MC4060

Programming Fundamentals

Information Systems

Software Support & Training

AMicron

Proprietary and Confidential Information

MC 4060 PROGRAMMING FUNDAMENTALS

Prerequisites * MC6013 Windows NT 4.0 Getting Started or MC6012 Test-out for MC6013
 MC6015 Windows NT Explorer or MC6016 Test-out for MC6015

Course Hours & Total Length: 5.5 hours
Sessions _ . . .
The course consists of two sessions: session one lasts 2.5 hours and session two lasts
3 hours.
Credit Requirements « 100% attendance in both sessions, unless prior arrangements are made with the
instructor(s).

» Completion of all in-class exercises and post-class assignments.

Test-Out The test-out for MC4060 Programming Fundamentals will be available soon.

TABLE OF CONTENTS

Table of CONENES.......cccoiiriie e 4
Programming Fundamentals - Session 1..........cccoceveeeenee. 5
INEFOAUCTION ... 6
Programming Categori€s........ccveeereereereereeieeseesieeeeseeenns 9
Programming MethodolOgi€es..........cccouveveeiieeiee e 11
Getting Startedccooceeeeveereeeseee e 13
Programming CONCEPLS.......ccevvereerieerieeieseeseereeseeseeeeens 22
HOMEWOIK L. e 34
Programming Fundamentals - Session 2.........c.ccccveeennen. 35
Advanced Programming CONCEPLS.........covreerrereereeennnn 36
Programming Standards............ccceveviieiiecceciie e 56
Programming TOOIS........ccceeceveeieeieseese e 61
Programming a MiCron..........ccccceeeeveeiesieesecseseesieenens 63
Vocabulary EXEICISE.....ccoieiiviieeiee e 64
HOMEBWOTK 2. 65
Appendix 1 - Additional QBasic Resources.................... 66
Appendix 2 - Mgor Causes of Errors........cccceeeeeevvevueenne. 75
Appendix 3 - ASCII Character Setccccoeeevevveceereennene, 77
Appendix 4 - Vocabulary Exercise ANSWerS.................. 78
Appendix 5 - QBasic Exercise ANSWESS.........ccccevevueennee. 79
Appendix 6 - Reference Guide...........ccccveevereeceneeriennene 86
What's NeXt?......coooiiiiiiiiiiiiii e
Bibliography..........ccooooiiiii

88
90

Table of Contents

PROGRAMMING FUNDAMENTALS - SESSION 1

Objectives Goal

Establish a basic programming foundation for team members interested in advancing
their programming knowledge and abilities.

Objectivesfor this Session

After completing this session, the student should be able to:

» |dentify the basics of computing: input-process-output, common misconceptions,
and user interfaces.

» Identify the major categories of programming.
» Recall four major methodologies of programming.
» Identify the basics of computer process flows: ordering, flow charts, and syntax.

» |dentify and reconstruct basic programming techniques of input-output, variables,
and commands.

Programming Fundamentals - Session 1 5

INTRODUCTION

What is programming?

I nput-Process-Output

Model

Computers must be told what to do. When you operate a computer, everything you
use—within programs like Microsoft Word, or on systems like the VAX or Windows
NT—nhas been previously programmed so the computer knows how to function.
Programmers write “code” to instruct the computer step by step how to operate
appropriately. Programming can be very simple, such as writing an application that
looks up a worker on the MERC, or it can be very complex, such as writing the
MICIS application that tracks and records all chemical data at Micron.

There is a misconception that programming is difficult and mysterious; programming
is simply writing step-by-step procedures so an end user can transmit the appropriate
information to a computer and vice versa. Obviously, computers are worthless unless
you give them specific instructions that they can process input and output, as
described below.

The seemingly complex concepts of computers and programming are really not very
complex at all when you recognize that these concepts are based upon the ordinary
input-process-output model that you use in your daily life.

Examples of everyday input-process-outputs are:

Input Process Output
Gas Station Drive empty car in Gas up, then pay Drive full car out
Fast Food Restaurant Drive in (or Eat in) Order food, pay for Drive away full
hungry food, eat food

Discount Warehouse Empty cart, full wallet Find bulk items, pay for Full pantry and garage,

them, get them home empty wallet

In each of the examples, you take an input, add some value or service, and then
become either fueled up, fed up, or stocked up.

Computer programming works in this fashion: you take raw data that is basically
numbers (input), crunch data with programming (process), and then receive useful
information (output).

One example of raw data might be a list of temperatures from the past year. With no
explanation, this is just a bunch of random numbers. Put these numbers in a context: if
you are planning an outdoor wedding for late October, you can review the
temperatures recorded on October 27. Looking at temperatures from the past decade
would aid you in making an informed processing decision. You may find Idaho is cold
in late October, and you might want the wedding to be indoors. Now imagine a
wedding planning program that could be taught this process and make these kinds of
suggestions to you, the user, without forcing you to research the temperatures for
October. The program could be expanded to look for the past 100 years’ worth of
temperatures on October 27 and the computer would be better able to predict the most
likely temperature.

Introduction

Following this input-process-output model, you will need to enter information into
the computer. Some input devices that you might use include:

» Keyboard

* Mouse

» Optical Scanner
 Pen

» Touch Screen
e Bar Code Scanner
» Hard Drive (although not a real input device, you can get data from here)

» Network (a collection of computers together that can give data to your
computer as input)

The computer program can then process this data. When you are done, you will want
to get output from your computer. Some output devices that you might use include:

* Monitor

* Printer

» Hard Drive (although not a real output device, you can store data here)

» Network (a collection of computers together that can send data from your
computer as output)

Common One of the common misconceptions in computer programming is that computers

Misconceptions make mistakes. We have to clarify this: mistakes do occur when people work with
computers, but the computers do not innately make mistakes or we would not be able
to sell them on the market.

