
MC4060

Programming Fundamentals

Information Systems

Software Support & Training

Proprietary and Confidential Information

2

3

o lasts

ith the
MC 4060 PROGRAMMING FUNDAMENTALS

Prerequisites • MC6013 Windows NT 4.0 Getting Started or MC6012 Test-out for MC601

• MC6015 Windows NT Explorer or MC6016 Test-out for MC6015

Course Hours &
Sessions

Total Length: 5.5 hours

The course consists of two sessions: session one lasts 2.5 hours and session tw
3 hours.

Credit Requirements • 100% attendance in both sessions, unless prior arrangements are made w
instructor(s).

• Completion of all in-class exercises and post-class assignments.

Test-Out The test-out for MC4060 Programming Fundamentals will be available soon.
3

TABLE OF CONTENTS

Table of Contents ... 4
Programming Fundamentals - Session 1............................ 5
Introduction.. 6
Programming Categories.. 9
Programming Methodologies... 11
Getting Started ... 13
Programming Concepts.. 22
Homework 1... 34
Programming Fundamentals - Session 2.......................... 35
Advanced Programming Concepts................................... 36
Programming Standards ... 56
Programming Tools.. 61
Programming at Micron ... 63
Vocabulary Exercise .. 64
Homework 2... 65
Appendix 1 - Additional QBasic Resources 66
Appendix 2 - Major Causes of Errors 75
Appendix 3 - ASCII Character Set 77
Appendix 4 - Vocabulary Exercise Answers 78
Appendix 5 - QBasic Exercise Answers 79
Appendix 6 - Reference Guide... 86
What’s Next?.. 88
Bibliography... 90
4 Table of Contents

ons,

tax.

les,
PROGRAMMING FUNDAMENTALS - SESSION 1

Objectives Goal

Establish a basic programming foundation for team members interested in advancing
their programming knowledge and abilities.

Objectives for this Session

After completing this session, the student should be able to:

• Identify the basics of computing: input-process-output, common misconcepti
and user interfaces.

• Identify the major categories of programming.

• Recall four major methodologies of programming.

• Identify the basics of computer process flows: ordering, flow charts, and syn

• Identify and reconstruct basic programming techniques of input-output, variab
and commands.
Programming Fundamentals - Session 1 5

s

at

ing
priate
nless

very
ary

ful

h no
ext: if

cade
old

ds of
r
f
 most
INTRODUCTION

What is programming? Computers must be told what to do. When you operate a computer, everything you
use—within programs like Microsoft Word, or on systems like the VAX or Window
NT—has been previously programmed so the computer knows how to function.
Programmers write “code” to instruct the computer step by step how to operate
appropriately. Programming can be very simple, such as writing an application th
looks up a worker on the MERC, or it can be very complex, such as writing the
MICIS application that tracks and records all chemical data at Micron.

There is a misconception that programming is difficult and mysterious; programm
is simply writing step-by-step procedures so an end user can transmit the appro
information to a computer and vice versa. Obviously, computers are worthless u
you give them specific instructions that they can process input and output, as
described below.

Input-Process-Output
Model

The seemingly complex concepts of computers and programming are really not
complex at all when you recognize that these concepts are based upon the ordin
input-process-output model that you use in your daily life.

Examples of everyday input-process-outputs are:

In each of the examples, you take an input, add some value or service, and then
become either fueled up, fed up, or stocked up.

Computer programming works in this fashion: you take raw data that is basically
numbers (input), crunch data with programming (process), and then receive use
information (output).

One example of raw data might be a list of temperatures from the past year. Wit
explanation, this is just a bunch of random numbers. Put these numbers in a cont
you are planning an outdoor wedding for late October, you can review the
temperatures recorded on October 27. Looking at temperatures from the past de
would aid you in making an informed processing decision. You may find Idaho is c
in late October, and you might want the wedding to be indoors. Now imagine a
wedding planning program that could be taught this process and make these kin
suggestions to you, the user, without forcing you to research the temperatures fo
October. The program could be expanded to look for the past 100 years’ worth o
temperatures on October 27 and the computer would be better able to predict the
likely temperature.

Input Process Output

Gas Station Drive empty car in Gas up, then pay Drive full car out

Fast Food Restaurant Drive in (or Eat in)
hungry

Order food, pay for
food, eat food

Drive away full

Discount Warehouse Empty cart, full wallet Find bulk items, pay for
them, get them home

Full pantry and garage,
empty wallet
6 Introduction

 want
de:

h
 able

 for
sing.

O). It

ram

d or
es that
aces
en

user,
 or
 in
.
f the
Following this input-process-output model, you will need to enter information into
the computer. Some input devices that you might use include:

• Keyboard

• Mouse

• Optical Scanner

• Pen

• Touch Screen

• Bar Code Scanner

• Hard Drive (although not a real input device, you can get data from here)

• Network (a collection of computers together that can give data to your
computer as input)

The computer program can then process this data. When you are done, you will
to get output from your computer. Some output devices that you might use inclu

• Monitor

• Printer

• Hard Drive (although not a real output device, you can store data here)

• Network (a collection of computers together that can send data from your
computer as output)

Common
Misconceptions

One of the common misconceptions in computer programming is that computers
make mistakes. We have to clarify this: mistakes do occur when people work wit
computers, but the computers do not innately make mistakes or we would not be
to sell them on the market.

“Mistakes” can be caused by:

• Poorly written computer programs: The programs that have been developed
the computer are incorrect and make many errors in the procedure or proces

• Inaccurate data: We often use the phrase “Garbage In = Garbage Out” (GIG
is very important that you give computers the correct information in the
beginning if you want to get the correct data out.

• Programming failure due to assumptions: What you intend the computer prog
to do and what it actually accomplishes might be two different things. The
problem lies in the fact that people can sort out ambiguities or interpret basic
knowledge and then convert them into logical sounding statements, but
computers cannot.

User Interfaces A user interface is the element of a computer program that can be seen (or hear
otherwise perceived) by the human user, along with the commands and process
allow the user to control its operation and input data.You interact with user interf
in your daily life when you use cell phones, pagers, copy machines, cars, and ev
microwaves. Each device has unique ways of conveying information to you, the
and in return you interact with the device by inputting information with a keyboard
mouse. Computers are no exception. In early computing, user interfaces ranged
design and scope, but in recent years there has been a move to standardization
Character user interfaces (CUIs) and graphical user interfaces (GUIs) are two o
most common types of computers user interfaces.
Introduction 7

 that
A character user interface, commonly known as CUI (pronounced chewy), is used to
describe character-based programming languages. CUI language environments were
the only programming available in early computers. Users entered commands
(instructions) into the computer, and then the computer executed those commands.
This process was not hard to learn, but it was difficult to transfer from one computer
system to another. CUIs are still essential to network-based programming and for
some hard-core programmers. CUIs can be found at Micron by looking at VAX/VMS
and DOS applications. While many programs that we use today were originally based
upon CUI, most have evolved beyond that point.

A graphical user interface, commonly known as GUI (pronounced gooey), is used to
describe modern computer interfaces, such as the Microsoft Windows operating
system or common home applications like Quicken 2000. In these computer
interfaces, you use both the mouse and the keyboard. The mouse allows you to select
icons, buttons, and other objects by clicking on them. Keyboards are primarily used to
input characters and numbers. To create order and organization within GUIs and make
them usable, software manufacturers have developed standard icons and menus
throughout their programs. You can learn the “look and feel” or the way the GUI
looks only once, and then be able to apply it to every other program designed by
software manufacturer.
8 Introduction

ht
t lit,
, the
e
ally

e

gram

 for
ly

ome
r
ine

uilt,
 to be
dable

lers,
 was
se it
ode.
PROGRAMMING CATEGORIES

Before learning about specific programming languages, you should first understand
the history of the various programming categories. A programming category is
determined by the methods that the computer and the programming language use to
interact with each other and by the methods you must use to program the computer.
Each category has its advantages and disadvantages; the general behavior of each
category sets one apart from another.

Binary Code &
Machine Language

The chips that we manufacture at Micron are used to save information as input or
output. The language of computers is really just the powering on and powering off of
individual transistors that are etched onto the computer chips. Computers translate the
“ons” into “1s” and the “offs” into “0s.” For example, when the power is on for a lig
bulb, it lights up, and this is considered a 1. When the power is off, the bulb is no
and this is a 0. This concept of communicating with computers led to binary code
language that you and the computer can both understand. Binary code is just th
collection of the individual bits of 1s and 0s used to represent letters and eventu
words. An example of a letter in binary code would be:

01100001 = a

01000001 = A

The above example illustrates a byte, which is 8 bits strung together to make on
letter. Computers convert every instruction into these basic building blocks.

Now that you understand binary code and machine language, it is possible to pro
your computer manually by inputting all the 1s and 0s that represent letters and
words. This would be a very difficult and daunting task: there is a high probability
error, it would take an extremely long time to complete, and when completed, on
the computer could understand it. This machine language is so impractical that
computer programmers invented several better methods to program computers.

Assembly The creation of Assembly Language was one of the first attempts to simplify the
computer programming process. The assembly language method incorporates s
basic and understandable word combinations, such as MOV for move or CPY fo
copy, which can be easily read by others and are less prone to errors than mach
language. The assembly method talks directly to the parts of the computer and
requires an assembler to convert the simple commands into machine language.
However, assemblers only function on the specific computer for which they are b
and writing a very sophisticated program requires many of the same commands
repeated over and over again. Although assembly programs are more understan
than machine language, they fail to be efficient.

Portable Assembly Portable assembly is very similar to assembly, but compilers replace the assemb
allowing multiple computers to share the program. The C programming language
the first language to accomplish this task. Portable assembly is important becau
can directly manipulate the computer hardware like machine code or assembly c
Programming Categories 9

s
y
r,

 the
The main disadvantage to the portable assembly method is that the programming code
is not necessarily related to the functions; the C language was written by
programmers for programmers, and it contains many commands that are hard to
follow.

High-level Languages High-level languages use more English language-related code statements that are easy
to recognize and understand. For example, the command to print a document in a
high-level language is often “Print” or some variation of that command. Program
written in these languages were very popular in early programming because the
could be written quickly and were capable of performing complex tasks. Howeve
programs created in high-level languages can quickly become very large, with a
complex set of slow machine code instructions. They also cannot directly access
hardware like C, assembly, and machine code.
10 Programming Categories

an
ges.

ple,

l
n the
 role

nd

 for
 the
ern
greed
uters

 at
PROGRAMMING METHODOLOGIES

High-level programming languages are the most common type of programming used
today. At Micron we use the high-level languages for the majority of our applications.
These high-level languages can be broken down further into the three major
programming methodologies: procedural programming, object-oriented
programming, and markup programming.

Procedural
Programming

Procedural programming languages are code intensive, requiring the programmer to
specify step by step how the computer must accomplish a task. Procedural languages
generally have strict rules of use and design because they must be precisely formatted
so the computer can understand the appropriate functions. They generally require
manual keyboard input for all code, similar to entering commands at a DOS or Unix
prompt. Traditionally, programmers could only design CUI interfaces with procedural
languages, but today these languages can produce a wide variety of both CUIs and
GUIs. Examples of procedural programming languages include C, C++, Cobol,
Fortran, and PERL. These are covered in detail in “Programming at Micron” on
page 63.

Object-Oriented
Programming (OOP)

The official definition of object-oriented programming (OOP) is a type of
programming that encapsulates, or captures, a small amount of data along with
instructions about how to manipulate that data. (Potter, 562) Object-oriented
applications often have GUIs and this type of language is currently the fastest
growing segment of programming, other than the Internet. Object-oriented
programming (OOP) is a type of programming that works with “objects” rather th
with the actions needed to accomplish a particular task, like in procedural langua
An object can be defined as an item that has properties to describe it. For exam
you are an object. You contain properties that tell us more about you; you have a
street address where you live, a Micron employee identity, certain skills, and
relationships with people around you. OOP operates uniquely with these specia
object properties. First, you teach the computer all about a particular object. Whe
object is used in the program, the computer program already knows the object’s
and what it can do for us, just like when you are asked to accomplish a task for
Micron. Examples of object-oriented programming include JAVA, Visual Basic, a
Visual C++. These are covered in detail in “Programming at Micron” on page 63.

Markup Programming Markup programming allows you to write plain text and enhance it (or mark it up)
use on another computer via the Internet. Hypertext Markup Language (HTML) is
first of such languages, and it has revolutionized the content of the Internet. Mod
versions of markup languages are defined by worldwide organizations and are a
upon as industry standards to ensure compatibility among a wide range of comp
and browser programs. Examples of markup programming include HTML and
Extensible Markup Language (XML). These are covered in detail “Programming
Micron” on page 63.
Programming Methodologies 11

dress,
 are
ase,

rs rely
ange
Database
Programming

A database is a collection of information for later retrieval, such as your address book.
Address books are organized by last name, and you can find a person’s name, ad
and phone numbers by searching for the last name. In the same way, databases
related pieces of information collected into individual records. To program a datab
you need a language that is able to work with the unique database format. Some
databases use their own internal languages such as SAP’s ABAP language; othe
on universal languages such as SQL (Standard Query Language) that can exch
data between different systems.
12 Programming Methodologies

d as
bake
an
ing or
and.

 step-

e
 you

isely
e

is to
u

ed in

g.

own

ng a
 a
GETTING STARTED

Before you can program, you first have to think like a computer. That isn’t as har
it sounds. You might relate computer programming to teaching someone how to
chocolate chip cookies. You have to be careful to use words that novice cooks c
understand so they can follow the specific steps. You cannot assume understand
skip steps because beginning chefs (or the computer) will not be able to underst

Now if you break down the process of baking chocolate chip cookies to a simple
by-step procedure, it might look like this:

�� &ROOHFW�WKH�LQJUHGLHQWV��IORXU��EDNLQJ�VRGD��VDOW��
EXWWHU��VXJDU��EURZQ�VXJDU��YDQLOOD�H[WUDFW��HJJV��
FKRFRODWH�FKLSV��DQG�RSWLRQDO�QXWV

�� 0HDVXUH�DQG�FRPELQH�WKH�LQJUHGLHQWV
�� 3XW�WKH�JOREV�RI�GRXJK�RQ�WKH�FRRNLH�VKHHW
�� %DNH�WKH�FRRNLHV
�� /HW�FRRO
�� (DW

If that were all there were to baking cookies, then we would be done. As everyon
knows, the process of creating great cookies is much more complex. Not only do
have to follow the recipe carefully, but you also have to time certain events prec
to make the cookies turn out perfectly. To help us organize our thinking, we will b
using a modeling tool called a flow chart.

Flow Charts One of the most effective methods of diagramming complex programming logic
use a flow chart. Flow charts allow you to explain the logic of your thinking so yo
can translate it for the computer’s use.

If you use this class as an example of the inputs-process-outputs model discuss
the Introduction, you can create the following flow chart:

• You came into this class as an input.

• You are processed in the sense that you have to learn or be taught somethin

• You are now an output that has changed because you have (presumably) gr
smarter.

Figure 1: Diagram of Input-Process-Output

In our previous cookie example, we could have easily overlooked steps or
erroneously assumed certain operations in the cookie-baking process. By creati
flow chart to break down the process, you can model the exact steps and create
checklist to ensure that you stay on the correct path.

Programming
Fundamentals

You before
class

You after
class

(computer
guru)
Getting Started 13

Here is the cookie example adapted to the flow chart modeling tool:

Start
Do you have
ingredients?

No

Go to the store
and buy

ingredients

Measure
ingredients

Yes

Heat Oven to 375o F

In Bowl #1, Mix
Flour, Baking
Soda & Salt

In Bowl #2, Mix
Butter, Sugar,

Brwn.
Sugar & Vanilla

Add Eggs

Combine all
ingredients in Bowl

#2

Add Chocolate
Chips

Using Spoon, put
Cookie Dough on

Baking Sheet

Flour,
Baking

Soda & Salt

Butter,
Sugar,
Brown

Sugar, &
Vanilla

Eggs

Chocolate
Chips

Baking
Sheet

Spoon

Bake for 1 minuteOven

Once baked, put
on wire rack and

let cool for at least
10 minutes - About
5 Dozen Cookies

END

Are the cookies
done?

Yes

No
14 Getting Started

There are four traditional flow chart symbols that are universally identified. They are
the basic building blocks for any flow chart. The following information explains each
symbol and its purpose.

Process

A process (represented by a rectangle) shows the major steps or stages. This symbol
usually represents the actions in the process. In the cookie example, you notice that all
the process symbols contain actions.

Figure 2: Process Rectangle

Decision

The decision tree (represented by a diamond with arrows) has as many as three
choices: yes, no, or maybe. When programming a computer, avoid maybes because
you cannot teach the computer to deal with ambiguities. Decision trees are the only
objects in flow charting that are allowed more than one exit point.

Figure 3: Decision Diamond

Data (Input/Output)

Data areas (represented by a rhombus) are usually inputs or outputs to the process
boxes.

Figure 4: Data (Input/Output) Rhombus

Process

Decision No

Yes

Data (Input/
Output)
Getting Started 15

Terminator

Terminators or End Points (represented by an oval) are the first or final stages of the
process. If the end point for one process is an input for the next process, the
terminator is a circle rather than an oval.

Figure 5: Terminator Ovals

When creating a flow chart, always follow these simple rules:

1. Always try to use standard flow charting symbols. We have described the four
basic symbols (the rectangle, diamond, rhombus, and oval) in this manual. If
your flow charts will be read by someone inheriting your project, try to follow
the universal conventions, such as those found in Visio Technical, a flow
charting program used here at Micron.

2. The logic in a flow chart should flow from top to bottom and from left to right.

3. Only the decision trees (diamonds) should have more than one exit point.

4. Decisions should always ask a Yes/No question. Computer logic does not
understand anything other than these two states.

5. Use simple language in your flow chart. Avoid programming terms or lingo
because they make the flow chart difficult to read. Sometimes just talking
through or writing down issues will help you discover errors of logic or items
that you assumed were covered.

