on it index value, for writing purposes.

· The main purpose of using a global array variable is to avoid heavy context switching involved in pthreads. It turned out later to be less efficient in this program when I use mutex locking & unlocking for the mapping variable [a single global variable all the threads access to add up for the mapping] when there are many mapping matches.

· When the two threads completes, it wait on a barrier.

· At the end, the elements in the Map global array are added to get the total mappings for that checker

· After the points are flipped, the checker module is called again with two threads.

· I tried using contiguous allotment of iterations to threads. It degrades in performance when the mappings value increases.

Analysis of Output

Gains of Parallel version

Worst-case time best sequential

Speed-Up = S =

 Worst-case time parallel

 Worst-case time best sequential

Efficiency = E =

 Worst-case time parallel * Number of Processors

Elapsed CPU of Threads

	Threads
	Parallel Version [Elapsed CPU]

	
	Test 1
	Test 2
	Test 3

	Thread1
	0.53
	0.52
	1.09

	Thread2
	0.61
	0.58
	1.09

	Flipping the points

	Thread1
	0.52
	0.51
	1.09

	Thread2
	0.58
	0.57
	1.09

Comparison of total Elapsed CPU of Sequential and Parallel version

	Version
	Sequential [Total Elapsed CPU]
	Parallel [Total Elapsed CPU]

	Test File
	Test 1
	Test 2
	Test 3
	Test 1
	Test 2
	Test 3

	CPU Time
	2.60
	2.25
	4.39
	1.25
	1.21
	2.22

Comparison of Speed up and Efficiency of Sequential and Parallel version

	Sequential Version Vs Parallel Version

	Speed Up
	2.08
	1.8595
	1.97

	Efficiency
	1.04
	0.9297
	0.98

· The parallel code is on average near equal to twice the speed up of sequential code and the efficiency is close to one.

· The sequential version uses 99% of the single available CPU. The parallel version uses near to 187%-197% of CPU. [Both the 2 CPU combined]. This includes the overhead involved in spawning the threads.

· Pthreads have much overhead when doing a context switching. Eliminating that would give better speed ups.