“Mistakes” can be caused by:

» Poorly written computer programs: The programs that have been developed for
the computer are incorrect and make many errors in the procedure or processing.

* Inaccurate data: We often use the phrase “Garbage In = Garbage Out” (GIGO). It
is very important that you give computers the correct information in the
beginning if you want to get the correct data out.

* Programming failure due to assumptions: What you intend the computer program
to do and what it actually accomplishes might be two different things. The
problem lies in the fact that people can sort out ambiguities or interpret basic
knowledge and then convert them into logical sounding statements, but
computers cannot.

User Interfaces A user interface is the element of a computer program that can be seen (or heard or
otherwise perceived) by the human user, along with the commands and processes that
allow the user to control its operation and input data.You interact with user interfaces
in your daily life when you use cell phones, pagers, copy machines, cars, and even
microwaves. Each device has unique ways of conveying information to you, the user,
and in return you interact with the device by inputting information with a keyboard or
mouse. Computers are no exception. In early computing, user interfaces ranged in
design and scope, but in recent years there has been a move to standardization.
Character user interfaces (CUIs) and graphical user interfaces (GUIs) are two of the
most common types of computers user interfaces.

Introduction 7

A character user interface, commonly known as CUI (pronounced chewy), is used to
describe character-based programming languages. CUI language environments were
the only programming available in early computers. Users entered commands
(instructions) into the computer, and then the computer executed those commands.
This process was not hard to learn, but it was difficult to transfer from one computer
system to another. CUls are still essential to network-based programming and for
some hard-core programmers. CUls can be found at Micron by looking at VAX/VMS
and DOS applications. While many programsthat we use today were originally based
upon CUI, most have evolved beyond that point.

A graphical user interface, commonly known as GUI (pronounced gooey), is used to
describe modern computer interfaces, such as the Microsoft Windows operating
system or common home applications like Quicken 2000. In these computer

interfaces, you use both the mouse and the keyboard. The mouse allows you to select
icons, buttons, and other objects by clicking on them. Keyboards are primarily used to
input characters and numbers. To create order and organization within GUIsand make
them usable, software manufacturers have developed standard icons and menus
throughout their programs. You can learn the “look and feel” or the way the GUI

looks only once, and then be able to apply it to every other program designed by that

software manufacturer.

Introduction

PROGRAMMING CATEGORIES

Binary Code &
Machine Language

Assembly

Portable Assembly

Before learning about specific programming languages, you should first understand
the history of the various programming categories. A programming category is
determined by the methods that the computer and the programming language use to
interact with each other and by the methods you must use to program the computer.
Each category has its advantages and disadvantages; the general behavior of each
category sets one apart from another.

The chips that we manufacture at Micron are used to save information as input or

output. The language of computersis redly just the powering on and powering off of
individual transistorsthat are etched onto the computer chips. Computerstranslate the

“ons” into “1s” and the “offs” into “0s.” For example, when the power is on for a light
bulb, it lights up, and this is considered a 1. When the power is off, the bulb is not lit,
and this is a 0. This concept of communicating with computers led to binary code, the
language that you and the computer can both understand. Binary code is just the
collection of the individual bits of 1s and Os used to represent letters and eventually
words. An example of a letter in binary code would be:

01100001 =a
01000001 = A

The above example illustrates a byte, which is 8 bits strung together to make one
letter. Computers convert every instruction into these basic building blocks.

Now that you understand binary code and machine language, it is possible to program
your computer manually by inputting all the 1s and Os that represent letters and
words. This would be a very difficult and daunting task: there is a high probability for
error, it would take an extremely long time to complete, and when completed, only
the computer could understand it. This machine language is so impractical that
computer programmers invented several better methods to program computers.

The creation of Assembly Language was one of the first attempts to simplify the
computer programming process. The assembly language method incorporates some
basic and understandable word combinations, such as MOV for move or CPY for
copy, which can be easily read by others and are less prone to errors than machine
language. The assembly method talks directly to the parts of the computer and
requires an assembler to convert the simple commands into machine language.
However, assemblers only function on the specific computer for which they are built,
and writing a very sophisticated program requires many of the same commands to be
repeated over and over again. Although assembly programs are more understandable
than machine language, they fail to be efficient.

Portable assembly is very similar to assembly, but compilers replace the assemblers,
allowing multiple computers to share the program. The C programming language was
the first language to accomplish this task. Portable assembly is important because it
can directly manipulate the computer hardware like machine code or assembly code.

Programming Categories

High-level Languages

The main disadvantage to the portabl e assembly method is that the programming code
is not necessarily related to the functions; the C language was written by
programmers for programmers, and it contains many commands that are hard to
follow.

High-level languages use more English language-rel ated code statementsthat are easy

to recognize and understand. For example, the command to print adocument in a

high-level language is often “Print” or some variation of that command. Programs
written in these languages were very popular in early programming because they
could be written quickly and were capable of performing complex tasks. However,
programs created in high-level languages can quickly become very large, with a
complex set of slow machine code instructions. They also cannot directly access the
hardware like C, assembly, and machine code.

10

Programming Categories

PROGRAMMING METHODOLOGIES

Procedural
Programming

Object-Oriented
Programming (OOP)

Markup Programming

High-level programming languages are the most common type of programming used
today. At Micron we use the high-level languages for the mgjority of our applications.
These high-level languages can be broken down further into the three mgjor
programming methodologies: procedural programming, object-oriented
programming, and markup programming.

Procedural programming languages are code intensive, requiring the programmer to
specify step by step how the computer must accomplish atask. Procedural languages
generally have strict rules of use and design because they must be precisely formatted
so the computer can understand the appropriate functions. They generally require
manual keyboard input for all code, similar to entering commands at a DOS or Unix
prompt. Traditionally, programmers could only design CUI interfaces with procedural
languages, but today these languages can produce awide variety of both CUlsand
GUIs. Examples of procedural programming languages include C, C++, Cobol,
Fortran, and PERL. These are covered in detail in “Programming at Micron” on
page 63.