Here is a collection of other flow chart items. Most any shape can be used, but if you
create your own, be sure to include a key to the shape types, much like the following
example:

Figure 6: Key for Flow Chart Symbols

EndStart

Database

Tagged
Document

Off Page
Connector Collate Off-line

Storage

OR

Manual Input
Card

Paper Tape
Direct Data

Preparation
16 Getting Started

r this

tion

w to

”
Made Up
Programming
Language - Phake

After creating your flow chart, you need to decide what programming language you
will use. Remember that computers cannot process flow charts or English sentences.

To better understand programming, you need to try some programming techniques for
yourself. This is an exercise using the “Phake” language which was developed fo
class. Phake is a pseudo-code language that simulates real programming.

Phake is made up of three pieces:

• Actions (Commands) - items that do

• Things (Variables) - items that have something done to them

• Modifiers (Switches) - items that change the actions or reverse their direc

These key words are needed to use the Phake language to teach a computer ho
bake cookies.

The Phake language has the following rules (syntax):

1. Every line must start with an action (command). These actions can have
modifiers (switches) that change their direction, but the action itself is
essentially the same.

2. Every line must have an item that is acted upon; we will call these “things
(variables).

Actions (Commands) Things (Variables) Modifiers (Switches)

IF pantry No / Yes

GOTO ingredients For

PURCHASE store On / Off

MEASURE oven In / Out

CHECK flour To

TURN baking soda With

GET salt 375 degrees F

OPEN [CLOSE] bowl #1 10 minutes

BAKE bowl #2

EAT refrigerator

TAKE sink

END butter

PUT sugar

ADD brown sugar

SET vanilla

MIX eggs

WAIT chocolate chips

cookie dough

baking sheet

spoon

cooling rack

temperature

cookies
Getting Started 17

3. You are limited to the items on the list, and you cannot make up new actions or
generate new things.

4. You can use linking words, such as and / or.

Using the Phake language, create a program to describe the process of baking
cookies. Below is a typical example of what you may come up with. Do not worry if
yours looks different; there are many solutions to the same problem in programming.

In the following program, the Phake code includes step numbers to the left to aid in
line item differentiation.

Example 1: Phake language used to describe baking cookies

�� &+(&.�SDQWU\�)RU�IORXU��EDNLQJ�VRGD��VDOW��VXJDU��
EURZQ�VXJDU��YDQLOOD��FKRFRODWH�FKLSV

�� &+(&.�UHIULJHUDWRU�)RU�HJJV��EXWWHU
�� 6(7�LQJUHGLHQWV� �IORXU��EDNLQJ�VRGD��VDOW��EXWWHU��

VXJDU��EURZQ�VXJDU��YDQLOOD��FKRFRODWH�FKLSV��HJJV
�� ,)�1R�LQJUHGLHQWV��*272�VWRUH�DQG�385&+$6(�

LQJUHGLHQWV
�� *(7�LQJUHGLHQWV�2XW�SDQWU\
�� 0($685(�LQJUHGLHQWV
�� 7851�2Q�RYHQ�DQG�6(7�WHPSHUDWXUH�����GHJUHHV�)
�� *(7�ERZO���
�� *(7�VSRRQ
��� 0,;�IORXU��EDNLQJ�VRGD��VDOW�,Q�ERZO����:LWK�VSRRQ
��� *(7�ERZO���
��� 0,;�EXWWHU��VXJDU��EURZQ�VXJDU��YDQLOOD�,Q�ERZO����

:LWK�VSRRQ
��� $''�HJJV�7R�ERZO���
��� 0,;�LQJUHGLHQWV�,Q�ERZO����:LWK�VSRRQ
��� $''�LQJUHGLHQWV�,Q�ERZO����7R�LQJUHGLHQWV�,Q�ERZO�

���:LWK�VSRRQ
��� 0,;�LQJUHGLHQWV�,Q�ERZO����:LWK�VSRRQ
��� $''�FKRFRODWH�FKLSV�7R�ERZO���
��� 0,;�ERZO����:LWK�VSRRQ
��� *(7�VSRRQ��EDNLQJ�VKHHW
��� 387�FRRNLH�GRXJK�2Q�EDNLQJ�VKHHW�:LWK�VSRRQ
��� 23(1�RYHQ
��� 387�EDNLQJ�VKHHW�:LWK�FRRNLH�GRXJK�,Q�RYHQ
��� &/26(�RYHQ
��� %$.(����PLQXWHV
��� 23(1�RYHQ
��� *(7�2XW�FRRNLHV�DQG�FRRNLH�VKHHW
��� 387�FRRNLHV�2Q�FRROLQJ�UDFN
��� 387�FRRNLH�VKHHW�,Q�VLQN
��� &/26(�RYHQ
��� 7851�2II�RYHQ
��� :$,7����PLQXWHV
18 Getting Started

ram
in the
t.
 which
��� ($7�FRRNLHV
��� (1'

In this second example, you define all of the “things” (variables) used in the prog
at the beginning of the program. This process teaches the terms to a new cook;
previous example you assumed that the cook knew the terms for each ingredien
Also, when you create variables, you can shorten their names to save on space,
was very important in early computing.

Example 2: Phake language used to describe baking cookies

�� 6(7�)/� �IORXU��%6� �EDNLQJ�VRGD��6� �VDOW
�� 6(7�%� �EXWWHU��6X� �VXJDU��%6X� �EURZQ�VXJDU
�� 6(7�9� �YDQLOOD��&&� �FKRFRODWH�FKLSV��(� �HJJV
�� &+(&.�SDQWU\�)RU�)/��%6��6��6X��%6X��9��&&
�� &+(&.�UHIULJHUDWRU�)RU�(��%
�� 6(7�LQJUHGLHQWV� �)/��%6��6��%��6X��%6X��9��&&��(
�� ,)�1R�LQJUHGLHQWV��*272�VWRUH�DQG�385&+$6(�

LQJUHGLHQWV
�� *(7�LQJUHGLHQWV�2XW�SDQWU\
�� 0($685(�LQJUHGLHQWV
��� 7851�2Q�RYHQ�DQG�6(7�WHPSHUDWXUH�����GHJUHHV�)
��� *(7�ERZO���
��� *(7�VSRRQ
��� 0,;�)/��%6��6�,Q�ERZO����:LWK�VSRRQ
��� *(7�ERZO���
��� 0,;�%��6X��%6X�DQG�9�,Q�ERZO����:LWK�VSRRQ
��� $''�(�7R�ERZO���
��� 0,;�LQJUHGLHQWV�,Q�ERZO����:LWK�VSRRQ
��� $''�LQJUHGLHQWV�,Q�ERZO����7R�LQJUHGLHQWV�,Q�ERZO�

��
��� 0,;�LQJUHGLHQWV�,Q�ERZO����:LWK�VSRRQ
��� $''�&&�7R�ERZO���
��� 0,;�ERZO����:LWK�VSRRQ
��� *(7�VSRRQ��EDNLQJ�VKHHW
��� 387�FRRNLH�GRXJK�2Q�EDNLQJ�VKHHW�:LWK�VSRRQ
��� 23(1�RYHQ
��� 387�EDNLQJ�VKHHW�:LWK�FRRNLH�GRXJK�,Q�RYHQ
��� &/26(�RYHQ
��� %$.(����PLQXWHV
��� 23(1�RYHQ
��� *(7�FRRNLHV�DQG�FRRNLH�VKHHW�2XW
��� 387�FRRNLHV�2Q�FRROLQJ�UDFN
��� 387�FRRNLH�VKHHW�,Q�VLQN
��� &/26(�RYHQ
��� 7851�2II�RYHQ
��� :$,7����PLQXWHV
��� ($7�FRRNLHV
Getting Started 19

ink

er

nd of
gram

okie
 bowl

e
lour

st
 will
e of

uage,
are
 switch
��� (1'

Post-Phake Language Variables

In our Phake language, we had a category called things that represented the items that
the program needed to use. Another way to describe those things is to use the term
“variable.” A variable is a memory location referred to by a name, but you could th
of it as a container that holds information. In keeping with our cookie baking
example, a typical variable might be like a measuring cup that can hold the prop
amount of milk until you need it. The other advantage to a variable is that it can
change; when you want your measuring cup to contain something else, it can be
emptied and washed. Now it can hold flour.

In programming, a variable might be a number, dollar amount, or word that can
change throughout a program, depending on how you use variables. Different
programming languages will use the rules of the language to create whatever ki
variable is needed. The value of a variable can change during execution of a pro
by input and output. (Bradley, 660, 687-689)

Constants

Constants hold a specific piece of information throughout the program. In our co
baking example, the sugar bowl is a constant. Unlike the measuring cup, a sugar
only holds one item (sugar), and it will always hold the same contents.

Literal

Literals are exact, do not change, and can be either numbers or characters. In th
Phake language, when you set the variable FL = flour, FL was the variable and f
(the value contained within the variable) was the literal.

Commands

In our Phake language, we called the main drivers of the program actions. In mo
programming languages, these actions are called commands or key words. You
need to know how to modify or alter the commands to fit your needs. An exampl
a typical command might look like this:

LASERPRINT “my document”

This command prints your document to the laser printer of your choice.

Switches or Options

Switches or Options can be added to commands. In the Phake programming lang
we called them modifiers. In most programming languages, these modifications
based upon a set of rules (syntax). We can take the previous example and add a
to tell the laser printer to print landscape:

LASERPRINT - L “my document to print landscape”
20 Getting Started

 a
lish
, the

ning
g

e 17).
le
 very
rning
The online help for your programming language lists the correct usage of switches or
options for your commands.

Syntax

The term syntax refers to the rules or sequence that a programming language must
follow when the code is written. When speaking your native language, you don’t
think about syntax because you instinctively know the rules. But when you learn
foreign language, you may need to learn new syntax rules. For example, in Eng
the adjective comes before the noun—you would say “the red car,” but in Spanish
adjective comes after the noun, so you would say, “el auto rojo” which literally
translates to “the car red.” English speakers who are learning Spanish need to
remember to put the adjective after the noun. If the word order is wrong, the mea
might not be clear. The same concept of syntax is used in computer programmin
languages.

In our Phake language, syntax was defined in rule #1 (refer to the Rules on pag
Rule #1 stated that every line must start with a command (action). This is a simp
example of a syntax rule. Rules in programming languages range from simple to
complex and exact. Using proper programming syntax is just as important as lea
the terms themselves.
Getting Started 21

PROGRAMMING CONCEPTS

Now that you are thinking like a computer, the next challenge is to work with an
actual programming language. One of the first languages that most programmers
learn is a language called BASIC. In the early 1960s, BASIC ran only on main frame
systems, but was redesigned in the late 1970s to give everyone the same exposure to
programming on personal computers. BASIC has evolved from very rudimentary
beginnings.

There are many companies that have developed BASIC programming languages, and
they range from free products to licensed ones. QBasic or Quick BASIC is the latest
version of the BASIC programming language from Microsoft. It falls somewhere
between a standard CUI and a GUI because it has some characteristics of each
interface. Although QBasic is not used as an official language here at Micron, it will
aid you in identifying and applying programming fundamentals. Many of the
commands used in QBasic are universal to all languages, or there are equivalents that
accomplish the exact same goals. You should start with simple programs that
accomplish quick tasks and then slowly build on your previous experience by trying
more complex programming.

Running QBasic For this class you will be running QBasic from a classroom network drive.

1. Click START > RUN...

2. In the Open field, type F:\Basic\qbasic

3. Click OK.

4. Press <ESC> to clear the entry dialog box.

After completing the instructions above, the QBasic welcome screen displays.

Figure 7: QBasic Welcome Screen
22 Programming Concepts

u
his

If you need further instructions on running QBasic on various Microsoft platforms,
refer to “Appendix 1 - Additional QBasic Resources” on page 66.

Programming Input -
Output

Your first simple QBasic program will use the input-process-output model that yo
learned earlier. In this program, you will create a command that accepts input. T
should be easy because the command in QBasic is INPUT, and the command in
QBasic to send information out to the monitor is PRINT.

☞
New Command and Syntax Summary:

Follow these instructions to create your first program:

1. Open QBasic.

2. Type the following code exactly as written. Be sure to press the <ENTER>
key after each line.

35,17��:KDW�LV�\RXU�QDPH"�
,1387�QDPH�
35,17��+L����QDPH�
(1'

After typing the code, press the <SHIFT> and <F5> keys simultaneously to run the
program. You are now an official computer programmer!

Here is the step-by-step breakdown of your first program:

• PRINT Prints What is your name? on the screen.

• INPUT Accepts the information from the keyboard and assigns the
information to the name$ variable.

• PRINT Prints Hi, [the name you entered].

Command Definition

PRINT Sends information to the
screen

INPUT Receives input from the
keyboard and assigns it to
a variable

END Finishes the program

Syntax Definition

“ “ Quotes separate the string
information from the code

; Separates the information
being printed from the
variable

$ Designates the variable
name as a string variable
(those that contain words)
Programming Concepts 23

ork.

s for

In

e
ve 1
4
• END Stops the program.

Saving a Program in
QBasic

If you are happy with the results of the program, it is a good idea to save your w
Save the previous program as FIRST.BAS. When naming a QBasic file, use the
DOS-based standards of eight characters or less. When saving QBasic program
class, please save them to your F:\BASIC directory.

To save a program in QBasic

Using the mouse:

1. Click FILE.

2. Click SAVE.

3. Enter the name FIRST.BAS.

4. Click OK.

Using the keyboard:

1. Press <ALT> + <F>.

2. Press <S> for Save.

3. Enter the name FIRST.BAS.

4. Click OK.

Loading a File in
QBasic

After you have saved a program, it is important that you know how to retrieve it.
this case, you will retrieve a class example file named NUMBERS.BAS:

1. Click FILE.

2. Click OPEN.

3. Choose NUMBERS.BAS from the list, or type in NUMBERS.BAS.

4. Click OK.

Note: For this class, the programs you will work with are supplied in
the F:\BASIC directory. You have the option of either typing the
examples for yourself or retrieving these files. For the remaining
programs, the code will include step numbers on the left to aid in
line-item differentiation.

Variables as Numbers Computers can deal with numbers, but they need to be taught what to do with th
numbers. For example, when you teach a child to add, you might say: “Let’s remo
apple from basket #1 and add it to the 3 apples in basket #2. Then we will have
apples in basket #3.” Like children, computers can evaluate these equations;
computers just need to be taught how.

QBasic uses the following standard operators to deal with numerical variables:

• addition (+)

• subtraction (-)

• multiplication (*)

• division (/)
24 Programming Concepts

24

The mathematical formula for the apple example “Variables as Numbers” on page
looks like this:

1 + 3 = 4

With a syntax of:

a + b = c

Now we can apply variables from the example to the syntax:

Basket#1 + Basket#2 = Basket#3

The following is an example of how this might be written in a standard computer
program. The line numbers are shown only to designate the separate steps.

�� %DVNHW��� ��
�� %DVNHW��� ��
�� %DVNHW��� �%DVNHW�����%DVNHW��

The syntax for the computer is:

�� GHILQH�D
�� GHILQH�E
�� F� �D���E

☞
New Command and Syntax Summary:

Command Definition

REM Remarks or statements
that are not included in
the code, but are used for
those observing the code
later.

CLS Clears the screen of all
writing.

Syntax Definition

: Allows the programmer
to put multiple commands
on a single line of code.
Be careful with its use
because many commands
compressed onto one line
are difficult to follow or
read later.
Programming Concepts 25

ype

ch of
nds
he
 so

y to
or the

on of

Example Program Name: NUMBERS.BAS

�� 5(0�7KLV�ZRUNV�ZLWK�VLPSOH�QXPEHUV
�� &/6
�� 35,17��(QWHU�WZR�QXPEHUV�WKDW�\RX�ZRXOG�OLNH�WR�

PXOWLSO\�
�� 35,17
�� 35,17��(QWHU�\RXU�ILUVW�QXPEHU���,1387�[
�� 35,17��(QWHU�\RXU�VHFRQG�QXPEHU���,1387�\
��]� �[�
�\
�� 35,17��7KH�ILUVW�QXPEHU�PXOWLSOLHG�E\�WKH�VHFRQG�

QXPEHU�LV���]
�� (1'

Program Notes:

• Line 1 is a command called REM, which is an abbreviation for remark;
these are important remarks for the programmer to read later.

• Line 2 is a command called CLS, which clears the screen before you t
anything.

• Line 3 is a print to the screen command.

• Line 4 is a simple PRINT statement to move the program down a line.

• In lines 5 and 6, the INPUT commands are put on the same line as ea
the PRINT statements. This was included to show that multiple comma
can occur on a single line, but it is only recommended when it makes t
program clearer. In this case, the inputs are tied to the print statements
they are a natural fit.

• Line 7 sets the numeric variable z to be the product of taking variable x
(your first number) multiplied by the variable y (your second number).

• Line 8 sends the output.

• Line 9 ends the program.

In this program we used x, y, and z as the variable names. In early programming,
using simple letters was the accepted practice because they were short and eas
find. Programming today has changed to use long descriptive variable names. F
example above, variable x could be firstuserinput and z could be multipliednumbers
to give the programmer and any subsequent readers a hint as to what the functi
the variable is.

✎
TIP: Never use spaces in the names of your variables. Most
programming languages do not understand the spaces. If you use spaces,
your program may not be compatible with other programs or operating
systems. In most programming languages if you do need separation for
clarity, use the underscore character (_). However, QBasic does not
support underscores. :-(

Exercise 1: Change the operator in NUMBERS.BAS to addition. Be
sure to change the user instructions so they reflect the functional
differences of the program.
26 Programming Concepts

Advanced Variables as
Numbers

You can use numerical values in complex ways. For example, consider the following
formula for calculating body mass index (BMI). The United States National Institutes
of Health says that body mass index (BMI) ratings can help you with your plans for
weight loss and overall health. It is not easy to divide your weight in kilograms by
your height in meters squared.

The challenge for the programmer is to collect data in English units (measurements
that are user friendly), convert it to metric measurements, and then perform the
calculation. It is a good example of taking basic input data, processing it using a
program, and then giving a beneficial output to the user.