The official definition of object-oriented programming (OOP) is a type of
programming that encapsulates, or captures, a small amount of data along with
instructions about how to manipulate that data. (Potter, 562) Object-oriented
applications often have GUIs and this type of language is currently the fastest
growing segment of programming, other than the Internet. Object-oriented
programming (OOP) is a type of programming that works with “objects” rather than
with the actions needed to accomplish a particular task, like in procedural languages.
An object can be defined as an item that has properties to describe it. For example,
you are an object. You contain properties that tell us more about you; you have a
street address where you live, a Micron employee identity, certain skills, and
relationships with people around you. OOP operates uniquely with these special
object properties. First, you teach the computer all about a particular object. When the
object is used in the program, the computer program already knows the object’s role
and what it can do for us, just like when you are asked to accomplish a task for
Micron. Examples of object-oriented programming include JAVA, Visual Basic, and
Visual C++. These are covered in detail in “Programming at Micron” on page 63.

Markup programming allows you to write plain text and enhance it (or mark it up) for
use on another computer via the Internet. Hypertext Markup Language (HTML) is the
first of such languages, and it has revolutionized the content of the Internet. Modern
versions of markup languages are defined by worldwide organizations and are agreed
upon as industry standards to ensure compatibility among a wide range of computers
and browser programs. Examples of markup programming include HTML and
Extensible Markup Language (XML). These are covered in detail “Programming at
Micron” on page 63.

Programming Methodologies

Database
Programming

A database isacollection of information for later retrieval, such as your address book.

Address books are organized by last name, and you can find a person’s name, address,
and phone numbers by searching for the last name. In the same way, databases are
related pieces of information collected into individual records. To program a database,
you need a language that is able to work with the unique database format. Some
databases use their own internal languages such as SAP’s ABAP language; others rely
on universal languages such as SQL (Standard Query Language) that can exchange
data between different systems.

12

Programming Methodol ogies

GETTING STARTED

Flow Charts

Before you can program, you first have to think like a computer. That isn’'t as hard as
it sounds. You might relate computer programming to teaching someone how to bake
chocolate chip cookies. You have to be careful to use words that novice cooks can
understand so they can follow the specific steps. You cannot assume understanding or
skip steps because beginning chefs (or the computer) will not be able to understand.

Now if you break down the process of baking chocolate chip cookies to a simple step-
by-step procedure, it might look like this:

1: Collect the ingredients: flour, baking soda, salt,
butter, sugar, brown sugar, vanilla extract, eggs,
chocolate chips, and optional nuts

2: Measure and combine the ingredients

3: Put the globs of dough on the cookie sheet
4: Bake the cookies

5: Let cool

6: Eat

If that were all there were to baking cookies, then we would be done. As everyone
knows, the process of creating great cookies is much more complex. Not only do you
have to follow the recipe carefully, but you also have to time certain events precisely
to make the cookies turn out perfectly. To help us organize our thinking, we will be
using a modeling tool called a flow chart.

One of the most effective methods of diagramming complex programming logic is to
use a flow chart. Flow charts allow you to explain the logic of your thinking so you
can translate it for the computer’s use.

If you use this class as an example of the inputs-process-outputs model discussed in
the Introduction, you can create the following flow chart:

* You came into this class as an input.
* You are processed in the sense that you have to learn or be taught something.

* You are now an output that has changed because you have (presumably) grown
smarter.

You after
You before Programming class
>
class Fundamentals (computer
guru)

Figure 1. Diagram of I nput-Process-Output

In our previous cookie example, we could have easily overlooked steps or
erroneously assumed certain operations in the cookie-baking process. By creating a
flow chart to break down the process, you can model the exact steps and create a
checklist to ensure that you stay on the correct path.

Getting Sarted

13

Here is the cookie exampl e adapted to the flow chart modeling tool:

Do you have

Measure
ingredients?

ingredients

No i
v

Go to the store
and buy Heat Oven to 375°F
ingredients
Butter, L
Sugar, 4
Brown ;
. In Bowl #2, Mix
Suga_r, & In Bowl #l,_Mlx Butter, Sugar,
Vanilla » Flour, Baking
Soda & Salt Brwn. .
Sugar & Vanilla
Flour, *
Baking
Soda & Salt Eggs > Add Eggs
Combine all
ingredients in Bowl
#2

v

Chocolate | Add Chocolate
Chips i Chips
v
Baking
Sheet

Using Spoon, put
Cookie Dough on
Baking Sheet

Spoon

v

Oven

h 4

Bake for 1 minute «

Yes
A 4

Once baked, put
on wire rack and
let cool for at least
10 minutes - About
5 Dozen Cookies

Getting Sarted

There are four traditional flow chart symbolsthat are universally identified. They are
the basic building blocks for any flow chart. The following information explains each
symbol and its purpose.

Process
A process (represented by arectangle) shows the major steps or stages. This symbol

usually representsthe actionsin the process. In the cookie example, you notice that all
the process symbols contain actions.

Process

Figure2: Process Rectangle
Decision
The decision tree (represented by a diamond with arrows) has as many as three
choices:. yes, no, or maybe. When programming a computer, avoid maybes because

you cannot teach the computer to deal with ambiguities. Decision trees are the only
objectsin flow charting that are allowed more than one exit point.

NoO———»

Yes

i

Figure 3: Decision Diamond
Data (I nput/Output)

Data areas (represented by a rhombus) are usually inputs or outputs to the process
boxes.

Data (Input/
Output)

Figure4: Data (I nput/Output) Rhombus

Getting Sarted 15

Terminator

Terminators or End Points (represented by an oval) are the first or final stages of the
process. If the end point for one processis an input for the next process, the
terminator is acircle rather than an oval.

Figure5: Terminator Ovals

When creating a flow chart, always follow these simplerules:

1. Alwaystry to use standard flow charting symbols. We have described the four
basic symbols (the rectangle, diamond, rhombus, and oval) in this manual. If
your flow charts will be read by someone inheriting your project, try to follow
the universal conventions, such as those found in Visio Technical, aflow
charting program used here at Micron.

2. Thelogicinaflow chart should flow from top to bottom and from left to right.
Only the decision trees (diamonds) should have more than one exit point.

4. Decisions should always ask a Yes/No question. Computer logic does not
understand anything other than these two states.

5. Usesimplelanguagein your flow chart. Avoid programming terms or lingo
because they make the flow chart difficult to read. Sometimes just talking
through or writing down issues will help you discover errors of logic or items
that you assumed were covered.

w

Hereisacollection of other flow chart items. Most any shape can be used, but if you
create your own, be sure to include a key to the shape types, much like the following
example:

Document

Database

Off Page
Connector CoMate
Card
Manual Input Preparation

Direct Data
Paper Tape

Figure6: Key for Flow Chart Symbols

16 Getting Sarted

Made Up
Programming

Language - Phake

After creating your flow chart, you need to decide what programming language you
will use. Remember that computers cannot process flow charts or English sentences.

To better understand programming, you need to try some programming techniques for
yourself. This is an exercise using the “Phake” language which was developed for this
class. Phake is a pseudo-code language that simulates real programming.

Phake is made up of three pieces:

» Actions (Commands) - items that do
» Things (Variables) - items that have something done to them
» Modifiers (Switches) - items that change the actions or reverse their direction

These key words are needed to use the Phake language to teach a computer how to
bake cookies.

Actions (Commands) Things (Variables) M odifiers (Switches)
IF pantry No/ Yes
GOTO ingredients For
PURCHASE store On/ Off
MEASURE oven In/ Out
CHECK flour To
TURN baking soda With
GET salt 375 degrees F
OPEN [CLOSE] bowl #1 10 minutes
BAKE bowl #2
EAT refrigerator
TAKE sink
END butter
PUT sugar
ADD brown sugar
SET vanilla
MIX eggs
WAIT chocolate chips

cookie dough

baking sheet

spoon

cooling rack

temperature

cookies

The Phake language has the following rules (syntax):

1. Every line must start with an action (command). These actions can have
modifiers (switches) that change their direction, but the action itself is

essentially the same.

2. Every line must have an item that is acted upon; we will call these “things”

(variables).

Getting Sarted

17

3. You arelimited to theitems on thelist, and you cannot make up new actions or
generate new things.

4. You can use linking words, such asand / or.

Using the Phake language, create a program to describe the process of baking
cookies. Below isatypical example of what you may come up with. Do not worry if
yours looks different; there are many solutions to the same problem in programming.

In the following program, the Phake code includes step numbersto the left to aid in
line item differentiation.

Example 1. Phake language used to describe baking cookies

1:

D

0 N O O

10:
11:
12:

13:
14:
15:

16:
17:
18:
19:
20:
21:
22
23:
24
25:
26
27:
28:
29:
30:
31:

CHECK pantry For flour, baking soda, salt, sugar,
brown sugar, vanilla, chocolate chips

CHECK refrigerator For eggs, butter

SET ingredients = flour, baking soda, salt, butter,
sugar, brown sugar, vanilla, chocolate chips, eggs

IF No ingredients, GOTO store and PURCHASE
ingredients

GET ingredients Out pantry

MEASURE ingredients

TURN On oven and SET temperature 375 degrees F
GET bowl #1

GET spoon

MIX flour, baking soda, salt In bowl #1 With spoon
GET bowl #2

MIX butter, sugar, brown sugar, vanilla In bowl #2
With spoon

ADD eggs To bowl #2
MIX ingredients In bowl #2 With spoon

ADD ingredients In bowl #1 To ingredients In bowl
#2 With spoon

MIX ingredients In bowl #2 With spoon

ADD chocolate chips To bowl #2

MIX bowl #2 With spoon

GET spoon, baking sheet

PUT cookie dough On baking sheet With spoon
OPEN oven

PUT baking sheet With cookie dough In oven
CLOSE oven

BAKE 10 minutes

OPEN oven

GET Out cookies and cookie sheet

PUT cookies On cooling rack

PUT cookie sheet In sink

CLOSE oven

TURN Off oven

WAIT 10 minutes

18

Getting Sarted

32:
33:

EAT cookies
END

In this second example, you define all of the “things” (variables) used in the program
at the beginning of the program. This process teaches the terms to a new cook; in the
previous example you assumed that the cook knew the terms for each ingredient.
Also, when you create variables, you can shorten their names to save on space, which
was very important in early computing.

Example 2: Phake language used to describe baking cookies

1:

NOoO ok WODN

10:
11:
12:
13:
14:;
15:
16:
17
18:

19:
20:
21:
22
23:
24
25:
26
27:
28:
29:
30:
31:
32:
33:
34:
35:

SET FL = flour, BS = baking soda, S = salt

SET B = butter, Su = sugar, BSu = brown sugar
SET V = vanilla, CC = chocolate chips, E = eggs
CHECK pantry For FL, BS, S, Su, BSu, V, CC
CHECK refrigerator For E, B

SET ingredients = FL, BS, S, B, Su, BSu, V, CC, E
IF No ingredients, GOTO store and PURCHASE
ingredients