☞
New Command and Syntax Summary:

Example Program Name: BMI.BAS

��
�7KLV�ZRUNV�ZLWK�FRPSOH[�QXPEHUV
��

��

�� &/6
�� 35,17��(QWHU�\RXU�KHLJKW�LQ�IHHW�RQO\�
�� 35,17��)RU�H[DPSOH��LI�\RX�DUH���IRRW���LQFKHV��

RQO\�HQWHU�����,1387�IHHW
�� 35,17��(QWHU�\RXU�UHPDLQLQJ�KHLJKW�LQ�LQFKHV�RQO\�
�� 35,17��)URP�WKH�H[DPSOH�DERYH��LI�\RX�DUH���IRRW���

LQFKHV��RQO\�HQWHU�����,1387�LQFKHV

Command Definition

USING Used with PRINT to
format the output of the
variable to fit the format
that is expected.

’ This little mark replaces
the REM statement in
later versions of BASIC.

Syntax Definition

##.# Creates a template for the
USING command to
display the information.
This represents two digits,
the decimal, then one last
digit.

Your Height in Meters 2

Your Weight in Kilograms

=
Body Mass

Index
Programming Concepts 27

u

am.
the
ould

er
�� KHLJKW�� ��IHHW�
�������LQFKHV
��� 35,17��(QWHU�\RXU�ZHLJKW�LQ�SRXQGV���,1387�ZHLJKW�
��� ZHLJKW�� �ZHLJKW�������
��� KHLJKW�� ��KHLJKW��
������������
��� KHLJKW�� �KHLJKW��
�KHLJKW�
��� UDWLR� �ZHLJKW����KHLJKW�
��� 35,17��<RXU�%RG\�0DVV�,QGH[�UDWLR�LV�����86,1*�

��������UDWLR
��� 35,17
��� 35,17��7KH�*RYHUQPHQW�6WDQGDUGV�DUH�EHORZ��
��� 35,17���,GHDO�%0,�LV����WR����
��� 35,17������WR����DUH�DGYLVHG�WKH\�DUH�SRVVLEO\�RYHU�

WKHLU�LGHDO�ZHLJKW�
��� 35,17���7KRVH�RYHU����DUH�DGYLVHG�WR�FRQVXOW�ZLWK�

WKHLU�GRFWRUV�
��� 35,17�´�
�127(��7KLV�LV�RQO\�RQH�LQGLFDWRU�RI�

RYHUDOO�KHDOWK�
µ
��� 35,17�´�
�DQG�VKRXOG�RQO\�EH�FRQVLGHUHG�DV�D�

JXLGHOLQH�����
µ
��� (1'

Program Notes:

• Lines 1 to 3 are comments for the programmer to read later.

• Line 4 clears the screen.

• Line 5 gives instructions.

• Line 6 has you input your height in feet only.

• Line 7 gives instructions.

• Line 8 has you input your remaining height in inches only.

• Line 9 sets the variable height1 to the product of your height in feet
multiplied by 12 added to the number of inches that was specified. If yo
improved this program, you would make 12 a constant, so that if the
number of inches in a foot changed, you could quickly change the progr
If you scoff at the number of inches in a foot changing, remember that
Y2K bug was based upon the assumption that a constant date format w
never change.

• Line 10 has you input your weight in pounds.

• Line 11 converts your weight from pounds to kilograms.

• Line 12 converts your height in inches to centimeters, then to meters.

• Line 13 squares your height (this could be used by a function or a pow
operator, but this is just a simple example).

• Line 14 actually calculates the BMI.

• Line 15 displays the final results to the screen in the format that you
wanted.

• Lines 16 through 22 consist of a chart to aid you in understanding the
output.

• Line 23 ends the program.
28 Programming Concepts

tring.
Variables as
Characters (Strings)

Variables that contain anything from the keyboard, including letters, symbols, and
even numbers, are often called strings. (Wang, 108) If a variable contains a word, it is
string variable. Different types of variables are available to help the programmer and
the computer keep track of what kind of data the variable contains.

Standard variables use standard math computations, but string variables (which can
contain anything), have other rules to help the computer understand what to do. The
rules for handling strings vary from one programming language to another. The
following is an example of typical information stored in a string variable:

myvariablename$ = “this is the stuff that goes into a string variable”

Note the $ character. This syntax shows the computer that myvariablename is a s
Most programming languages use this universal convention.

☞
New Command and Syntax Summary:

Example Program Name: STRING1.BAS

��
�7KLV�LV�D�VDPSOH�VWULQJ�YDULDEOH�KDQGOLQJ�SURJUDP
��

��

�� &/6
�� 35,17��:KDW�LV�\RXU�ILUVW�QDPH���,1387�ILUVW�
�� 35,17��:KDW�LV�\RXU�ODVW�QDPH���,1387�ODVW�
�� QDPH�� �ILUVW����63$&(�������ODVW�
�� 35,17��<RXU�QDPH�LV����QDPH�
�� (1'

Program Notes:

Command Definition

SPACE$(n) Inserts the number of
spaces that are specified
in the parentheses ().

Syntax Definition

+ When working with string
variables, the + represents
a new type of command,
concatenate. In many
other languages, there is
special syntax for this
operation.

$ Designates a string
variable.
Programming Concepts 29

ring

e
• Lines 1 to 3 are comments for the programmer to read later.

• Line 4 clears the screen.

• Line 5 has you input your first name.

• Line 6 has you input your last name.

• Line 7 combines your first name, a space, and your last name into a st
variable called name$.

• Line 8 prints the contents of the string variable name$ to the screen.

• Line 9 ends the program.

Advanced Variables as
Characters (Strings)

For the next program, STRING2.BAS, the previous example is expanded to includ
more complex string handling routines.

☞
New Command Summary:

Example Program Name: STRING2.BAS

��
�7KLV�LV�DQRWKHU�VWULQJ�YDULDEOH�KDQGOLQJ�SURJUDP
��

��

�� &/6
�� 35,17��:KDW�LV�\RXU�ILUVW�QDPH���,1387�ILUVW�
�� 35,17��:KDW�LV�\RXU�PLGGOH�QDPH���,1387�PLGGOH�
�� 35,17��:KDW�LV�\RXU�ODVW�QDPH���,1387�ODVW�
�� QDPH�� �ILUVW����63$&(�������PLGGOH����63$&(�������

ODVW�
�� 8SQDPH�� �8&$6(��QDPH��
��� /QDPH�� �/&$6(��QDPH��
��� PLFURQ�� �/&$6(��/()7��ILUVW��������/()7��PLGGOH���

�����/()7��ODVW�������
��� 35,17
��� 35,17��<RXU�QDPH�LV����QDPH�
��� 35,17
��� 35,17��<RXU�QDPH�LV����8SQDPH�����LQ�XSSHUFDVH��

Exercise 2: Modify STRING1.BAS so that the users also must enter
their middle initial.

Command Definition

LEFT$(variable$, n) Cuts the string variable$
by (n) the number of
characters from the left.

UCASE$(variable$) Changes the string
variable$ to all uppercase
letters.

LCASE$(variable$) Changes the string
variable$ to all lowercase
letters.
30 Programming Concepts

 and

per

er

t
he

d

es

s.
 to
��� 35,17
��� 35,17��<RXU�QDPH�LV����/QDPH�����LQ�ORZHUFDVH��
��� 35,17
��� 35,17��<RXU�0LFURQ�XVHUQDPH�VKRXOG�EH����PLFURQ�����

�
��� (1'

Program Notes:

• Lines 1 to 3 are comments for the programmer to read later.

• Line 4 clears the screen.

• Line 5 has you input your first name.

• Line 6 has you input your middle name.

• Line 7 has you input your last name.

• Line 8 combines your first name, a space, your middle name, a space,
your last name into a string variable called name$.

• Line 9 creates a new string variable called Upname$ that stores the up
case version of name$ (your name).

• Line 10 creates a new string variable called Lname$ that stores the low
case version of name$ (your name).

• Line 11 creates a new string variable called micron$ that takes the firs
letter from your first name, the first letter from your middle name, and t
first six letters from your last name in an effort to guess your Micron
username.

• Lines 13, 15, 17, and 19 print the results to the screen.

• Line 20 ends the program.

Fun with String
Variables

The next program you’ll try is a Mad Lib program. As you become more advance
with BASIC programming, you may want to rewrite this code for practice. This
example takes the variables defined in the first part of the program and rearrang
them into a funny substitution sentence at the end of the program. Defining the
variables at the start of the program is required by some programming language
Even if it is not required, it is a very good practice to follow to give others visibility
the variables that will be used throughout the program.

☞
New Command Summary:

Exercise 3: Modify STRING2.BAS to correctly produce your
Micron username.

Command Definition

DIM Creates and defines new
variables for use in the
program.
Programming Concepts 31

use

tions.
help
Example Program Name: MADLIB1.BAS

��
��7KLV�LV�P\�SURJUDP�FDOOHG�PDGOLE��EDV
��
��,�ZURWH�LW�IRU�P\�3URJUDPPLQJ�)XQGDPHQWDOV�&ODVV
��

�� &/6
�� ',0�DFWLRQLQJ���DQLPDO���VRPHRQH���IXQQ\���IDUP���

ERG\SDUW�
�� 35,17��+HUH�LV�D�OLWWOH�TXL]���3OHDVH�XVH�IXQQ\�

ZRUGV��
�� 35,17��EHFDXVH�WKH\�PDNH�WKLV�PRUH�LQWHUHVWLQJ��
�� 35,17
�� 35,17
��� 35,17��(QWHU�DQ�DFWLRQ�ZRUG�HQGLQJ�LQ�,1*���,1387�

DFWLRQLQJ�
��� 35,17��(QWHU�DQ�H[RWLF�DQLPDO�QDPH���,1387�DQLPDO�
��� 35,17��(QWHU�\RXU�IULHQG
V�QDPH���,1387�VRPHRQH�
��� 35,17��(QWHU�D�IXQQ\�VRXQG���,1387�IXQQ\�
��� 35,17��(QWHU�D�IDUP�DQLPDO���,1387�IDUP�
��� 35,17��(QWHU�D�ERG\�SDUW���,1387�ERG\SDUW�
��� &/6
��� 35,17
��� 35,17
��� 35,17��2QH�GD\�PDQ\�\HDUV�DJR�����VRPHRQH�����ZDV�

���DFWLRQLQJ�����ZKHQ�VXGGHQO\�WKHUH�ZDV�D�DQ�����
IXQQ\�����VRXQG��PXFK�OLNH�D����DQLPDO����������
�)ULJKWHQHG�DQG�VFDUHG����VRPHRQH�����WULSSHG�RYHU�
D����IDUP����������,Q�KDVWH�WR�JHW�DZD\�����
VRPHRQH�����EURNH�KLV�KHU����ERG\SDUW������

��� (1'

Program Notes:

• Line 5 uses the new command DIM to establish the string variables. This
programming practice is helpful to those who read this program later beca
they can find all of the variables that are used, without having to search
through the entire program.

• Notice that the string variables are based upon the responses to the ques
These are by no means a guarantee of what the users will enter, but they
the programmer to write the little story in Line 19.
32 Programming Concepts

ds.
 from

kie
ve
re. If

stage.
 for

akes
f
and.
Variable Types
Summary

The following table summarizes when to use the different variable types:

There are many other variables types and uses, but these are the major ones used in
most programming languages. More information about variables specific to QBasic
can be found in “Appendix 1 - Additional QBasic Resources” on page 66.

Logic Statements (Part
One)

Often, you need some extra commands in your code to process the flow of the
computer program. These are called the logic statements or the control comman
These commands can change the direction of the program or evaluate the input
the users. The follow statement is one possible logic command; you will find this
command in most programming languages.

IF THEN Statement

An example of an IF THEN statement can be found on the flow chart for the coo
baking scenario. (See page 14.) In the flow chart, you determine whether you ha
certain ingredients. If you need them, then you are directed to buy them at the sto
you already have the ingredients, then the program continues to the measuring
In programming, this is called an IF THEN statement. Usually you are only testing
one condition at a time.

For example:

�� ,)�12�LQJUHGLHQWV��7+(1�*272�VWRUH�DQG�SXUFKDVH�
LQJUHGLHQWV

Or you could evaluate it like this:

�� ,)�<(6�LQJUHGLHQWV��7+(1�*272�PHDVXUH�LQJUHGLHQWV

Notice that both of these statements are equivalent to each other. Each branch t
the information and routes you in the correct direction. Be careful with this kind o
statement because it is easy to make a mistake in the logic of the IF THEN comm
Review the following example:

�� ,)�<(6�LQJUHGLHQWV��7+(1�*272�VWRUH�DQG�SXUFKDVH�
LQJUHGLHQWV

Variable Type When to use

Numeric (Standard) Variables Used when you want to treat the variable
and its contents, the literal, as numerical
information. Numeric variables can be
added, subtracted, multiplied, divided,
and any other function that you can
perform on a number.

String Variables Used when you want to treat the variable
and its contents, the literal, as text
information. String variables can be
combined or compared, but they cannot
have mathematical functions applied to
them.
Programming Concepts 33

your
This statement says, if you have the ingredients, then you will go to the store and
purchase them; but even after you get them, you find that you have to go to the store
over and over. Often, the logic flaw is not this easy to see, and it may take the
programmer some time to catch the mistake.

This next example is similar to the one used in “Fun with String Variables” on
page 31, but this time you will use IF THEN statements to discover the gender of
“Mad Libs victim.” This allows you to customize the final message.

☞
New Command Summary:

Example Program Name: MADLIB2.BAS - with IF THEN Statements

��
��7KLV�LV�P\�SURJUDP�FDOOHG�PDGOLE��EDV
��
��,�ZURWH�LW�IRU�P\�3URJUDPPLQJ�)XQGDPHQWDOV�&ODVV
��

�� &/6
�� ',0�DFWLRQLQJ���DQLPDO���VRPHRQH���IXQQ\���IDUP���

ERG\SDUW���JHQGHU���SURQRXQ�
�� 35,17��+HUH�LV�D�OLWWOH�TXL]���3OHDVH�XVH�IXQQ\�

ZRUGV��
�� 35,17��EHFDXVH�WKH\�PDNH�WKLV�PRUH�LQWHUHVWLQJ��
�� 35,17
�� 35,17
��� 35,17��(QWHU�DQ�DFWLRQ�ZRUG�HQGLQJ�LQ�,1*���,1387�

DFWLRQLQJ�
��� 35,17��(QWHU�DQ�H[RWLF�DQLPDO�QDPH���,1387�DQLPDO�
��� 35,17��(QWHU�\RXU�IULHQG
V�QDPH���,1387�VRPHRQH�
��� 35,17��:KDW�JHQGHU�LV�����VRPHRQH����"�(QWHU�0DOH�

RU�)HPDOH���,1387�JHQGHU�
��� ��������,)�JHQGHU�� ��0DOH��7+(1�SURQRXQ�� ��KLV���

*272�'RQH
��� ��������,)�JHQGHU�� ��)HPDOH��7+(1�SURQRXQ�� ��KHU���

*272�'RQH
��� ��������,)�JHQGHU�� ����7+(1�SURQRXQ�� ��KLV�KHU���

*272�'RQH
��� ��������35,17��%$'�(175<��(5525����SURQRXQ�� ��KLV�

KHU�
��� 'RQH�
��� 35,17��(QWHU�D�IXQQ\�VRXQG���,1387�IXQQ\�
��� 35,17��(QWHU�D�IDUP�DQLPDO���,1387�IDUP�

Command Definition

IF THEN IF THEN works on the
condition; if the statement
is true, then the action that
follows will occur.

GOTO Takes you to a specific
line or location.
34 Programming Concepts

e

ater

ers

n and

of
 the

and
��� 35,17��(QWHU�D�ERG\�SDUW���,1387�ERG\SDUW�
��� &/6
��� 35,17
��� 35,17
��� 35,17��2QH�GD\�PDQ\�\HDUV�DJR�����VRPHRQH�����ZDV�

���DFWLRQLQJ�����ZKHQ�VXGGHQO\�WKHUH�ZDV�D�DQ�����
IXQQ\�����VRXQG��PXFK�OLNH�D����DQLPDO����������
�)ULJKWHQHG�DQG�VFDUHG����VRPHRQH�����WULSSHG�RYHU�
D����IDUP�����������,Q�KDVWH�WR�JHW�DZD\�����
VRPHRQH�����EURNH����SURQRXQ��������ERG\SDUW������

��� (1'

Program Notes:

• In MADLIB2.BAS you will find the GOTO statement and a line location (th
mysterious statement “Done” on our reference line 18). It was used in this
example to illustrate how to jump from one spot in the code to another. In l
examples, the GOTO command has been replaced because it allows the
programmer to jump from place to place without much regard to programm
who may inherit the application. It is recommended to only use the GOTO
statement when absolutely necessary and, if used, to comment the locatio
the reasoning in your work.

IF THEN ELSE IF Statement

IF THEN usually has another option called ELSE IF. The IF THEN ELSE IF
command allows you to have multiple IF THEN statements in a row to cover all
the possible combinations, instead of only working with yes/no type questions like
standard IF THEN.

In the following example, you are going to the store for a few things:

�� ,)�,�SXUFKDVH�WKH�JXPP\�EHDUV�7+(1�,�KDYH�D�VQDFN
�� (/6(�,)�,�SXUFKDVH�WKH�IUXLW�VQDFNV�7+(1�,�KDYH�D�

VQDFN
�� (/6(�,)�,�SXUFKDVH�WKH�FKRFRODWH�FRYHUHG�SHDQXWV�

7+(1�,�KDYH�D�VQDFN
�� (/6(�,�KDYHQ·W�ERXJKW�D�VQDFN�7+(1�,�GRQ·W�KDYH�D�

VQDFN
�� (1'�,)

On the end of this example, notice the END IF. This returns the program back to
where you left the original branch of logic or flow of the program.