GET ingredients Out pantry

MEASURE ingredients

TURN On oven and SET temperature 375 degrees F
GET bowl #1

GET spoon

MIX FL, BS, S In bowl #1 With spoon

GET bowl #2

MIX B, Su, BSu and V In bowl #2 With spoon

ADD E To bowl #2

MIX ingredients In bowl #2 With spoon

ADD ingredients In bowl #1 To ingredients In bowl
#2

MIX ingredients In bowl #2 With spoon

ADD CC To bowl #2

MIX bowl #2 With spoon

GET spoon, baking sheet

PUT cookie dough On baking sheet With spoon
OPEN oven

PUT baking sheet With cookie dough In oven
CLOSE oven

BAKE 10 minutes

OPEN oven

GET cookies and cookie sheet Out

PUT cookies On cooling rack

PUT cookie sheet In sink

CLOSE oven

TURN Off oven

WAIT 10 minutes

EAT cookies

Getting Sarted

19

Post-Phake Language

36: END

Variables

In our Phake language, we had a category called things that represented the items that

the program needed to use. Another way to describe those thingsisto use the term
“variable.” A variable is a memory location referred to by a name, but you could think
of it as a container that holds information. In keeping with our cookie baking
example, a typical variable might be like a measuring cup that can hold the proper
amount of milk until you need it. The other advantage to a variable is that it can
change; when you want your measuring cup to contain something else, it can be
emptied and washed. Now it can hold flour.

In programming, a variable might be a number, dollar amount, or word that can
change throughout a program, depending on how you use variables. Different
programming languages will use the rules of the language to create whatever kind of
variable is needed. The value of a variable can change during execution of a program
by input and output. (Bradley, 660, 687-689)

Congtants

Constants hold a specific piece of information throughout the program. In our cookie
baking example, the sugar bowl is a constant. Unlike the measuring cup, a sugar bowl
only holds one item (sugar), and it will always hold the same contents.

Literal

Literals are exact, do not change, and can be either numbers or characters. In the
Phake language, when you set the variable FL = flour, FL was the variable and flour
(the value contained within the variable) was the literal.

Commands

In our Phake language, we called the main drivers of the program actions. In most
programming languages, these actions are called commands or key words. You will
need to know how to modify or alter the commands to fit your needs. An example of

a typical command might look like this:

LASERPRINT “my document”

This command prints your document to the laser printer of your choice.

Switches or Options

Switches or Options can be added to commands. In the Phake programming language,
we called them maodifiers. In most programming languages, these modifications are
based upon a set of rules (syntax). We can take the previous example and add a switch

to tell the laser printer to print landscape:

LASERPRINT - L “my document to print landscape”

20

Getting Sarted

The online help for your programming language lists the correct usage of switches or
options for your commands.

Syntax

The term syntax refers to the rules or sequence that a programming |anguage must

follow when the code is written. When speaking your native language, you don't

think about syntax because you instinctively know the rules. But when you learn a
foreign language, you may need to learn new syntax rules. For example, in English
the adjective comes before the noun—you would say “the red car,” but in Spanish, the
adjective comes after the noun, so you would sdyatito rojo” which literally

translates to “the car red.” English speakers who are learning Spanish need to
remember to put the adjective after the noun. If the word order is wrong, the meaning
might not be clear. The same concept of syntax is used in computer programming
languages.

In our Phake language, syntax was defined in rule #1 (refer to the Rules on page 17).
Rule #1 stated that every line must start with a command (action). This is a simple
example of a syntax rule. Rules in programming languages range from simple to very
complex and exact. Using proper programming syntax is just as important as learning
the terms themselves.

Getting Sarted

21

PROGRAMMING CONCEPTS

Running QBasic

Now that you are thinking like a computer, the next challenge is to work with an
actual programming language. One of the first languages that most programmers
learn is alanguage called BASIC. In the early 1960s, BASIC ran only on main frame
systems, but was redesigned in the late 1970s to give everyone the same exposure to
programming on persona computers. BASIC has evolved from very rudimentary
beginnings.

There are many companies that have developed BASIC programming languages, and
they range from free products to licensed ones. QBasic or Quick BASIC isthe latest
version of the BASIC programming language from Microsoft. It falls somewhere
between a standard CUI and a GUI because it has some characteristics of each
interface. Although QBasic is not used as an official language here at Micron, it will
aid you in identifying and applying programming fundamentals. Many of the
commands used in QBasic are universal to all languages, or there are equivalents that
accomplish the exact same goals. You should start with simple programs that
accomplish quick tasks and then slowly build on your previous experience by trying
more complex programming.

For this class you will be running QBasic from a classroom network drive.

1. Click START > RUN...

2. Inthe Openfield, type F:\Basic\gbasic

3. Click OK.

4, Press<Esc> to clear the entry dialog box.

After completing the instructions above, the QBasic welcome screen displays.

& F:A\BASIC\qgbasic_exe

File Edit Uiew Search Run Debu Options Hel
1
lﬂﬂi&!!ﬁil |Ei—1

Helcome to MS-DOS QBasic

Copyright (C>» Microsoft Corporation, 1987-1991.
All rights reserved.

Eress Enter to see the Survival Guide

< Press ESC to clear thisz dialog box >

i e

R

Enter=Execute Esc=Cancel Tabh=Mext Field Arrow=Mext Item

mnediate

Figure7: QBasic Welcome Screen

22

Programming Concepts

Programming Input -
Output

If you need further instructions on running QBasic on various Microsoft platforms,
refer to “Appendix 1 - Additional QBasic Resources” on page 66.

Your first simple QBasic program will use the input-process-output model that you
learned earlier. In this program, you will create a command that accepts input. This
should be easy because the command in QBasic is INPUT, and the command in
QBasic to send information out to the monitor is PRINT.

[]

New Command and Syntax Summary:

Command
PRINT

Definition
Sends information to the
screen

INPUT Receives input from the

keyboard and assignsit to
avariable

END Finishes the program

ntax Definition

Quotes separate the string
information from the code

; Separates the information
being printed from the
variable

$ Designates the variable
name as a string variable
(those that contain words)

Follow these instructions to create your first program:

1. Open QBasic.

2. Type the following code exactly as written. Be sure to pressBNT ER>
key after each line.

PRINT "What is your name?"
INPUT name$

PRINT "Hi "; name$

END

After typing the code, press th&HIFT> and<F5> keys simultaneously to run the
program. You are now an official computer programmer!

Here is the step-by-step breakdown of your first program:

 PRINT PrintsWhat isyour name? on the screen.

» INPUT Accepts the information from the keyboard and assigns the
information to the name$ variable.

 PRINT Prints Hi, [the name you entered].

Programming Concepts

23

Saving a Programin
QBasic

Loading a Filein
QBasic

Variables as Numbers

« END Stops the program.

If you are happy with the results of the program, it is a good idea to save your work.
Save the previous programBRST.BAS. When naming a QBasic file, use the
DOS-based standards of eight characters or less. When saving QBasic programs for
class, please save them to yeuMBASI C directory.

To save a program in QBasic

Using the mouse:

1. Click FILE.
2. Click SAVE.
3. Enter the namEIRST.BAS.
4. Click OK.

Using the keyboard:

1. PresxALT> +<F>,

2. PressS> for Save.

3. Enter the namEIRST.BAS.
4. ClickOK.

After you have saved a program, it is important that you know how to retrieve it. In
this case, you will retrieve a class example file naMedl BERS.BAS:

Click FILE.

Click OPEN.

ChooseNUMBERS.BAS from the list, or type iNUMBERS.BAS.

Click OK.

A

Note: For this class, the programs you will work with are supplied in
theF:\BASI C directory. You have the option of either typing the
examples for yourself or retrieving these files. For the remaining
programs, the code will include step humbers on the left to aid in
line-item differentiation.

Computers can deal with numbers, but they need to be taught what to do with the
numbers. For example, when you teach a child to add, you might say: “Let's remove 1
apple from basket #1 and add it to the 3 apples in basket #2. Then we will have 4
apples in basket #3.” Like children, computers can evaluate these equations;
computers just need to be taught how.

QBasic uses the following standard operators to deal with nhumerical variables:
e addition (+)
e subtraction (-)
e multiplication (*)
e division (/)

24

Programming Concepts

The mathematical formulafor the apple example “Variables as Numbers” on page 24
looks like this:

1+3=4

With a syntax of:

atb=c

Now we can apply variables from the example to the syntax:
Basket#1 + Basket#2 = Basket#3

The following is an example of how this might be written in a standard computer
program. The line numbers are shown only to designate the separate steps.

1: Basket#1 = 1
2: Basket#2 = 3
3: Basket#3 = Basket#1 + Basket#2

The syntax for the computer is:

1: define a
2: define b
3: c=a+b

[]

New Command and Syntax Summary:

Command Definition

REM Remarks or statements
that are not included in
the code, but are used for
those observing the code

|ater.
CLS Clearsthe screen of al
writing.
ntax Definition

Allows the programmer
to put multiple commands
on asingle line of code.
Be careful with its use
because many commands
compressed onto oneline
are difficult to follow or
read later.

Programming Concepts 25

Example Program Name: NUMBERS.BAS

1: REM This works with simple numbers

2: CLS

3: PRINT "Enter two numbers that you would Tike to
multiply"

4: PRINT

5: PRINT "Enter your first number": INPUT x

6: PRINT "Enter your second number": INPUT y

7: z=Xx%y

8: PRINT "The first number multiplied by the second

number 1is"; z
9: END

Program Notes:
* Line 1is a command called REM, which is an abbreviation for remark;
these are important remarks for the programmer to read later.
e Line 2 is a command called CLS, which clears the screen before you type
anything.
e Line 3 is a print to the screen command.
e Line 4 is a simple PRINT statement to move the program down a line.

e Inlines 5 and 6, the INPUT commands are put on the same line as each of
the PRINT statements. This was included to show that multiple commands
can occur on a single line, but it is only recommended when it makes the
program clearer. In this case, the inputs are tied to the print statements so
they are a natural fit.

* Line 7 sets the numeric varialaléo be the product of taking variable
(your first number) multiplied by the variabjgyour second number).

« Line 8 sends the output.
e Line 9 ends the program.

Exercise 1: Change the operator MUMBERS.BAS to addition. Be
sure to change the user instructions so they reflect the functional
differences of the program.

In this program we used y, andz as the variable names. In early programming,

using simple letters was the accepted practice because they were short and easy to
find. Programming today has changed to use long descriptive variable names. For the
example above, variablecould befirstuserinput andz could bemultipliednumbers

to give the programmer and any subsequent readers a hint as to what the function of
the variable is.

[]

TIP: Never use spaces in the names of your variables. Most
programming languages do not understand the spaces. If you use spaces,
your program may not be compatible with other programs or operating
systems. In most programming languages if you do need separation for
clarity, use the underscore character (_). However, QBasic does not
support underscores. :-(

Programming Concepts

Advanced Variablesas You can use numerical valuesin complex ways. For example, consider the following

Numbers formulafor calculating body massindex (BMI). The United States National Institutes
of Health saysthat body massindex (BMI) ratings can help you with your plans for
weight loss and overall health. It is not easy to divide your weight in kilograms by
your height in meters squared.

Your Weight in Kilograms Body Mass

Your Height in Meters 2 - Index

The chalenge for the programmer isto collect datain English units (measurements
that are user friendly), convert it to metric measurements, and then perform the
calculation. It is a good example of taking basic input data, processing it using a
program, and then giving a beneficia output to the user.

[]

New Command and Syntax Summary:

Command Definition

USING Used with PRINT to
format the output of the
variable to fit the format
that is expected.