The following demonstrates an example of IF THEN statements with a new comm
called ELSE IF.
Programming Concepts 35

☞
New Command and Syntax Summary:

Example Program Name: STEAK.BAS

��
��&RRNLQJ�D�6WHDN
��
��,)�7+(1�(/6(�,)�H[DPSOH
��

�� &/6
�� ',0�FRRNOHYHO���FRRNWLPH
�� 35,17��+RZ�GR�\RX�ZDQW�\RXU�VWHDN�FRRNHG"�
�� 35,17��3OHDVH�FKRRVH�IURP�UDUH��PHGLXP��PHGLXP�

ZHOO��DQG�ZHOO�GRQH���,1387�FRRNOHYHO�
�� ��������,)�FRRNOHYHO�� ��UDUH��7+(1
�� ��������FRRNWLPH� ��
��� ��������(/6(,)�FRRNOHYHO�� ��PHGLXP��7+(1
��� ��������FRRNWLPH� ��
��� ��������(/6(,)�FRRNOHYHO�� ��PHGLXP�ZHOO��7+(1
��� ��������FRRNWLPH� ��
��� ��������(/6(,)�FRRNOHYHO�� ��ZHOO�GRQH��7+(1
��� ��������FRRNWLPH� ���
��� ��������(/6(�FRRNWLPH� ���
��� ��������(1'�,)
��� 35,17��&RRN�WKH�VWHDN�IRU���FRRNWLPH����PLQXWHV�RQ�

HDFK�VLGH�IRU�D�SHUIHFW�VWHDN�
��� (1'

Command Definition

ELSE IF Allows you to continue
with an IF THEN
statement by giving you
more choices.

ELSE The final ELSE IF is
designated with a single
ELSE statement to signal
the end of the logic.

END IF Stops the IF THEN ELSE
IF string of commands.
This has replace the
GOTO command.

Syntax Definition

Return after each
THEN statement

The format for IF THEN
ELSE IF must be
followed as it is shown
below.
36 Programming Concepts

2. If

Program Notes:

• Lines 1 to 3 are comments.

• Line 4 clears the screen.

• Line 5 sets up the two variables to be used in the program.

• Line 6 sends the question to the user.

• Line 7 gives the options for the input.

• Lines 8 and 9 find that if the item is rare, then set the variable cooktime to
not, it is to continue to evaluating lines.

• Lines 10 through 15 continue like lines 8 and 9.

• Line 16 sets the variable cooktime to 20 if the input does not match lines 8
through 15

• Line 17 ends the IF THEN loop and continues with the program.

• Line 18 sends the output to the user.

• Line 19 ends the program.

✎
TIP: When working with IF THEN ELSE IF, try to plan for all
possibilities. Notice in this example that only the four choices are listed.
Good questions to ask yourself might include “What if the user entered
nothing?” or “What if the entry is not even a word?”

Exiting QBasic After you have saved your work, you can exit QBasic.

Using the mouse:

1. Click FILE.

2. Click EXIT.

Using the keyboard:

1. Press <ALT> + <F>.

2. Press <X> for Exit.

Exercise 4: Add a feature in STEAK.BAS so the program accepts
cooklevel$ entries with any capitalization combination. For example,
the program would accept RARE, Rare, or rare as correct entries. Hint:
you only need to enter one line of code!
Programming Concepts 37

” on
HOMEWORK 1

To successfully complete this course, this homework assignment must be completed
by the due date.

The assignment for homework 1 is to create a simple QBasic program that asks
questions about the first session of the programming fundamentals class or manual.
The format is like a quiz that you would have to take at the end of a course. Please
make sure to give the users feedback by using some form of output.

The program requires these four components:

1. The program must work when run.

2. There are comments to show the reader the intentions of the programmer.

3. There is input and output of variables.

4. The program must include the use of IF THEN statements

5. The program contains between 7 and 20 lines of code.

To Get QBasic Files 1. From the MERC, type SST in the address bar.

2. Click PROGRAMMING FUNDAMENTALS.

3. Click FILES on the left side of the page.

4. Follow the given instructions on the page.

OR

1. Go to http://htmlprod.micron.com/webapps/is/cmpsrv/sst/sstportal/apps/
Programming/Programmingfun/Programmingfun.htm

2. Click FILES on the left side of the page.

3. Follow the given instructions on the page.

Saving Homework To save your homework #1 while in QBasic:

1. Click FILE.

2. Click SAVE AS.

3. Using the scroll bar on the right, scroll down to [-H-] drive.

4. Double-click to drill down each step to MTI > MSI > IS > SMCMIKLE >
PROGRAMMING.
Note: To go back up a directory, double-click the “..” at the top of the list.

5. Enter the program name, which should be username.BAS.
Warning: The program name must be 8 characters or less!

6. Click OK.

To get more help on QBasic, refer to “Appendix 1 - Additional QBasic Resources
page 66.

Due Date: On or before the beginning of Session 2.
38 Homework 1

ns.

 of
ip,

s text
PROGRAMMING FUNDAMENTALS - SESSION 2

Objectives Goal

Establish a basic programming foundation for team members who are interested in
advancing their programming knowledge and abilities.

Objectives for this Session

After completing this session, the student should be able to:

• Identify and construct basic logic structures, arrays, subroutines, and functio

• Identify and recite the programming standards at Micron, including the usage
the Rational Unified Process (RUP), code design, storage, security, ownersh
and distribution.

• Identify the standard tools common to most programming languages, such a
writers, editors, compilers, debuggers, interpreters, and bytecode.
Programming Fundamentals - Session 2 39

e
fancy
alled

ds.
 from
ver
 in

m

into
iable
s):

he

e,

he
er that

s the
ADVANCED PROGRAMMING CONCEPTS

Don’t be alarmed by the heading of “Advanced Programming Concepts.” These
concepts are not difficult, nor are the programs. These concepts are based on th
fundamentals you learned in Session 1. This section includes logical constructs;
new variables called arrays; a way of breaking your program into smaller parts, c
subroutines; and, finally, functions to help you create reusable, single-variable
subroutines.

Logic Statements (Part
Two)

Often, you need some extra commands in your code to process the flow of the
computer program. These are called the logic statements or the control comman
These commands can change the direction of the program or evaluate the input
the users. In the previous area we covered IF THEN statements and now we co
four more logic commands; you will find these commands or derivatives of them
most programming languages.

FOR NEXT Statement

FOR NEXT loops are usually used as counters. These counters help the progra
repeat itself a set number of times.

Using the recipe example, assume that you want to mix the contents of bowl #2
bowl #‘1 at least three times to ensure that it is well blended. You can use the var
looptimes to keep track of the number of loops that cycle through (called iteration

��)25�ORRSWLPHV� ���WR��
�� *(7�VSRRQ
�� 0,;�FRQWHQWV�RI�ERZO����LQWR�ERZO���
�� 0,;�YLJRURXVO\�IRU���PLQXWHV
�� 1(;7�ORRSWLPHV

When the computer encounters the FOR statement it sets the variable looptimes
initially to 1; then, it processes the rest of the instructions until it encounters the
NEXT statement. When the set of instructions is completed, the flow returns to t
top, the variable looptimes is set to 2, and the instructions are repeated. The same
steps are repeated when the variable is set to 3. When it is mixed for the third tim
the NEXT statement checks the value of looptimes to verify that it meets the last FOR
number. Then it ends the loop and continues with the rest of the program.

The FOR NEXT example repeats the loop in this program, but it is based upon t
number of times that the user specifies. To save time, you may suggest to the us
he or she use a number smaller than 20. As an example of better programming
practices, you could alter this program to have an IF THEN statement that force
user to enter a number less than 20 before the program runs.
40 Advanced Programming Concepts

tput.
☞
New Command Summary:

Example Program Name: FORNEXT.BAS

��
�)251(;7�H[DPSOH�IRU�3URJUDPPLQJ�)XQGDPHQWDOV
��

��

�� &/6
�� ',0�UHSHDW��ORRSWLPHV��WLPHVOHIW
�� UHSHDW� ��
�� ��������)25�ORRSWLPHV� ���72�UHSHDW
�� ����������������6/((3��
�� ����������������35,17��7KLV�ZLOO�UHSHDW�LWVHOI����

UHSHDW����WLPHV�
��� ����������������35,17
��� ����������������WLPHVOHIW� �UHSHDW���ORRSWLPHV
��� ����������������35,17���2QO\����WLPHVOHIW����PRUH�

WLPHV�OHIW�
��� ����������������35,17
��� ��������1(;7�ORRSWLPHV
��� (1'

Program Notes:

• Line 4 clears the screen.

• Line 5 defines the variables.

• Line 6 sets the repeat variable to 5 (the number of loops to complete).

• Line 7 sets the FOR NEXT loop to the number of times that the user has
specified.

• Line 8 has the computer pause for one second so the user can see the ou

• Line 9 prints the user input.

• Line 11 sets variable timesleft to be the literal value of “repeat” minus the
current value of the FOR NEXT loop counter called looptimes.

• Line 12 prints variable timesleft.

• Line 14 repeats the loop as long as there are more looptimes left.

Command Definition

FOR NEXT Logic command set to
loop the number of NEXT
times.

SLEEP A simple way to pause a
program. The number or
variable after sleep will
set it for how many
seconds you would like it
to sleep. FOR NEXT
loops can also accomplish
this task.
Advanced Programming Concepts 41

ic

d
hat
to 12
uter

is
—

until

ile
• Line 15 ends the program.

DO WHILE LOOP Statement

In the DO WHILE LOOP—or known in some languages as DO WHILE—the bas
logic lets you run several different operations while waiting for an answer. Going
back to the recipe example, you might have several batches of cookies that nee
various baking times, since oven temperatures and sizes can vary. This means t
some batches only take 8 minutes of cook time to finish, while others require 10
minutes of cook time. The condition of the “rawness” is evaluated and the comp
knows whether to repeat the loop.

�� '2�:+,/(��FRRNLHV�DUH�UDZ�
�� &RRN�DW�����GHJUHHV�IRU�RQH�PLQXWH
�� /223

CAUTION: Be careful not to create code like the sample below. If you review th
loop carefully, you will notice that it will run continuously, causing an infinite loop
a very bad condition in a program.

�� '2�:+,/(��FRRNLHV�DUH�GRQH�
�� &RRN�DW�����GHJUHHV�IRU�RQH�PLQXWH
�� /223

In the following example program, the DO WHILE LOOP is evaluated at the
beginning of the process, and it tells the computer to continuously run a function
you enter a certain key combination. This functionality was originally created for
game programming, allowing the computer to continue working on a graphic wh
the user sent instructions to other parts of the program.

Exercise 5: Alter the program FORNEXT.BAS so that the user
inputs the repeat variable number. To save on time, you should also
limit the entry to a value of 20 or below.
42 Advanced Programming Concepts

the
☞
New Command Summary:

Example Program Name: DOWHILE1.BAS

��
�'R�:KLOH�
�� &/6
�� ',0�SDXVH
�� ��������'2�:+,/(��,1.(<���!�&+5������
�� ����������������35,17��7KLV�ZLOO�SULQW�XQWLO�\RX�

SUHVV�WKH���NH\��
�� ������������������������)25�SDXVH� ���72���������1(;7�

SDXVH
�� ��������/223
�� 35,17
�� 35,17��<RX�HVFDSHG���
��� (1'

Program Notes:

• Line 1 comments the name of the program.

• Line 2 clears the screen.

• Line 3 defines the variable pause.

• Line 4 starts the DO WHILE LOOP with an evaluation of the first run. DO
WHILEs do not have to run, but in this case it will continue until you press
<!> key.

• Line 5 prints the statement over and over again.

Command Definition

DO WHILE Runs a continuous loop
while the computer is
waiting for new input or a
change in a condition;
loops always need a way
out or they will continue
forever. DO WHILE
evaluates the logic at the
beginning of the process.

INKEY$ Much like INPUT, but it
only captures (gets from
the keyboard) a single
keystroke.

CHR$ (n) This is used to call out a
specific key on the
keyboard. It is using
ASCII code, which can be
found in “Appendix 3 -
ASCII Character Set” on
page 77.
Advanced Programming Concepts 43

ause.
t the

rams.
• Line 6 has a seemingly useless FOR NEXT statement using the variable p
This is a simple way to keep the computer busy for a brief moment so tha
text is readable.

• Line 7 loops back up to check on the line 4 start of the DO WHILE.

• Lines 8 and 9 print a statement to the screen when the loop is completed.

• Line 10 ends the program.

The more complex version of DOWHILE1.BAS, called DOWHILE2.BAS, is
available for your reference after you have had a chance to work with more prog

☞
New Command Summary:

Example Program Name: DOWHILE2.BAS

��
�'R�:KLOH�
�� &/6
�� ',0�ORFDWLRQ��SDXVH
�� ��������'2�:+,/(��,1.(<���!�&+5������
�� ����������������ORFDWLRQ� �ORFDWLRQ����
�� ������������������������,)�ORFDWLRQ� ����7+(1
�� ������������������������ORFDWLRQ� ��
�� ������������������������(1'�,)
�� ����������������35,17
��� ����������������35,17�63&�ORFDWLRQ����7KLV�ZLOO�

SULQW�XQWLO�\RX�SUHVV�WKH���NH\��
��� ������������������������)25�SDXVH� ���72��������1(;7�

SDXVH
��� ��������/223
��� 35,17
��� 35,17
��� 35,17��<RX�HVFDSHG���
��� (1'

Program Notes:

• Line 1 comments the name of the program.

• Line 2 clears the screen.

• Line 3 defines the variables location and pause.

Exercise 6: Comment out line 6 of DOWHILE1.BAS and run the
program to observe the effects. What happens?

Command Definition

SPC (n) Used to set a print point
that is “n” number of
spaces from the left of the
screen.
44 Advanced Programming Concepts

ee

his

it.

ble
ent

ed

en 1
• Line 4 sets up the loop and evaluates the input from the keyboard to s
whether anyone has pressed the <!> key.

• Line 5 sets the variable location to location +1.

• Line 6 evaluates location, and if location = 40, then it sets it back to 0. T
was included so that the message would start back on the left after it
reached the right side.

• Lines 9 and 10 print the message about pressing the <!> key to the screen
for the user, but it prints it at the point where the location variable tells

• Line 11 has a seemingly useless FOR NEXT statement using the varia
pause. This is a simple way to keep the computer busy for a brief mom
so that the text is readable.

• Line 12 repeats the loop.

• Lines 13 through 15 give feedback to the user when he/she has escap

• Line 16 ends the program.

DO LOOP UNTIL Statement

The following DO LOOP UNTIL is evaluated at the end of the process. In the
following example, the loop continues until you guess the correct number betwe
and 1000.

☞
New Command Summary:

Example Program Name: GUESS.BAS

��
�1XPEHU�JXHVVLQJ�JDPH
�� &/6
�� ',0�FRXQW��XVHU��JXHVVDEOH
�� FRXQW� ��

Exercise 7: Comment out line 11 of DOWHILE2.BAS to observe
the effects. What happens?

Command Definition

DO LOOP UNTIL Runs a continuous loop
until it meets the
conditions set by the
programmer; loops
always need a way out, or
they will run forever. DO
LOOP UNTIL evaluates
the logic at the end of the
process and will always
run at least once.

RANDOMIZE Sets the start of the RND
random number generator
to simulate real random
numbers.

RND Creates a random number.
Advanced Programming Concepts 45

ber is

er

mber.

s in

als

he
�� 35,17��3OHDVH�HQWHU�D�QXPEHU�DV�LQVWUXFWHG�EHORZ�
�� 5$1'20,=(
�� JXHVVDEOH� �,17�51'�
������
�� 35,17
�� 35,17��1XPEHU�JXHVVLQJ�JDPH�
��� 35,17
��� 35,17��,�DP�WKLQNLQJ�RI�D�QXPEHU�EHWZHHQ���DQG�

���������
��� 35,17
��� ��������'2
��� ����������������,1387��:KDW�LV�\RXU�JXHVV���XVHU
��� ����������������,)�XVHU���JXHVVDEOH�7+(1�35,17�

�+LJKHU�
��� ����������������,)�XVHU�!�JXHVVDEOH�7+(1�35,17�

�/RZHU�
��� ����������������FRXQW� �FRXQW����
��� ��������/223�817,/��XVHU� �JXHVVDEOH�
��� 35,17��<RX�KDYH�JXHVVHG�WKH�FRPSXWHU·V�QXPEHU���

JXHVVDEOH
��� 35,17��<RXU�JXHVV�ZDV���XVHU
��� 35,17
��� 35,17��,W�WRRN�\RX���FRXQW����WULHV�
��� (1'

Program Notes:

• Line 4 sets the count variable to 0. This is used to ensure that the num
starting at 0, just in case count is used in another area of the program.

• Line 5 gives user instructions about the RANDOMIZE function.

• Line 6 starts the random number generator.

• Line 7 creates a variable called guessable and sets it equal to a numb
between 1 and 1000.

• Lines 8 through 12 give instructions to the user.

• Line 13 starts a DO loop.

• Line 14 asks for a guess.

• Line 15 hints Higher if the user’s number is less than the guessable nu

• Line 16 hints Lower if the user’s number is more than the guessable
number.

• Line 17 increments the count variable by 1 (counting the number of time
the loop).

• Line 18 finishes the loop by evaluating to see if the user’s number equ
the guessable number. If this is true, then it will leave; if not, it will
continue to loop.

• Lines 19 through 22 give the user feedback on his or her attempt and t
number of times that it took to guess the number.

• Line 23 ends the program.
46 Advanced Programming Concepts

ed

at it

ng
✎
TIP: If you get stuck in QBasic in a loop, press the <CTRL> +
<BREAK> keys simultaneously.

Logic Statement
Summary

The following table summarizes when to use the various common logic statements:

Arrays Our Phake programming language did not directly include arrays, but you can
incorporate them. Arrays are best described as variables that hold a list of items. For
example, a typical list of ingredients for the cookie recipe example would read:

• flour

• sugar

• butter

• eggs

For this example, “ingredients” is the name of the array, and the recipe items you ne
are added into the new array variable. The array called “ingredients” would look
something like this:

ingredients (flour, sugar, butter, eggs)

If you wanted to tell someone what the third item on your list is, you would say th
is butter. Arrays work the same way; the third item in the ingredients array is butter.
Arrays can be useful to the programmer for listing items, for sorting, or for keepi
together variables of a related type.

Now you can apply the array structure to a program.

Command When to use

IF THEN To ask a closed-ended question with only
two outcomes, such as a decision
diamond in a flow chart.