' Thislittle mark replaces
the REM statement in
|ater versions of BASIC.

ntax Definition

e Creates atemplate for the
USING command to
display the information.
Thisrepresentstwo digits,
the decimal, then one last

digit.
Example Program Name: BM|.BAS
1: ' This works with complex numbers
2: !
3:
4: CLS
5: PRINT "Enter your height in feet only"
6: PRINT "For example, if you are 5 foot 7 inches,
only enter 5": INPUT feet
7: PRINT "Enter your remaining height in inches only"
8: PRINT "From the example above, if you are 5 foot 7

inches, only enter 7": INPUT inches

Programming Concepts 27

9:
10:
11:

12:
13:
14
15:

16:
17:
18:
19:

20:

21:

22:

23:

height1 = (feet * 12) + 1inches
PRINT "Enter your weight in pounds": INPUT weight1

weight2 = weight1 / 2.2

height2 = (height1 * 2.54) / 100

height3 = height2 * height2

ratio = weight2 / height3

PRINT "Your Body Mass Index ratio is: "; USING
"## . #"; ratio

PRINT

PRINT "The Government Standards are below:"

PRINT " Ideal BMI is 20 to 24"

PRINT " 25 to 29 are advised they are possibly over
their ideal weight"

PRINT " Those over 30 are advised to consult with
their doctors”

PRINT “ * NOTE: This is only one indicator of
overall health *”

PRINT “ * and should only be considered as a
guideline. *

END

Program Notes:

Lines 1 to 3 are comments for the programmer to read later.
Line 4 clears the screen.

Line 5 gives instructions.

Line 6 has you input your height in feet only.

Line 7 gives instructions.

Line 8 has you input your remaining height in inches only.

Line 9 sets the variable heightl to the product of your height in feet
multiplied by 12 added to the number of inches that was specified. If you
improved this program, you would make 12 a constant, so that if the
number of inches in a foot changed, you could quickly change the program.
If you scoff at the number of inches in a foot changing, remember that the
Y2K bug was based upon the assumption that a constant date format would
never change.

Line 10 has you input your weight in pounds.

Line 11 converts your weight from pounds to kilograms.

Line 12 converts your height in inches to centimeters, then to meters.

Line 13 squares your height (this could be used by a function or a power
operator, but this is just a simple example).

Line 14 actually calculates the BMI.

Line 15 displays the final results to the screen in the format that you
wanted.

Lines 16 through 22 consist of a chart to aid you in understanding the
output.

Line 23 ends the program.

28

Programming Concepts

Variables as
Characters (3rings)

Variables that contain anything from the keyboard, including letters, symbols, and
even numbers, are often caled strings. (Wang, 108) If avariable containsaword, it is
string variable. Different types of variables are available to help the programmer and
the computer keep track of what kind of datathe variable contains.

Standard variables use standard math computations, but string variables (which can
contain anything), have other rules to help the computer understand what to do. The
rules for handling strings vary from one programming language to another. The
following is an example of typical information stored in a string variable:
myvariablename$ = “this is the stuff that goes into a string variable”

Note the$ character. This syntax shows the computer that myvariablename is a string.
Most programming languages use this universal convention.

[]

New Command and Syntax Summary:
Definition
I nserts the number of

spaces that are specified
in the parentheses ().

Command
SPACES$(n)

ntax Definition

+ When working with string
variables, the + represents
anew type of command,
concatenate. In many
other languages, thereis
special syntax for this
operation.

$ Designates a string
variable.

Example Program Nam&TRING1.BAS

—_—

' This is a sample string variable handling program

2: !

3:

4: CLS

5: PRINT "What is your first name": INPUT first$
6: PRINT "What is your last name": INPUT Tast$
7: name$ = first$ + SPACES (1) + last$

8: PRINT "Your name is ": name$

9: END

Program Notes:

Programming Concepts

29

e Lines 1to 3 are comments for the programmer to read later.
* Line 4 clears the screen.

e Line 5 has you input your first name.

» Line 6 has you input your last name.

e Line 7 combines your first name, a space, and your last name into a string
variable called name$.

» Line 8 prints the contents of the string variable name$ to the screen.
e Line 9 ends the program.

Exercise 2. Modify STRING1.BAS so that the users also must enter
their middle initial.

Advanced Variablesas For the next progran§TRING2.BAS, the previous example is expanded to include
Characters (Srings) more complex string handling routines.

[]

New Command Summary:

Command Definition

LEFT$(variables$, n) Cutsthe string variable$
by (n) the number of
characters from the | eft.

UCASE$(variable$) Changes the string
variable$ to all uppercase
letters.

L CASES$(variable$) Changes the string
variable$ to al lowercase
|etters.

Example Program Nam&TRING2.BAS

1: ' This 1is another string variable handling program
2: !

3:

4: CLS

5: PRINT "What is your first name": INPUT first$

6: PRINT "What is your middle name": INPUT middle$

7: PRINT "What is your Tast name": INPUT last$

8: name$ = first$ + SPACE$(1) + middle$ + SPACES (1) +

last$

9: Upname$ = UCASE$ (name$)

10: Lname$ = LCASES$ (name$)

11: micron$ = LCASE$ (LEFT$(first$, 2) + LEFT$(middle$,
2) + LEFT$(1ast$, 10))

12: PRINT
13: PRINT "Your name 1is "; name$
14: PRINT

15: PRINT "Your name is "; Upname$; in uppercase."

30 Programming Concepts

Fun with Sring
Variables

16:
17:
18:
19:

20:

PRINT
PRINT "Your name is "; Lname$;
PRINT
PRINT "Your Micron username should be

END

in Towercase."

: micron$:

Program Notes:

Lines 1 to 3 are comments for the programmer to read later.
Line 4 clears the screen.

Line 5 has you input your first name.

Line 6 has you input your middle name.

Line 7 has you input your last name.

Line 8 combines your first name, a space, your middle name, a space, and
your last name into a string variable called name$.

Line 9 creates a new string variable called Upname$ that stores the upper
case version of name$ (your name).

Line 10 creates a new string variable called Lname$ that stores the lower
case version of name$ (your name).

Line 11 creates a new string variable called micron$ that takes the first
letter from your first name, the first letter from your middle name, and the
first six letters from your last name in an effort to guess your Micron
username.