IF THEN ELSE IF To ask a closed-ended question with
many different possible answers; it is
important to include all possible answers.

FOR NEXT To create a loop that is repeated a specific
number of times.

DO WHILE To create a continuous loop that may
never get to run. At the beginning of the
loop, it evaluates a logic statement; if
correct, it continues the program; if not
correct, it continues to loop.

DO UNTIL To create a continuous loop that will
always run at least once. At the end of the
loop, it evaluates a logic statement; if
correct, it continues the program, if not
correct, it continues to loop.
Advanced Programming Concepts 47

Example Program Name: ARRAY1.BAS

��
�0\�$UUD\��SURJUDP
��

��

�� &/6
�� ',0�GD\RIZHHN����
�� 35,17��:KDW�GD\�RI�WKH�ZHHN�ZDV�\HVWHUGD\���,1387�

GD\RIZHHN����
�� 35,17��:KDW�GD\�RI�WKH�ZHHN�LV�WRGD\���,1387�

GD\RIZHHN����
�� 35,17��:KDW�GD\�RI�WKH�ZHHN�LV�WRPRUURZ���,1387�

GD\RIZHHN����
�� 35,17
��� 35,17��7+$1.�<28��
��� 35,17
��� 35,17��<RX�HQWHUHG�����GD\RIZHHN������������

GD\RIZHHN���������DQG����GD\RIZHHN����
��� (1'

Program Notes:

• Lines 1 to 3 are the comments.

• Line 4 clears the screen.

• Line 5 sets a new array variable called “dayofweek” to three positions.

• Line 6 asks for user input for yesterday’s day.

• Line 7 asks for user input for today’s day.

• Line 8 asks for user input for tomorrow’s day.

• Line 10 thanks the user.

• Line 12 sends the entered information back to the user.

• Line 13 ends the program.

☞
New Command and Syntax Summary:

✎
TIP: Be careful with array types and names in different programming
languages. Some arrays consider number (1) to be the first in the list, and
others start with number (0). While an array can start at any number the

Exercise 8: Modify ARRAY1.BAS so the user also enters the day
after tomorrow (2 days from today). Be sure to change the number of
items in the array and modify the printed text accordingly.

Syntax Definition

(n) A number used after an
array to designate the
placement number of the
item in the array.
48 Advanced Programming Concepts

programmer would like, you should only change it if it helps explain the
code or if it is commented. Otherwise, stick to the standards for the
language with which you are working.

The next example uses an array that is predefined by the program so it can ask one
question and produce the same results.

Example Program Name: ARRAY2.BAS

��
�0\�$UUD\��SURJUDP
��

��

�� &/6
�� ',0�GD\RIZHHN������LQSXWGD\
�� GD\RIZHHN����� ��6XQGD\�
�� GD\RIZHHN����� ��0RQGD\�
�� GD\RIZHHN����� ��7XHVGD\�
�� GD\RIZHHN����� ��:HGQHVGD\�
��� GD\RIZHHN����� ��7KXUVGD\�
��� GD\RIZHHN����� ��)ULGD\�
��� GD\RIZHHN����� ��6DWXUGD\�
��� 35,17��(QWHU�WKH�QXPEHU�WKDW�FRUUHVSRQGV�WR�WKH�GD\�

RI�WKH�ZHHN�
��� 35,17
��� 35,17��6XQGD\�LV����������
��� 35,17��0RQGD\�LV����������
��� 35,17��7XHVGD\�LV���������
��� 35,17��:HGQHVGD\�LV�������
��� 35,17��7KXUVGD\�LV��������
��� 35,17��)ULGD\�LV����������
��� 35,17��6DWXUGD\�LV��������
��� 35,17
��� ,1387�LQSXWGD\
��� 35,17
��� 35,17��7+$1.�<28��
��� 35,17
��� 35,17��<HVWHUGD\�ZDV����GD\RIZHHN��LQSXWGD\�������

���7RGD\�LV����GD\RIZHHN��LQSXWGD\������DQG�
7RPRUURZ�LV����GD\RIZHHN��LQSXWGD\�����

��� (1'

Program Notes:

• Lines 1 to 3 comment the program.

• Line 4 clears the screen.

• Line 5 sets up a new 7-position array called dayofweek and defines a
variable called inputday.

• Lines 6 to 12 set the dayofweek slots in the dayofweek array to the
appropriate days.
Advanced Programming Concepts 49

ter

the

utine
• Lines 13 to 21 give the user the available days of the week and their
corresponding numbers.

• Lines 22 to 23 asks for the user input.

• Line 25 is polite.

• Line 27 gives the output like the previous program, only now the compu
knows the right dates (but only if the right date is entered!).

✎
TIP: Some programming languages save you some work by including
predefined days-of-the-week or days-of-the-month arrays.

Subroutines Subroutines simply take repeated or commonly used code and set it aside from
main code. This makes editing easy; if you want to change every instance of a
repeated set of instructions in your code, you simply change it once in the subro
window. In QBasic, subroutines are saved when the main program is saved.

☞
New Command and Syntax Summary:

Exercise 9: In ARRAY2.BAS, if the user indicates that today is
either Saturday or Sunday, the program will not function correctly
because 0 (1 - 1) and 8 (7 + 1) are not defined in the array. Improve the
logic of the program so the program will run correctly.

Command Definition

DECLARE SUB
subname (variables)

The declaration does two
things: 1) sets up a sub
with subname and 2) sets
the variables that will be
used by both the main
program and the
subroutine.

SUB Starts the subroutine.

CALL Runs the program or
subroutine name that
follows.

END SUB Returns the flow of the
program back to where it
left to go to the
subroutine. This is much
more predictable than
earlier GOTO statements.

Syntax Definition

DECLARE SUB
subname (variables)

The variables declared in
the variables section have
to be the same type as the
variables used with the
SUB command.
50 Advanced Programming Concepts

e has

ble to

Review the example below to see the usage. Notice instead of using DIM to define the
variables, you use DECLARE, which makes the variables available not only to the
main program but also to the subroutines.

Example Program Name: SUBROUTE.BAS

�� '(&/$5(�68%�FRPER��QDPH���PHVVDJH��
��
$�VLPSOH�H[DPSOH�RI�VXEURXWLQH
��

��

�� &/6
�� 35,17��7KLV�LV�D�VDPSOH�RI�KRZ�VXEURXWLQHV�ZRUN�
�� 35,17
�� 35,17
�� 35,17��3OHDVH�HQWHU�\RXU�QDPH���,1387�QDPH�
��� &$//�FRPER�QDPH���PHVVDJH��
��� 35,17�PHVVDJH�
��� (1'

The following is the subroutine of the SUBROUTE.BAS program.

�� 68%�FRPER��QDPH���PHVVDJH��
�� ��������,)�QDPH�� ��6KDXQ��7+(1
�� ��������PHVVDJH�� �QDPH������LV�D�JUHDW�LQVWUXFWRU�
�� ��������(/6(�PHVVDJH�� �QDPH������LV�D�JRRG�VWXGHQW�
�� ��������(1'�,)
�� (1'�68%

Program Notes:

• Line 1 declares the subroutine called combo and states that this subroutin
two variables called name and message.

• Lines 2 to 4 are comments.

• Line 5 clears the screen.

• Line 6 prints a message saying this is a sample of how subroutines work.

• Line 9 asks the user to input his or her name.

• Line 10 calls the subroutine (or goes to the subroutine). The program will
return to this same spot when it receives the END SUB command.

• Line 1 of the SUB sets up the two variables to be used by both the main
program and the subroutine.

• Line 2 checks to see whether the name string variable is equal to Shaun
(comparison).

• Line 3 says if the name is Shaun, then the program sets the message varia
the name string variable plus is a great instructor (concatenate).

• Line 4 says if the name is not Shaun, then the program sets the message
variable to the name string variable plus is a good student.

• Line 5 of the SUB ends the IF statements.
Advanced Programming Concepts 51

here

r
• Line 6 ends the subroutine and returns to the place in the main program w
it originally branched to the subroutine (in this case, Line 10).

The Mad Lib program that we used earlier has been converted to provide anothe
example of the use of subroutines.

Example Program Name: MADLIB3.BAS

�� '(&/$5(�68%�JHQGHU��WKHP���SURQRXQ��
��
��7KLV�LV�P\�SURJUDP�FDOOHG�PDGOLE��EDV
��
��,�ZURWH�LW�IRU�P\�3URJUDPPLQJ�)XQGDPHQWDOV�&ODVV
��

�� &/6
�� ',0�DFWLRQLQJ���DQLPDO���VRPHRQH���IXQQ\���IDUP���

ERG\SDUW�
�� 35,17��+HUH�LV�D�OLWWOH�TXL]���3OHDVH�XVH�IXQQ\�

ZRUGV��
�� 35,17��EHFDXVH�WKH\�PDNH�WKLV�PRUH�LQWHUHVWLQJ��
�� 35,17
��� 35,17
��� 35,17��(QWHU�DQ�DFWLRQ�ZRUG�HQGLQJ�LQ�,1*���,1387�

DFWLRQLQJ�
��� 35,17��(QWHU�DQ�H[RWLF�DQLPDO�QDPH���,1387�DQLPDO�
��� 35,17��(QWHU�\RXU�IULHQG
V�QDPH���,1387�VRPHRQH�
��� 35,17��:KDW�JHQGHU�LV�����VRPHRQH����"�(QWHU�0DOH�

RU�)HPDOH���,1387�WKHP�
��� &$//�JHQGHU�WKHP���SURQRXQ��
��� 35,17��(QWHU�D�IXQQ\�VRXQG���,1387�IXQQ\�
��� 35,17��(QWHU�D�IDUP�DQLPDO���,1387�IDUP�
��� 35,17��(QWHU�D�ERG\�SDUW���,1387�ERG\SDUW�
��� &/6
��� 35,17
��� 35,17
��� 35,17��2QH�GD\�PDQ\�\HDUV�DJR�����VRPHRQH�����ZDV�

���DFWLRQLQJ�����ZKHQ�VXGGHQO\�WKHUH�ZDV�D�DQ�����
IXQQ\�����VRXQG��PXFK�OLNH�D�DQ�����DQLPDO����������
�)ULJKWHQHG�DQG�VFDUHG����VRPHRQH�����WULSSHG�RYHU�
D����IDUP����������,Q�KDVWH�WR�JHW�DZD\�����
VRPHRQH�����EURNH����SURQRXQ��������ERG\SDUW������

��� (1'

The following is the subroutine of the MADLIB3.BAS program.

�� 68%�JHQGHU��WKHP���SURQRXQ��
�� �����,)�WKHP�� ��0DOH��7+(1

Exercise 10: Add a new question in the main program of
SUBROUTE.BAS that asks the user to input a description of the
person whose name was entered. Then pass that variable information to
the subroutine for concatenation.
52 Advanced Programming Concepts

�� �����SURQRXQ�� ��KLV�
�� �����(/6(,)�WKHP�� ��)HPDOH��7+(1
�� �����SURQRXQ�� ��KHU�
�� �����(/6(,)�WKHP�� ����7+(1
�� �����SURQRXQ�� ��KLV�RU�KHU�
�� �����(/6(
�� �����35,17��%$'�(175<��(5525����SURQRXQ�� ��KLV�RU�

KHU�
��� �����(1'�,)
��� (1'�68%

Creating a Subroutine To create a subroutine

1. Save your program.

2. Click EDIT, and then select NEW SUB.

3. Enter the name of the subroutine, and then click OK.

4. On the same line as the name of the subroutine, specify the name of the
variables you would like to make available for both the main program and the
subprogram. Enclose these variables in parentheses ().

5. Write your subroutine.

6. SAVE your work.

Within the program, use the <F2> key to switch back to the main program area. Use
the Call command to access the subroutine when needed.

Functions A function is simply a single variable subroutine that you can teach the computer to
run when you need a repeated action. The advantage of using a function is that you
can change or upgrade the function without changing the main program. For example,
you can create a function to calculate your after-tax paycheck when Uncle Sam is
finished with your original gross income. Then when you evaluate salary levels, you
will know your take-home pay.

Note: The calculations in the following example are just for fun and do
not reflect actual payroll information.

☞
New Command and Syntax Summary:

Command Definition

DECLARE Function
(Variable)

Declares the function so
that the program can find
it later when called.

FUNCTION Defines the start of the
function area and the
function name.

END FUNCTION Ends the Function and
returns to the call point.
Advanced Programming Concepts 53

Example Program Name: FUNCTION.BAS

�� '(&/$5(�)81&7,21�7D[HV���QXPEHU�
��
)XQFWLRQ�3URJUDP
��

��

�� &/6
��
�&RQVWDQW�KRXUV�LQ�\HDU�EDVHG�RQ�VWDQGDUG�KRXUV
�� KRXUVLQ\HDU� �����
�� 35,17��$UH�\RX�SDLG�KRXUO\�RU�VDODU\"�,QSXW�+�RU�

6���,1387�+RZSDLG�
�� ,)�+RZSDLG�� ��6��7+(1
��� ��������35,17��,QSXW�\RXU�DQQXDO�VDODU\���,1387�

ZDJHV
��� ��������KRXUO\� �ZDJHV���KRXUVLQ\HDU
��� (1'�,)
��� ,)�+RZSDLG�� ��+��7+(1
��� ��������35,17��,QSXW�\RXU�KRXUO\�ZDJH���,1387�

KRXUO\
��� ��������ZDJHV� �KRXUO\�
�KRXUVLQ\HDU
��� (1'�,)
��� 35,17
��� 35,17��<RXU�KRXUO\�ZDJH�EHIRUH�WD[HV�LV����KRXUO\
��� 35,17��<RXU�DQQXDO�VDODU\�EHIRUH�WD[HV�LV����ZDJHV
��� 35,17
��� 35,17��<RXU�KRXUO\�ZDJH�DIWHU�WD[HV�LV����

7D[HV�KRXUO\�
��� 35,17��<RXU�DQQXDO�VDODU\�DIWHU�WD[HV�LV����

7D[HV�ZDJHV�

The following is the breakdown of the function in the FUNCTION.BAS program.

��)81&7,21�7D[HV��QXPEHU�
�� LQFRPH7D[HV� �QXPEHU�
����
�� 7D[HV� �QXPEHU���LQFRPH7D[HV
�� (1'�)81&7,21

Program Notes:

• Line 1 declares the function.

• Line 6 comments about the constant.

Syntax Definition

Function (variable) Verifies that the variable
type in the function
matches the function
itself.
54 Advanced Programming Concepts

ion,
oth
es (),
• Line 7 sets a constant called hoursinyear.

• Line 8 asks the user to input pay type.

• Line 9 asks a question only if the user’s income is paid in salary.

• Line 13 asks a question only if the user’s income is paid hourly.

• Lines 18 and 19 print the current salary information.

• Lines 21 and 22 print the salary after taxes.

• Line 1 of the Function sets up the function called Taxes.

• Line 2 of the Function will take the number in Taxes and acts upon it by
multiplying it by 15%.

• Line 3 of the Function sets taxes to the number - the incomeTaxes.

• Line 4 of the Function ends the function.

Creating a Function To create a function:

1. Save your program.

2. Click EDIT, and then select NEW FUNCTION.

3. Enter the name of the function. On the same line as the name of the funct
specify the name of the variable that you would like to make available for b
the main program and the subfunction. Enclose that variable in parenthes
and then click OK.

4. Write your function.

5. SAVE your work.

Within the program, press the <F2> key to switch between the main program and
your functions.

Subroutine and
Function Summary

The table summarizes when to use subroutines or functions:

Command When to use

SUBROUTINE Used when you have more than one
variable that you would like to pass back
and forth from the main program and the
subroutine.

FUNCTION Used when you only have a single
variable that you would like to pass to a
subfunction and have a series of actions
(commands) applied to it.
Advanced Programming Concepts 55

you
ms

:

PROGRAMMING STANDARDS

Computer programming is more than just writing code and running the programs that
you have created. It includes standards for developing and designing code, as well as
methods for securing, saving, and distributing that code. The topics discussed in this
section will prevent you from making the same mistakes that others have made in the
past. Keep in mind that this is only a small portion of the “required” knowledge for
Micron programmers. If you continue to program, it is highly recommended that
study the information provided in the Appendices, consult with Information Syste
web sites, and review the books listed as references.

Developing using
Micron’s Standard

Micron uses the Rational Unified Process (RUP) to help programmers develop an
application that meets Micron standards. RUP consists of a series of steps and helps
ensure that we are producing high-quality software that meets our end-users’ needs,
within a predictable schedule and budget. Here is a summary of the RUP stages

Business Modeling is the “investigation” stage where
you observe and document how the current business
process works.

Requirements is the “clarification” stage where you
work with your customers to verify their expectations
and confirm that you can build the product.

Analysis & Design is the “write it down” stage where
you take the modeling and requirements and actually
develop a comprehensive plan.

Implementation is the “just do it” stage where you take
the plans and build the product.

Test is the “break it” stage where you verify that your
product meets all of your customers’ needs.

Deployment is the “release” stage where you give the
products to your customers.

Post Deployment is the “improvements” stage where
you keep track of bugs, enhancements, and customer
requests.

Requirements

Test

Deployment

Analysis & Design

Business
Modeling

Implementation

Post Deployment
56 Programming Standards

mply

 your
f the
an

nd is

se

 you

 a

 run.
e

l;
ake
For more information on the Rational Unified Process:

1. Launch the MERC.

2. In the Address bar, type SQA and then press <Enter>. The SQA home page
displays.

3. Click the plus sign (+) next to 3rd Party Applications, and then click
Rational Unified Process. The RUP home page displays.

Designing Code The goal of every programmer should be to develop programs that are well designed
and accomplish great tasks. Many programmers agree that the following
recommendations are essential programming standards. According to Micron’s
Software Quality Assurance group, the most important of these standards is
readability.

Commenting Your Code

Other programmers cannot capture your intentions and thought processes by si
looking at your source code. It is extremely difficult to understand, interpret, and
navigate through code and statements that have not been commented. Adding
comments before every section of your project code is helpful when others read
work or when you need to retrace your work. If you are unsure about the detail o
comments, ask someone unrelated to the project to read the code; if he or she c
understand it with little or no explanation, you have been successful.

Ensuring Readability

Readability refers to the structure and general format of the code that you write a
considered the most important programming standard at Micron. In many
programming languages you can write many instructions together, write complex
nesting structures, and make calls to external files and programs. In each of the
cases, you should keep readability foremost in your mind. Using correct line
structure, indenting code, and commenting the code is expected at Micron. How
implement these techniques will directly impact how you are evaluated as a
programmer.

Writing Efficient Code

Efficient code is best defined as using the fewest number of steps to accomplish
computing task or making the most efficient use of resources. Shorter and more
efficient code saves hard drive space and requires fewer computing resources to
It is much easier to find errors and problems in small, easy-to-follow programs. B
careful to balance the readability of the code with the required performance leve
with today’s computing power and the fact that many people read Micron code, m
readability a higher priority.
Programming Standards 57

ou
iew
ill

e
 and

rking
ays
trol.

to
ible
f
rive
 of
 find
, but
y to

ct
eate
e the

e to
 can
out
ity

tored
ger

Handling Errors

Error handling is anticipating user responses by brainstorming all possible outcomes
and then generating code or subroutines to match those possibilities. Sometimes the
ambiguities or other interpretations of the interface cannot be seen by the programmer
because he or she makes assumptions or is too close to the project. To determine
whether a choice is ambiguous in nature, ask others for help with this process. See
“Appendix 4 - Vocabulary Exercise Answers” on page 78 for more information on
testers and testing processes.

Trapping Errors

Another approach to handling errors is to use error trapping. With this method, y
trap errors generated by your program to a holding bin or file so that you can rev
and fix them later. Tracking errors and problems that have occurred in the past w
improve not only the program but also the programmer. The use of log files, trac
files, and archive files help facilitate this process. For more information on errors
error trapping, see “What’s Next?” on page 88.

Saving Your Work ALWAYS SAVE YOUR WORK. ALWAYS SAVE YOUR WORK.

ALWAYS SAVE YOUR WORK. ALWAYS SAVE YOUR WORK.

Repeat this statement numerous times, so you are sure to remember. When wo
with computers, it is critical that you regularly save your work because there is alw
the possibility of power loss, corruption, or other circumstances beyond your con

Equally important is where you save the work. At Micron, you must save your files
a network drive. The most likely drive for this use is the F: drive, which is access
only by you. It is backed up nightly and can be retrieved by the Support Center i
deleted or corrupted. You should not save programs or related files on a floppy d
(A:) or on your local hard drive (C:). Neither of these volatile and insecure places
storage are acceptable long-term storage locations for Micron property. You may
it necessary to store files on the C: drive temporarily for a large work in progress
you should only do this if you have automated a method for making a nightly cop
a network server.

When creating files on the F: drive, first create a folder that contains all the proje
files for the program on which you are working. Many programming languages cr
multiple files that are required for running the code. For ease of navigation, nam
folder exactly the same as the project.

If you have any work saved to a common network drive, such as G:, it is imperativ
establish strict security permissions. Copying a program file out to a public drive
subject yourself and Micron to many different dangers. If you have questions ab
creating permissions and establishing safe zones, consult the Information Secur
Team in Information Systems.

PVCS at Micron To protect our valuable software assets, Micron’s mission-critical programs are s
in a system called Project Version Control System (PVCS). PVCS Version Mana
serves as the primary repository for all the source files used to create production
applications.
58 Programming Standards

ion

he

nly
 issues

unt,
quire
se

ges
ter.

time.

ay
itical
which
 or

These files can include specifications, source code, and make files, as well as
binaries, such as bitmaps, application-specific DLLs, and special controls.

PVCS provides Micron the ability to:

• Store multiple revisions of each source file in the archive

• Lock an archive so that it can be updated by only one developer at a time

• Tie specific revisions of each source file to specific releases of an applicat

• Automatically maintain an audit trail of changes to all of the files under
version control

PVCS should be used:

• To store revisions of all production source files

• To coordinate development between two or more developers working on t
same project

• To store a revision of a project under development whenever any major
changes are made

To access more information about PVCS:

1. Launch the MERC.

2. Type SQA into the Address field, and then press <ENTER>.

3. Click the plus sign (+) next to 3RD PARTY APPLICATIONS.

4. Click PVCS VERSION MANAGER.

You can also send an e-mail message to the SQA team at sqa@micron.com.

Securing Your Work After your code is in production, the program security that you use will affect not o
your access but also the access of anyone else in the enterprise. There are three
to consider when setting security on your programs.

• As you develop your code, test the authentication from a developer’s acco
an anonymous account, and from a user’s account. Authentication may re
a different syntax or may expose authentication issues that would otherwi
stay hidden until after the code has been released.

• Do not enforce complex or unique passwords during the development sta
because that may become a nuisance. These restrictions can be added la

• Do not use administrative (admin) accounts when developing code. Admin
accounts have no access restriction, and the code can do anything at any

Source Code
Ownership

The programming code written at Micron, or for Micron, belongs to Micron. You m
be the author, but Micron is the owner. Many programs that you use today are cr
to the operations of the company. The loss of this data or loss of the process by
it is created can cost the company millions of dollars. Code developed at Micron
for Micron cannot leave Micron, even if you leave the company. If there is ever a
doubt, consult your supervisor or Information Security immediately.
Programming Standards 59

g

will

t
ent

n
at
oup
pe
Distribution of Your
Work

With the advances of computer programming and networking, creating and
distributing programs have become much easier. One of the greatest responsibilities
of a programmer is to distribute programs in an organized and beneficial way. Whole
teams of IS professionals have been developed to ensure that computer programs are
developed and distributed correctly. The Developer Tools and Languages (DTL) and
Software Quality Assurance (SQA) teams have volumes of information on
developing better code.

• The Software Quality Assurance (SQA) group is chartered with overseein
development, training, and administration of software changes on all
platforms. This includes producing procedures, tools, and processes that
enforce a strong commitment to software quality among the development
community. While this team is not responsible for the overall software quality
here at Micron, they are responsible for ensuring that developers produce
quality software. To visit the SQA group web site, type SQA in the Address
field of the MERC.

• The Developer Tools and Languages (DTL) group provides quality suppor
and training for the many different programming languages and developm
tools used by Micron's IS developer community within the NT, Unix, and
OpenVMS environments. If you are having problems with a program writte
in Visual Basic, C, C++, Perl, or other supported programming languages
Micron and cannot find a documented solution, you can contact the DTL gr
for assistance in solving your problem. To visit the DTL group web site, ty
DTL in the Address field of the MERC.
60 Programming Standards

 word
ge.
elp

In
are
tion

c
urther

g

r and

PROGRAMMING TOOLS

To start programming in an authentic programming language, you first need to have
the tools of the computer programmer. Each programming language has its own tools
to aid you in the programming process, but they all use the same basic models.

Text Editors The most basic way to write a program is to use a text editor. These editors create
CUI-based text files, and they do not have any tools to aid the programmer. Many
people who create web pages, or develop for PERL, use only text editors because the
resulting files are universal to all computer systems. One of the first text editors that
came with DOS was ED (and later EDLIN), and Unix’s editor is called vi. Today, all
Microsoft operating systems come with a simple text editor called Notepad.

Code Editors Code editors are one step above simple text writers because they take a simple
processor and add some specific tools related to a specific programming langua
Code editors include tools that help the programmer, such as syntax checkers, h
files, and debugging tools (described in QBasic).

When you purchase a computer programming package, a code editor is usually
included. In some cases the code editor can be obtained for free.

Debuggers Removing the errors that can occur in a computer program is called debugging.
programming, there are many points of failure: your source code, the editor you
using, the compiler, the compiled program, the dependency libraries, and interac
with other programs. While code editors and compilers often warn you of specifi
error types, the quest to create a bug-free (error-free) program never ends. For f
information on errors, consult “Debugging” on page 72.

Common ways to debug a program include:

• Step through the program: Use the debugger to find logic errors by configurin
the editor to show you each error as it occurs in the program.

• Use breakpoints: Instead of stepping throughout the entire program, use
breakpoints to step through just a specific portion of the code.

Compilers A compiler reads the source code that you have written with a text or code edito
translates it to machine code. Because computers only talk in 1s and 0s and all
computer languages are written in words, the compiler converts those words to a
language that the computer understands. This is illustrated below.

Figure 8: Diagram of Compiler

Print "I love this
class" Compiler

1011010101011
Programming Tools 61

After a program has been compiled, it becomes a stand-alone executable file that can
be run on any computer with which the compiler is compatible.

Note: If you want to build a program that will run on all platforms, you
either have to create multiple copies for different compilers or
use new programming languages like PERL or JAVA.

Interpreters Interpreters, like compilers, translate text information that you have developed into
machine language; however, when the interpreter translates the code, it processes the
text information one line at a time into system memory. After it is interpreted, the
program is very fast, but when you turn the computer off, the information is lost.
Interpreters work very well for web-based programming like JAVA Script and VB
Script, but they are not very effective for general programming. QBasic is an example
of both an editor and an interpreted language.

Bytecode The bytecode approach to compiling is a bit more interesting than the previous
examples. Instead of writing a program and then translating it to machine code for the
computer, you now write your program and translate it to a universal code. This
universal code can be sent to other users, who can then compile it for their computers.
It would become very problematic to learn how to compile a program each time, so
computer program manufacturers, such as Microsoft and Netscape (AOL), have built
the translators (just-in-time compilers) into their Internet browsers, such as Internet
Explorer or Netscape Navigator.

The best-known language today that uses the bytecode (virtual machine) approach is
JAVA. Rather than being interpreted one instruction at a time, JAVA bytecode can be
recompiled on each particular system platform by a just-in-time compiler. Usually,
this enables the JAVA program to run faster.

Figure 9: Diagram of Bytecode Compiler

Print "I love this
class" Bytecode

1011010101011
Browser CompilerBytecode
62 Programming Tools

P
rogram

m
ing at M

icron
63

y Example

All Windows, Linux,
Netscape, Quicken

All Windows, Linux,
Netscape, Quicken

OPERCERT

er / Data extraction, systems
management

er / Web page pull-down
menus

itor Ship Doc, FAB
applications on the PCs

itor Windows, front-end
applications

er / Web pages

er / Electronic Data
Interchange
PROGRAMMING AT MICRON

Program Description Primar
Tool

 P
ro

ce
du

ra
l P

ro
gr

am
m

in
g

L
an

gu
ag

es

C C is the first procedural language that falls into the portable assembler class. It can directly
manipulate hardware like machine code or assembly, but it is a high-level program. C is
difficult to learn – it was written by programmers for programmers.

Editor

C++ C++ expands on the functionality of the C language with a super set of instructions. It can
uniquely use C code within C++ programs.

Editor

Cobol (Common
Business Oriented
Language)

Cobol was the first high-level programming language that was widely used for business
applications. Since Cobol continues to run huge, mission-critical applications, many
companies are continuing with Cobol support until the applications can be rewritten in
modern languages.

Editor

Fortran

(Formula Translator)

Fortran was designed for use by engineers, mathematicians, and creators of scientific
algorithms. Fortran is one of the original programming languages and many applications
were written with it.

Editor

PERL (Practical
Extraction and
Reporting Language)

PERL is a C-based procedural language and can work from virtually any platform without
any changes to the code. PERL defies normal programming conventions in that it can be
used as either a procedural or an object-oriented language, and PERL also has bytecode
capabilities (see “Bytecode” on page 62).

Text Writ
Editor

O
bj

ec
t-

O
ri

en
te

d
P

ro
gr

am
m

in
g

 (
O

O
P

)
L

an
gu

ag
es

JAVA and JAVA Script JAVA was developed by Sun Microsystems. JAVA’s design can work exclusively from
networks, instead of from single workstations or servers. It is similar to C++ but easier to
use. JAVA also is known for its bytecode capability (see “Bytecode” on page 62).

Text Writ
Editor

Visual Basic (VB) VB allows a user to create GUI applications. This language is an extension of the original
BASIC; it encompasses many of the same functions and commands.

Visual Ed

Visual C++ Visual C++ takes the C++ language and expands it to be object-oriented with a GUI
interface.

Visual Ed

 M
ar

ku
p

L
an

gu
ag

es HTML (Hypertext
Markup Language)

HTML is a text-based language that describes web pages to an interpreter (browser), which
then displays the page to the user.

Text Writ
Editor

XML (Extensible
Markup Language)

XML is a way to extract data in a universal format regardless of platform. This expands the
use of data models without having to worry about inter-operability.

Text Writ
Editor

VOCABULARY EXERCISE

Match the vocabulary items on the top with their correct definitions on the bottom.

__________ 1. A variable that holds a list of
items that share the same
properties or need to be grouped
together.

__________ 9. Used when you have only one
variable that you need to pass
between the main program and
the sub program.

__________ 2. A container that holds
information.

__________ 10. A tool to aid the programmer in
removing all of the possible errors
that can occur in computer
programming.

__________ 3. Used to describe the interface
where the actions that drive the
computer are all based upon the
user’s input through visual
navigation.

__________ 11. Used when you have more than
one variable that you need to pass
between the main program and
the sub program.

__________ 4. The name for the value that is
contained within a variable.

__________ 12. A programming tool that converts
source code written in a high level
language into machine code.

__________ 5. A pseudo-code programming
language invented for this class to
illustrate programming logic.

__________ 13. A continuous logic construct that
evaluates a logic statement; if
correct it continues the program,
if not correct it continues to cycle.

__________ 6. A modeling tool used to best
simulate computer logic or step-
by-step instructions. It is very
useful when there are multiple
ways to produce an outcome.

__________ 14. A type of variable that holds
character based information.

__________ 7. The exact order or logical
structure of a programming
command. This word is used to
denote the order in which a
language is grammatically
correct.

__________ 15. A numbering system that
computers use to communicate,
and consists of just two unique
digits, "1s" and "0s."

__________ 8. A variable that holds a specific
piece of information throughout
the program.

Compiler Debugger Loop Binary Variable

Syntax String Variable Function Constant Flow Chart

Subroutine Array Phake GUI Literal
64 Vocabulary Exercise

” on
HOMEWORK 2

Before you can receive credit for this class, there is a final homework assignment that
is due two weeks after the second session.

The assignment for homework 2 is to expand upon the homework from last week by
creating a more sophisticated version of the quiz on the contents of the Programming
Fundamentals course. Remember, in programming there is no restriction on how you
accomplish this task as long as you meet the requirements.

The program requires these seven components:

1. The program must work when run.

2. There are comments to show the reader the intentions of the programmer.

3. There is input and output of variables.

4. The program contains both numerical variables and string variables.

5. You grade the input of the user, and give the output as to his or her progress.

6. The program includes at least two of these advanced features: logic statements,
arrays, subroutines, or functions.

7. The program contains between 20 and 50 lines of code.

To save your homework #2 in QBasic:

1. Click FILE.

2. Click SAVE AS.

3. Using the scroll bar on the right, scroll down to [-H-] drive.

4. Double-click to drill down each step to MTI > MSI > IS > SMCMIKLE >
PROGRAMMING.
Note: To go back up a directory, double-click the “..” at the top of the list.

5. Enter the program name, which should be usernam2.BAS (be sure to include
the 2 so that you do not copy over your first homework).
Warning: This must be 8 characters or less!

6. Click OK.

To get more help on QBasic, refer to “Appendix 1 - Additional QBasic Resources
page 66.

Due Date: Within two (2) weeks of class.
Homework 2 65

APPENDIX 1 - ADDITIONAL QBASIC RESOURCES

Accessing Help in
QBasic

Online help is available in QBasic to aid the programmer with various tasks.

To access help in QBasic:

1. In the standard Edit mode, press <SHIFT> + <F1>. (In the Introduction Screen,
press <F1>.) The QBasic help screen displays, as illustrated below.

Figure 10: QBasic Help Screen

2. Review the instructions for using QBasic help.

3. Double-click on Contents to display the table of contents for the help section,
as illustrated below.
66 Appendix 1 - Additional QBasic Resources

Figure 11: QBasic Help Screen - Table of Contents

To search for a specific topic in the index:

1. Double-click INDEX. The Index screen displays as illustrated below.

Figure 12: QBasic Help Screen - Index

2. Type the first letter of the command for which you want to search.

3. When the list displays, double-click on the command for the related help file
topic. This help file assumes basic knowledge of the program, but does give
practical examples of use.

Running QBasic in Full
Screen Mode

By default, QBasic runs in a small window. This restore window display runs the
QBasic program like a standard Windows application (which it is not), and it
consumes a large amount of computing resources. Switching to full screen mode will
dedicate your system to working on QBasic alone. This will, however, step your
computer back to a basic CUI hybrid platform without the aid of standard Windows
icons or menu bars.

To run QBasic in full screen mode:

Press <ALT> + <ENTER> to switch from QBasic full screen mode and restore
window display.

To return to Windows programs:

Press <ALT> + <TAB> to switch between QBasic and standard Windows programs.

Graphics Because QBasic graphics were created using languages that were limited to basic
programming instructions, they are nothing like what you see today on Nintendo 64
or PS/2. Modern programming languages can access millions of colors and create
complex simulations of real environments, but you have to start somewhere.
Appendix 1 - Additional QBasic Resources 67

☞
New Command Summary:

Example Program Name: PRETTY.BAS

�� &/6
�� 6&5((1��
�� 5$1'20,=(
�� &/6
�� F�� �,17�51'�
����
�� F�� �,17�51'�
����
�� &2/25�F���F�
��)25�=� ���72���
�� [� �,17�51'�
�����
��� \� �,17�51'�
�����
��� [�� �,17�51'�
���
��� \�� �,17�51'�
���
��� [�� �,17�51'�
�����
��� /,1(��[��\�����
�[�����
�\��
��� &,5&/(��[��\���[���F�����
��� 1(;7�=
��� (1'

Program Notes:

• Line 2 sets the screen to a VGA mode.

• Line 3 sets the random number generator.

• Line 4 clears the screen.

• Line 5 sets the variable c1 to a number from 1 to 15.

• Line 6 sets the variable c2 to a number from 1 to 15.

• Line 7 sets the color scheme to c1 and c2 values.

• Line 8 sets the FOR NEXT loop to 75 times.

• Line 9 sets x at a random number from 1 to 800.

• Line 10 sets y at a random number from 1 to 800.

• Line 11 sets x2 at a random number from 1 to 3.

• Line 12 sets y2 at a random number from 1 to 3.

• Line 13 sets x3 at a random number from 1 to 200.

• Line 14 creates a line.

Command Definition

COLOR Determines the
foreground and
background colors.

INT Changes the number from
a decimal to an integer.

LINE Draws a line.

CIRCLE Draws a circle.
68 Appendix 1 - Additional QBasic Resources

re is a
nd. It
 an

ing

LAY
• Line 15 creates a circle.

• Line 16 completes the FOR NEXT loop for 75 times.

Sound QBasic is able to handle sound through the PC speaker. Please note that your
computer must have a basic internal speaker, but no sound card is required. He
simple noise-making program that increases sound, and then decreases the sou
starts at a frequency roughly equal to the musical note A, then works up at least
octave, and then returns to A.

☞
New Command Summary:

Example Program Name: SOUND.BAS

�� &/6
�� 35,17��+ROG�\RXU�HDUV�����
��)25�QRWH� �����72�����67(3��
�� ��������6281'�QRWH���
�� ��������6281'�������QRWH���
�� 1(;7�QRWH
��
��)25�QRWH� �����72�����67(3���
�� ��������6281'�QRWH���
��� �������6281'�������QRWH���
��� 1(;7�QRWH
��� (1'

Program Notes:

• Line 2 gives the user a warning.

• Lines 3 to 6 set up a FOR NEXT loop that starts the process of STEPp
through 450 to 750 cycles.

• Lines 8 to 11 set up a FOR NEXT loop that reverses the process of
STEPping through 750 to 450 cycles.

Instead of using the SOUND command, you can specify musical notes with the P
command:

Command Definition

SOUND Produces sound on the PC
speaker at a tone
frequency.

STEP Used with the FOR
NEXT command to have
the FOR NEXT loop to
skip by the number stated.
In this example it jumps
by 5s through the number
sequence.
Appendix 1 - Additional QBasic Resources 69

☞
New Command Summary:

Example Program Name: PLAY.BAS

�� &/6
�� 3/$<��/��&�
�� 3/$<��/��%�
�� 3/$<��/��$*)*$)�
�� (1'

Program Notes:

• Line 2 plays the C note for a length of 4.

• Line 3 plays the B note for a length of 8.

• Line 4 plays the notes AGFGAF for a length of 4.

QBasic Commands

Command Definition

PLAY Plays specific notes.

Command Definition Command Definition

’ This little mark replaces the
REM statement in later versions
of BASIC.

END FUNCTION This command ends the
Function and returns to the call
point.

CALL This is used to run the program
or subroutine name that follows.

END IF This command stops the IF
THEN ELSE IF string of
commands. This has helped
replace the GOTO command.

CHR$(n) This is used to call out a specific
key on the keyboard. It is using
ASCII code, which can be found
in “Appendix 3 - ASCII
Character Set” on page 77.

END SUB This command returns the flow
of the program back to where it
had left to go to the subroutine.
This command is much more
predictable than earlier GOTO
statements.

CIRCLE This command draws a circle. ELSE The final ELSE IF is designated
with a single ELSE statement to
signal the end of the logic.

CLS This command clears the screen
of all writing.

ELSE IF This command allows you to
continue with an IF THEN
statement by giving you more
choices.

COLOR This command determines the
foreground and background
colors.

FUNCTION This command defines the start
of the function area and function
name.

DECLARE Function
(Variable)

This command declares the
function so that the program can
find it later when called.

FOR NEXT This command is the Logic
Command set to loop the
number of NEXT times.
70 Appendix 1 - Additional QBasic Resources

DECLARE SUB
subname (variables)

When declaring, you are doing
two things: 1) setting up a sub
with subname and 2) setting the
variables that will be used by
both the main program and the
subroutine.

GOTO This command moves you to a
specific line or location.

DIM This command creates and
defines new variables for use in
the program.

IF THEN IF THEN works on the
condition; if the statement is
true, then the action that follows
will occur.

DO LOOP UNTIL This command runs a continuous
loop until it meets the conditions
set by the programmer; loops
always need a way out, or they
will continue forever. DO LOOP
UNTIL evaluates the logic at the
end of the process and will
always run at least once.

INKEY$ This command is much like
INPUT, but it only captures (gets
from the keyboard) a single
keystroke.

DO WHILE This command runs a continuous
loop while the computer is
waiting for new input or a
change in a condition; loops
always need a way out, or they
will continue forever. DO
WHILE evaluates the logic at
the beginning of the process.

INPUT This command receives input
from the keyboard and assigns it
to a variable.

END This command finishes the
program.

INT This command changes the
number from a decimal to an
integer.

LCASE$(variable$) This command changes the
string variable$ to all lowercase
letters.

SLEEP This command is a simple way
to pause a program. The number
or variable after sleep will set it
for the number of seconds you
would like. FOR NEXT loops
can also accomplish this task.

LEFT$(variable$, n) This command cuts the string
variable$ by (n) number of
characters from the left.

SOUND This command produces sound
on the PC speaker at a tone
frequency.

LINE This command draws a line. SPACE$(n) This command inserts the
number of spaces that are
specified in the parentheses ().

PLAY This command plays specific
notes.

SPC(n) This command is used to set a
print point that is (n) number of
spaces from the left of the
screen.

PRINT This command sends
information to the screen.

STEP This command is used with the
FOR NEXT command to have
the FOR NEXT loop to skip by
the number stated.

Command Definition Command Definition
Appendix 1 - Additional QBasic Resources 71

E

he

ery
Variable Types Now that you have worked with variables, here is a chart of the specific variable types
used in QBasic. Each programming language has its own notation and definitions.
These are included here to aid you in developing QBasic.

Example QBasic variable types:

• String Variable: Name$ = “Laura White” or Name AS STRING = “Laura
White”

• Integer Variable: Age% = 23 or AGE AS INT = 23

• Long Integer Variable: Salary& = 200000 or Salary AS LONG = 200000

• Single Precision Variable: Hourlywage! = 12.45 or Hourlywage AS SINGL
= 12.45

Debugging Here are a few common methods for finding problems in your QBasic code.

• Print variables at key points: Before using variables throughout a program,
create simple PRINT statements during the program to check the values of t
key variables. If the variables are wrong, they will continue to be wrong
throughout the program.

• Manual line review: Pretend you are the computer, and follow the program
exactly as it is written This can be extremely time-consuming if you have a v
large program.

RANDOMIZE This command sets the star of
the RND random number
generator to simulate real
random numbers.

SUB This command starts the
subroutine.

REM Remarks or statements that are
not included in the code, but are
used for those observing the
code later.

UCASE$(variable$) This command changes the
string variable$ to all uppercase
letters.

RND This command creates a
simulated random number.

USING This command is used with the
PRINT to format the output of
the variable to fit the format that
is expected.

Command Definition Command Definition

Data Type Minimum Value Maximum Value Sample Declaration

 String 0 characters 32,767 characters DIM Words$ or DIM
Words AS STRING

Integer -32,768 32,767 DIM Number% or DIM
Numbers AS INTEGER

Long Integer -2,147,483,648 2,147,483,647 DIM Bignumber& or DIM
Bignumber AS LONG

Single Precision -3.0402823E+38 3.0402823E38 DIM Single! or DIM Single
AS SINGLE

Double Precision 1,79769313486231D

E -308

1,79769313486231D

E +308

DIM precisecurve# or DIM
precisecurve AS DOUBLE
72 Appendix 1 - Additional QBasic Resources

oints
• Step through the program: Use the debugger included with the QBasic editor
by having the editor show you each step as it occurs in the program. To run
stepping in QBasic:

• Click DEBUG.

• Click STEP.

• Press <F8> to advance each line through the code.

• Press <F10> if you want to skip subroutines or functions.

• Use Breakpoints: Instead of stepping through the entire program, use
breakpoints to step through just a specific portion of the code. To run breakp
in QBasic:

• Move to where you want to start, then Press <F9>. QBasic will highlight
the entire line.

• Run the program (<SHIFT> + <F5>).

• Press <F8> to advance each line through the code.

• Press <F10> if you want to skip subroutines or functions.
Appendix 1 - Additional QBasic Resources 73

Error Codes in QBasic When you encounter an error in a very large program, it becomes difficult to find the
specific issue or problem. In this condition, the computer usually is able to tell you the
error that has occurred. The ERR variable stores the error code returned by the
computer. In advanced programming, the program allows for potential errors and
writes error handling subroutines. The following chart lists QBasic error codes that
are stored in the ERR variable and their meanings:

Value Error Value Error

1 NEXT without FOR 37 Argument count
mismatch

2 Syntax error 38 Array not defined

3 RETURN without
GOSUB

40 Variable required

4 Out of data 50 Field overflow

5 Illegal function call 51 Internal error

6 Overflow 52 Bad file name or number

7 Out of memory 53 File not found

8 Label not defined 54 Bad file mode

9 Subscript out of range 55 File already open

10 Duplicate definition 56 Field statement active

11 Division by zero 57 Device I/O error

12 Illegal in direct mode 58 File already exists

13 Type mistmatch 59 Bad record length

14 Out of string space 61 Disk full

16 String formula too
complex

62 Input past end of file

17 Cannot continue 63 Bad record number

18 Function not defined 64 Bad file name

19 No RESUME 67 Too many files

20 RESUME without error 68 Device unavailable

24 Device time out 69 Communication -buffer
overflow

25 Device fault 70 Permission denied

26 FOR without NEXT 71 Disk not ready

27 Out of paper 72 Disk-media error

29 WHILE without WEND 73 Feature unavailable

30 WEND without WHILE 74 Rename across disks

33 Duplicate label 75 Path/File access error

35 Subprogram not defined 76 Path not found
74 Appendix 1 - Additional QBasic Resources

nd

h line

. For

error
.

ends
ic
cial
APPENDIX 2 - MAJOR CAUSES OF ERRORS

As we discussed in the introduction, errors are not caused by computer mistakes.
Computer programming “bugs” or errors are usually attributed to three possible
causes: syntax errors, run time errors, and logic errors.

Syntax Errors If your program contains a syntax error, your implementation of the commands a
notation does not meet the precise requirements of the programming language.

The syntax for the Phake programming language is as follows:

�� &RPPDQG���9DULDEOH���/LQNHU���9DULDEOH

Therefore, the program line should read:

�� 0,;�EURZQ�VXJDU�:LWK�VSRRQ

If the programmer writes:

�� 0L[�:LWK�EURZQ�VXJDU�VSRRQ

Then the line violates syntax because it follows the form:

�� &RPPDQG���/LQNHU���9DULDEOH���9DULDEOH

The QBasic editor does not allow you to have syntax errors. The editor reads eac
of code when you press return and evaluates the syntax; however, not all
programming languages have this capability, and they will let you make many
mistakes before you discover the problem.

Run Time Errors A run time error occurs when you have input that is not expected by the program
example:

�� 35,17�´ZKDW�LV�\RXU�PRRG�WRGD\µ���,1387�PRRG�
�� ,)�PRRG�� �´KDSS\µ�7+(1�35,17�´*UHDW��KDYH�IXQ�

WRGD\µ
�� ,)�PRRG�� �´VDGµ�7+(1�35,17�´6RUU\�WR�KHDU�WKDW��

FKHHU�XSµ
�� (1'

If the user enters “fine,” the program will end with no output.

The QBasic editor cannot prevent run time errors, but the programmer can build
handling into the program by anticipating the errors and coding solutions for them

QBasic has a line that can be added to the code called “ON ERROR Goto” that s
the program to an error handling subroutine. See “Appendix 1 - Additional QBas
Resources” on page 66 for the types of run time errors that are found by the spe
ERR variable in QBasic.
Appendix 2 - Major Causes of Errors 75

ore
Logic Errors Logic errors occur when you give instructions to the computer and it executes the
code exactly as you programmed, but the results are garbled. This can be frustrating
when you believe the logic is sound, but the computer operates contrary to your
expectations.

The following example depicts a subroutine that manipulates a variable, which is also
in the main body of the program:

If you were not aware of the call to the subroutine oops, you would expect c to be
equal to 11 (because it is the product of [a =5] + [b = 6]). It is not completely obvious
that the subroutine oops changes the value of b to 3, making c equal to 8 (the product
of [a = 5] + [b = 3]), and it may be unintentional due to duplicate variable names.

QBasic lets you make logic errors and, in fact, will help you make those errors.
QBasic and all programming languages will follow all instructions given to them with
no deviations. See “Appendix 1 - Additional QBasic Resources” on page 66 for m
information on fixing logic errors in QBasic.

�� D� ��� ¶ VHWV�D�WR��

�� E� �� ¶ VHWV�E�WR��

�� FDOO�VXE�RRSV��E� ¶ JRHV�WR�WKH�VXEURXWLQH�
EHORZ�DQG�UHWXUQV

�� F� �D���E� ¶ VHWV�WKH�F�YDULDEOH�WR�WKH�
SURGXFW�RI�D�E

�� 3ULQW�F ¶ SULQWV�WKH�F�YDULDEOH

�� VXE�RRSV��E�

�� E� ��� ¶ VHWV�E�WR��

�� HQG�VXE
76 Appendix 2 - Major Causes of Errors

s of

 zero
pecial
bers

hic,
r, the
APPENDIX 3 - ASCII CHARACTER SET

ASCII, pronounced "ask-key," is an acronym for American Standard Code for
Information Interchange. Computers can only understand numbers, so an ASCII code
is the numerical representation of a character, such as “a” or “@,” or an action of
some sort. ASCII was established to achieve compatibility between various type
data processing equipment.

The standard ASCII character set consists of 128 decimal numbers ranging from
to 127, assigned to letters, numbers, punctuation marks, and the most common s
characters. The Extended ASCII Character Set also consists of 128 decimal num
and ranges from 128 to 255 representing additional special, mathematical, grap
and foreign characters. Here is the standard ASCII chart with the decimal numbe
hexidecimal number, and the ASCII character representation:
Appendix 3 - ASCII Character Set 77

APPENDIX 4 - VOCABULARY EXERCISE ANSWERS

Match the vocabulary items on the top with their correct definitions on the bottom.

___Array___ 1. A variable that holds a list of
items that share the same
properties or need to be grouped
together.

_Function__ 9. Used when you have only one
variable that you need to pass
between the main program and
the sub program.

__Variable__ 2. A container that holds
information.

_Debugger__ 10. A tool to aid the programmer in
removing all of the possible errors
that can occur in computer
programming.

__GUI_____ 3. Used to describe the interface
where the actions that drive the
computer are all based upon the
user’s input through visual
navigation.

Subroutine 11. Used when you have more than
one variable that you need to pass
between the main program and
the sub program.

__Literal___ 4. The name for the value that is
contained within a variable.

_Compiler__ 12. A programming tool that converts
source code written in a high level
language into machine code.

__Phake___ 5. A pseudo-code programming
language invented for this class to
illustrate programming logic.

_Loop_____ 13. A continuous logic construct that
evaluates a logic statement; if
correct it continues the program,
if not correct it continues to cycle.

Flow Chart 6. A modeling tool used to best
simulate computer logic or step-
by-step instructions. It is very
useful when there are multiple
ways to produce an outcome.

String
Variable

14. A type of variable that holds
character based information.

_Syntax___ 7. The exact order or logical
structure of a programming
command. This word is used to
denote the order in which a
language is grammatically
correct.

_Binary____ 15. A numbering system that
computers use to communicate
and consists of just two unique
digits, "1s" and "0s."

_Constant__ 8. A variable that holds a specific
piece of information throughout
the program.

Compiler Debugger Loop Binary Variable

Syntax String Variable Function Constant Flow Chart

Subroutine Array Phake GUI Literal
78 Appendix 4 - Vocabulary Exercise Answers

APPENDIX 5 - QBASIC EXERCISE ANSWERS

There are many ways to solve each programming challenge; these are possible
solutions to the QBasic Exercises.

Solution:

�� 5(0�7KLV�ZRUNV�ZLWK�VLPSOH�QXPEHUV
�� &/6
�� 35,17��(QWHU�WZR�QXPEHUV�WKDW�\RX�ZRXOG�OLNH�WR�

DGG�
�� 35,17
�� 35,17��(QWHU�\RXU�ILUVW�QXPEHU���,1387�[
�� 35,17��(QWHU�\RXU�VHFRQG�QXPEHU���,1387�\
��]� �[���\
�� 35,17��7KH�ILUVW�QXPEHU�SOXV�WKH�VHFRQG�QXPEHU�LV���

]
�� (1'

Solution Notes:

• Line 3 changes from multiply to add.

• Line 7 changes the operator from * (multiply) to + (add).

• Line 8 changes from multiplied by to plus.

Solution:

��
�7KLV�LV�D�VDPSOH�VWULQJ�YDULDEOH�KDQGOLQJ�SURJUDP
��

��

�� &/6
�� 35,17��:KDW�LV�\RXU�ILUVW�QDPH���,1387�ILUVW�
�� 35,17��:KDW�LV�\RXU�PLGGOH�QDPH���,1387�PLGGOH�
�� 35,17��:KDW�LV�\RXU�ODVW�QDPH���,1387�ODVW�
�� QDPH�� �ILUVW����63$&(�������PLGGOH����63$&(�������

ODVW�
�� 35,17��<RXU�QDPH�LV����QDPH�
��� (1'

Exercise 1: Change the operator in NUMBERS.BAS to addition.
Be sure to change the user instructions so they reflect the functional
differences of the program.

Exercise 2: Modify STRING1.BAS so that the users also must enter
their middle initial.
Appendix 5 - QBasic Exercise Answers 79

e

e.
Solution Notes:

• Line 6 is inserted to ask the user for his or her middle name, thereby
declaring a middle$ variable.

• Line 8 (was 7) now contains the middle$ and an additional space to th
variable name$.

Solution:

��
�7KLV�LV�D�DQRWKHU�VWULQJ�YDULDEOH�KDQGOLQJ�SUR�
JUDP

��

��

�� &/6
�� 35,17��:KDW�LV�\RXU�ILUVW�QDPH���,1387�ILUVW�
�� 35,17��:KDW�LV�\RXU�PLGGOH�QDPH���,1387�PLGGOH�
�� 35,17��:KDW�LV�\RXU�ODVW�QDPH���,1387�ODVW�
�� QDPH�� �ILUVW����63$&(�������PLGGOH����63$&(�������

ODVW�
�� 8SQDPH�� �8&$6(��QDPH��
��� /QDPH�� �/&$6(��QDPH��
��� PLFURQ�� �/&$6(��/()7��ILUVW��������/()7��PLGGOH���

�����/()7��ODVW�������
��� 35,17
��� 35,17��<RXU�QDPH�LV����QDPH�
��� 35,17
��� 35,17��<RXU�QDPH�LV����8SQDPH�����LQ�XSSHU�FDVH��
��� 35,17
��� 35,17��<RXU�QDPH�LV����/QDPH�����LQ�ORZHU�FDVH��
��� 35,17
��� 35,17��<RXU�0LFURQ�XVHUQDPH�VKRXOG�EH����PLFURQ�����

�
��� (1'

Solution Notes:

• Each solution is different depending on your individual Micron usernam

• Line 11 now limits first$ to a single letter and specifies that the middle
name contributes no letters to the username.

Solution:

��
��&RRNLQJ�D�6WHDN

Exercise 3: Modify STRING2.BAS to correctly produce your
Micron username.

Exercise 4: Add a feature in STEAK.BAS so the program accepts
cooklevel$ entries with any capitalization combination. For example,
the program would accept RARE, Rare, or rare as correct entries. Hint:
you only need to enter one line of code!
80 Appendix 5 - QBasic Exercise Answers

��
��,)�7+(1�(/6(�H[DPSOH
��

�� &/6
�� ',0�FRRNOHYHO���FRRNWLPH
�� 35,17��+RZ�GR�\RX�ZDQW�\RXU�VWHDN�FRRNHG"�
�� 35,17��3OHDVH�FKRRVH�IURP�UDUH�PHGLXP�PHGLXP�ZHOO��

DQG�ZHOO�GRQH���,1387�FRRNOHYHO�
�� FRRNOHYHO�� �/&$6(��FRRNOHYHO��
�� ��������,)�FRRNOHYHO�� ��UDUH��7+(1
��� ��������FRRNWLPH� ��
��� ��������(/6(,)�FRRNOHYHO�� ��PHGLXP��7+(1
��� ��������FRRNWLPH� ��
��� ��������(/6(,)�FRRNOHYHO�� ��PHGLXP�ZHOO��7+(1
��� ��������FRRNWLPH� ��
��� ��������(/6(,)�FRRNOHYHO�� ��ZHOO�GRQH��7+(1
��� ��������FRRNWLPH� ���
��� ��������(/6(�FRRNWLPH� ���
��� ��������(1'�,)
��� 35,17��&RRN�WKH�VWHDN�IRU���FRRNWLPH����PLQXWHV�RQ�

HDFK�VLGH�IRU�D�SHUIHFW�VWHDN�
��� (1'

Solution Notes:

• Line 8 is added to convert the cooklevel$ entry to lowercase letters.

Solution:

��
�0<�)251(;7�H[DPSOH�IRU�3URJUDPPLQJ�)XQGDPHQWDOV
��

��

�� &/6
�� ',0�UHSHDW��ORRSWLPHV��WLPHVOHIW
�� 35,17��(QWHU�WKH�QXPEHU�RI�WLPHV�\RX�ZRXOG�OLNH�

WKLV�SURJUDP�UHSHDWHG�
�� 35,17��:$51,1*��(QWHU�D�QXPEHU�ORZHU�WKDQ�������

,1387�UHSHDW
�� ��������)25�ORRSWLPHV� ���72�UHSHDW
�� ����������������6/((3��
��� ����������������35,17��7KLV�ZLOO�UHSHDW�LWVHOI����

UHSHDW����WLPHV�
��� ����������������35,17
��� ����������������WLPHVOHIW� �UHSHDW���ORRSWLPHV
��� ����������������35,17���2QO\����WLPHVOHIW����PRUH�

WLPHV�OHIW�

Exercise 5: Alter the program FORNEXT.BAS so that the user
inputs the repeat variable number. To save on time, you should also
limit the entry to a value of 20 or below.
Appendix 5 - QBasic Exercise Answers 81

iable.

ot
��� ����������������35,17
��� ��������1(;7�ORRSWLPHV
��� (1'

Solution Notes:

• Line 7 is added and requires that the user input the value for repeat var

.Solution:

��
'R�ZKLOH�
�� &/6
�� ',0�SDXVH
�� ��������'2�:+,/(��,1.(<���!�&+5������
�� ����������������35,17��7KLV�ZLOO�SULQW�XQWLO�\RX�

SUHVV�WKH���NH\��
��
������������������������)25�SDXVH� ���72��������1(;7�

SDXVH
�� ��������/223
�� 35,17
�� 35,17��<RX�HVFDSHG���
��� (1'

Solution Notes:

• If you comment out line 6, the program scrolls so quickly that you cann
observe the program.

Solution:

��
'R�ZKLOH�
�� &/6
�� ',0�ORFDWLRQ��SDXVH
�� ��������'2�:+,/(��,1.(<���!�&+5������
�� ����������������ORFDWLRQ� �ORFDWLRQ����
�� ������������������������,)�ORFDWLRQ� ����7+(1
�� ������������������������ORFDWLRQ� ��
�� ������������������������(1'�,)
�� ����������������35,17
��� ����������������35,17�63&�ORFDWLRQ����7KLV�ZLOO�

SULQW�XQWLO�\RX�SUHVV�WKH���NH\��
���
������������������������)25�SDXVH� ���72��������1(;7�

SDXVH
��� ��������/223
��� 35,17

Exercise 6: Comment out line 6 of DOWHILE1.BAS and run the
program to observe the effects. What happens?

Exercise 7: Comment out line 11 of DOWHILE2.BAS to observe
the effects. What happens?
82 Appendix 5 - QBasic Exercise Answers

fall
��� 35,17
��� 35,17��<RX�HVFDSHG���
��� (1'

Solution Notes:

• If you comment out line 11, the program display changes from a water
effect to one that is difficult to observe.

Solution:

��
0\�$UUD\��SURJUDP
��

��

�� &/6
�� ',0�GD\RIZHHN����
�� 35,17��:KDW�GD\�RI�WKH�ZHHN�ZDV�\HVWHUGD\���,1387�

GD\RIZHHN����
�� 35,17��:KDW�GD\�RI�WKH�ZHHN�LV�WRGD\���,1387�

GD\RIZHHN����
�� 35,17��:KDW�GD\�RI�WKH�ZHHN�LV�WRPRUURZ���,1387�

GD\RIZHHN����
�� 35,17��:KDW�GD\�RI�WKH�ZHHN�LV�WZR�GD\V�IURP�QRZ���

,1387�GD\RIZHHN����
��� 35,17
��� 35,17��7+$1.�<28��
��� 35,17
��� 35,17��<RX�HQWHUHG�����GD\RIZHHN������������

GD\RIZHHN������������GD\RIZHHN���������DQG�WZR�GD\V�
IURP�QRZ�LV����GD\RIZHHN����

��� (1'

Solution Notes:

• The dayofweek$ array in line 5 now contains 4 items.

• Line 9 is added to include the input.

• Line 13 improves the statement to include dayofweek$(4).

Solution

��
0\�$UUD\��SURJUDP
��

Exercise 8: Modify ARRAY1.BAS so the user also enters the day
after tomorrow (2 days from today). Be sure to change the number of
items in the array and modify the printed text accordingly.

Exercise 9: In ARRAY2.BAS, if the user indicates that today is
either Saturday or Sunday, the program will not function correctly
because 0 (1 - 1) and 8 (7 + 1) are not defined in the array. Improve the
logic of the program so the program will run correctly.
Appendix 5 - QBasic Exercise Answers 83

as an

as an
��

�� &/6
�� ',0�GD\RIZHHN������,QSXWGD\
�� GD\RIZHHN����� ��6XQGD\�
�� GD\RIZHHN����� ��0RQGD\�
�� GD\RIZHHN����� ��7XHVGD\�
�� GD\RIZHHN����� ��:HGQHVGD\�
��� GD\RIZHHN����� ��7KXUVGD\�
��� GD\RIZHHN����� ��)ULGD\�
��� GD\RIZHHN����� ��6DWXUGD\�
��� 35,17��(QWHU�WKH�QXPEHU�WKDW�FRUUHVSRQGV�WR�WKH�GD\�

RI�WKH�ZHHN�
��� 35,17
��� 35,17��6XQGD\�LV����������
��� 35,17��0RQGD\�LV����������
��� 35,17��7XHVGD\�LV���������
��� 35,17��:HGQHVGD\�LV�������
��� 35,17��7KXUVGD\�LV��������
��� 35,17��)ULGD\�LV����������
��� 35,17��6DWXUGD\�LV��������
��� 35,17
��� ,1387�,QSXWGD\
��� ,)�,QSXWGD\� ���7+(1�35,17��<HVWHUGD\�ZDV�6DWXUGD\��

7RGD\�LV����GD\RIZHHN��,QSXWGD\������DQG�7RPRUURZ�
LV����GD\RIZHHN��,QSXWGD\�������(1'

��� ,)�,QSXWGD\� ���7+(1�35,17��<HVWHUGD\�ZDV����
GD\RIZHHN��,QSXWGD\����������7RGD\�LV����
GD\RIZHHN��,QSXWGD\������DQG�7RPRUURZ�LV�6XQGD\���
(1'

��� 35,17
��� 35,17��7+$1.�<28��
��� 35,17
��� 35,17��<HVWHUGD\�ZDV����GD\RIZHHN��,QSXWGD\�������

���7RGD\�LV����GD\RIZHHN��,QSXWGD\������DQG�
7RPRUURZ�LV����GD\RIZHHN��,QSXWGD\�����

��� (1'

Solution Notes:

• Line 24 is added so that if the value of 1 is entered, then the program h
alternate ending.

• Line 25 is added so that if the value of 7 is entered, then the program h
alternate ending.

Exercise 10: Add a new question in the main program of
SUBROUTE.BAS that asks the user to input a description of the
person whose name was entered. Then pass that variable information to
the subroutine for concatenation.
84 Appendix 5 - QBasic Exercise Answers

tion.

B
Solution:

�� '(&/$5(�68%�FRPER��QDPH���GHVFULSWLRQ���PHVVDJH��
��
$�VLPSOH�H[DPSOH�RI�VXEURXWLQH
��

��

�� &/6
�� 35,17��7KLV�LV�D�VDPSOH�RI�KRZ�VXEURXWLQHV�ZRUN�
�� 35,17
�� 35,17
�� 35,17��3OHDVH�HQWHU�\RXU�QDPH���,1387�QDPH�
��� 35,17��3OHDVH�HQWHU�D�GHVFULSWLRQ�RI�WKLV�SHUVRQ���

,1387�GHVFULSWLRQ�
��� &$//�FRPER�QDPH���GHVFULSWLRQ���PHVVDJH��
��� 35,17�PHVVDJH�
��� (1'

�� 68%�FRPER��QDPH���GHVFULSWLRQ���PHVVDJH��
�� PHVVDJH�� �QDPH����´�LV�´���GHVFULSWLRQ�
�� (1'�68%

Solution Notes:

• Line 1 now contains a new variable description$.

• Line 10 is added and prompts the user to enter a description.

• Line 11 now contains a new variable description$.

• Line 1 of SUB combo now contains a new variable description$.

• Line 2 of SUB combo altered to concatenate the name with the descrip

• Notice that the IF THEN statement and extra code is deleted in the SU
combo.
Appendix 5 - QBasic Exercise Answers 85

APPENDIX 6 - REFERENCE GUIDE

Accessing Help in QBasic . 66

Advanced Variables as Characters (Strings) . 30

Advanced Variables as Numbers . 27

Arrays . 47

Assembly . 9

Binary Code & Machine Language . 9

Bytecode . 62

Code Editors . 61

Common Misconceptions . 7

Compilers . 61

Creating a Function. 55

Creating a Subroutine . 53

Database Programming. 12

Debuggers . 61

Debugging. 72

Designing Code. 57

Developing using Micron’s Standard . 56

Distribution of Your Work . 60

Error Codes in QBasic . 74

Exiting QBasic . 33

Flow Charts. 13

Fun with String Variables . 31

Functions. 53

Graphics . 67

High-level Languages. 10

Input-Process-Output Model. 6

Interpreters . 62

Loading a File in QBasic . 24

Logic Errors . 76

Logic Statement Summary . 47

Logic Statements. 36

Made Up Programming Language - Phake. 17

Markup Programming. 11

Objectives . 35

Object-Oriented Programming (OOP) . 11

Portable Assembly . 9

Post-Phake Language . 20

Procedural Programming . 11
86 Appendix 6 - Reference Guide

Programming Input - Output. 23

PVCS at Micron . 58

QBasic Commands . 70

Run Time Errors . 75

Running QBasic in Full Screen Mode . 67

Running QBasic . 22

Saving a Program in QBasic. 24

Saving Homework . 34

Saving Your Work. 58

Securing Your Work . 59

Sound . 69

Source Code Ownership . 59

Subroutine and Function Summary . 55

Subroutines . 50

Syntax Errors . 75

Text Editors. 61

To Get QBasic Files . 34

User Interfaces . 7

Variable Types Summary . 33

Variable Types. 72

Variables as Characters (Strings) . 29

Variables as Numbers . 24

What is programming? . 6
Appendix 6 - Reference Guide 87

rs
sic to

n

e:
WHAT’S NEXT?

Class Resources The following books are beneficial for those who need more information about the
basics of programming:

• Absolute Beginner’s Guide to Programming, Greg Perry

• Beginning Programming for Dummies, Wally Wang

• SAMS Teach Yourself Beginning Programming in 24 Hours, Greg Perry

• Introduction to the Personal Software Process, Watts S. Humphrey

Books24x7 Books24x7 is an external online IT reference library that all Micron team membe
can use. Books24x7 offers hundreds of books about programming, from very ba
advanced.

To register to use Books24x7:

1. From the MERC, click DEPARTMENTS > MORE.

2. Click LIBRARY.

3. Click BOOKS24X7 on the top menu bar.

4. Click REGISTER TO USE BOOKS24X7.COM.

To log on to Books24x7:

1. Go to www.books24x7.com

2. Click FIND BOOKS.

3. In the Topic List, click PROGRAMMING.

Courses at Micron • MC4081 Intro to Perl Programming

• MC6405 HTML Web Page Basics

• MC6407 HTML Forms and Cold Fusion

• MC9031 Visio Basics

• Plus numerous programming courses available from XtremeLearning

XtremeLearning XtremeLearning offers hundreds of self-paced training courses about desktop, IT,
and business and professional courseware. XtremeLearning courses can be take
from any Internet connection at work or home at any time. The following
programming courses are recommended to expand your programming knowledg

• Internet & WWW Introduction

• MS Visual Basic 6.0

• CIW Perl Fundamentals

• C++ for Non Programmers

• C Programming

• C++ Programming
88 What’s Next?

If you already have an existing XtremeLearning account, then you can simply modify
your training plan to include any of the above-mentioned courses. If you do not have
an XtremeLearning account, you will need to register with the site and enroll in
courses.

To log on to XtremeLearning for the first time:

1. Go to www.xtremelearning.com from any Internet connection at work or
home.

2. Enter the Self Registration ID: comicron

3. Enter the Password: elearning2001

4. Click NEXT.

5. Enter your personal information. Be sure to use your Micron username as
Username and write down your password. You can use your Micron password
or create a new one.

Note: This password will not be updated with AMS because it is
separate from Micron’s internal environment.

6. Click NEXT.

7. Verify your information, and then click DONE.

8. After you have logged into XtremeLearning for the first time, click FIRST
TIME USERS and complete the tutorial.

For more information about XtremeLearning at Micron, visit the internal
XtremeLearning web site at http://hercules.micron.com/is/support/trnres/J3/
xtreme.htm.
What’s Next? 89

BIBLIOGRAPHY

1. Bradley, Julia Case & Millspaugh, Anita C. Programming in Visual Basic 6.0.
New York, NY: McGraw-Hill/Irwin. 1999.

2. Kahane, Howard & Tidman, Paul. Logic & Philosophy: A Modern
Introduction, 7th Edition. Belmont, CA: Wadsworthy Publishing Company.
1995.

3. Perry, Greg. Absolute Beginner’s Guide to Programming, 2nd Edition. USA:
Que. 2001.

4. Perry, Greg. SAMS Teach Yourself Beginning Programming in 24 Hours. USA:
Sams. 1998.

5. Potter, Richard E., Rainer Jr., R. Kelly, & Turban, Efraim. Introduction to
Information Technology. New York, NY: John Wiley & Sons, Inc. 2001.

6. Wang, Wallace. Beginning Programming for Dummies. Foster City, CA: IDG
Books Worldwide, Inc. 1999.

7. Zak, Diane. Programming in Visual Basic 6.0. Course Technology, Inc. 1999.

8. Books24X7.com, Inc. 1999-2001. <www.books24x7.com>
90 Bibliography

	MC 4060 Programming Fundamentals
	Table of Contents
	Programming Fundamentals - Session 1
	Introduction
	Programming Categories
	Programming Methodologies
	Getting Started
	Programming Concepts
	Homework 1
	Programming Fundamentals - Session 2
	Advanced Programming Concepts
	Programming Standards
	Programming Tools
	Programming at Micron
	Vocabulary Exercise
	Homework 2
	Appendix 1 - Additional QBasic Resources
	Appendix 2 - Major Causes of Errors
	Appendix 3 - ASCII Character Set
	Appendix 4 - Vocabulary Exercise Answers
	Appendix 5 - QBasic Exercise Answers
	Appendix 6 - Reference Guide
	What’s Next?
	Bibliography