Lines 13, 15, 17, and 19 print the results to the screen.

Line 20 ends the program.

Exercise 3: Modify STRING2.BAS to correctly produce your
Micron username.

The next program you'll try is a Mad Lib program. As you become more advanced
with BASIC programming, you may want to rewrite this code for practice. This
example takes the variables defined in the first part of the program and rearranges
them into a funny substitution sentence at the end of the program. Defining the
variables at the start of the program is required by some programming languages.
Even if it is not required, it is a very good practice to follow to give others visibility to
the variables that will be used throughout the program.

[]

New Command Summary:

Command Definition

DIM Creates and defines new
variables for usein the
program.

Programming Concepts

31

Example Program Name: MADLIB1.BAS
1: ' This is my program called madlib1.bas

2: ' I wrote it for my Programming Fundamentals Class

3:

4: CLS

5: DIM actioning$, animal$, someone$, funny$, farm$,
bodypart$

6: PRINT "Here is a 1little quiz. Please use funny
words, "

7: PRINT "because they make this more interesting."”

8: PRINT

9: PRINT

10: PRINT "Enter an action word ending in ING": INPUT

actioning$
11: PRINT "Enter an exotic animal name": INPUT animal$
12: PRINT "Enter your friend's name": INPUT someone$
13: PRINT "Enter a funny sound": INPUT funny$
14: PRINT "Enter a farm animal": INPUT farm$
15: PRINT "Enter a body part": INPUT bodypart$
16: CLS

17: PRINT

18: PRINT

19: PRINT "One day many years ago, "; someone$; " was
"; actioning$; " when suddenly there was a(an) ";
funny$; " sound, much like a "; animal$; ". ";
"Frightened and scared "; someone$; " tripped over
a"; farm$; "."; " In haste to get away, ";
someone$; " broke his/her "; bodypart$; "."

20: END

Program Notes:

* Line 5 uses the new command DIM to establish the string variables. This
programming practice is helpful to those who read this program later because
they can find all of the variables that are used, without having to search
through the entire program.

* Notice that the string variables are based upon the responses to the questions.

These are by no means a guarantee of what the users will enter, but they help
the programmer to write the little story in Line 19.

Programming Concepts

Variable Types The following table summarizes when to use the different variable types:
Summary

Variable Type When to use

Numeric (Standard) Variables Used when you want to treat the variable
and its contents, the literal, as numerical
information. Numeric variables can be
added, subtracted, multiplied, divided,
and any other function that you can
perform on a number.

String Variables Used when you want to treat the variable
and its contents, the literal, as text
information. String variables can be
combined or compared, but they cannot
have mathematical functions applied to
them.

There are many other variables types and uses, but these are the major ones used in
most programming languages. More information about variables specific to QBasic
can be found in “Appendix 1 - Additional QBasic Resources” on page 66.

Logic Satements (Part Often, you need some extra commands in your code to process the flow of the

One) computer program. These are called the logic statements or the control commands.
These commands can change the direction of the program or evaluate the input from
the users. The follow statement is one possible logic command; you will find this
command in most programming languages.

IF THEN Satement

An example of an IF THEN statement can be found on the flow chart for the cookie
baking scenario. (See page 14.) In the flow chart, you determine whether you have
certain ingredients. If you need them, then you are directed to buy them at the store. If
you already have the ingredients, then the program continues to the measuring stage.
In programming, this is called an IF THEN statement. Usually you are only testing for
one condition at a time.

For example:

1: IF NO ingredients, THEN GOTO store and purchase
ingredients

Or you could evaluate it like this:
1: IF YES ingredients, THEN GOTO measure ingredients

Notice that both of these statements are equivalent to each other. Each branch takes
the information and routes you in the correct direction. Be careful with this kind of
statement because it is easy to make a mistake in the logic of the IF THEN command.
Review the following example:

1: IF YES ingredients, THEN GOTO store and purchase
ingredients

Programming Concepts 33

This statement says, if you have the ingredients, then you will go to the store and
purchase them; but even after you get them, you find that you have to go to the store
over and over. Often, the logic flaw is not this easy to see, and it may take the
programmer some time to catch the mistake.

This next example is similar to the one used in “Fun with String Variables” on

page 31, but this time you will use IF THEN statements to discover the gender of your
“Mad Libs victim.” This allows you to customize the final message.

[]

New Command Summary:

Command Definition

IF THEN IF THEN works on the
condition; if the statement
istrue, then the action that
follows will occur.

GOTO Takes you to a specific
line or location.

Example Program Nam& ADLIB2.BAS - with IF THEN Statements

1: ' This is my program called madlib2.bas

2: ' I wrote it for my Programming Fundamentals Class

3:

4: CLS

5: DIM actioning$, animal$, someone$, funny$, farm$,
bodypart$, gender$, pronoun$

6: PRINT "Here is a 1little quiz. Please use funny
words, "

7: PRINT "because they make this more interesting."

8: PRINT

9: PRINT

10: PRINT "Enter an action word ending in ING": INPUT

actioning$
11: PRINT "Enter an exotic animal name": INPUT animal$
12: PRINT "Enter your friend's name": INPUT someone$

13: PRINT "What gender is, "; someone$; "? Enter Male
or Female": INPUT gender$

14: IF gender$ = "Male" THEN pronoun$ = "his":
GOTO Done

15: IF gender$ = "Female" THEN pronoun$ = "her":
GOTO Done

16: IF gender$ = "" THEN pronoun$ = "his/her":
GOTO Done

17 PRINT "BAD ENTRY, ERROR.": pronoun$ = "his/
her"

18: Done:

19: PRINT "Enter a funny sound": INPUT funny$
20: PRINT "Enter a farm animal": INPUT farm$

Programming Concepts

21: PRINT "Enter a body part": INPUT bodypart$
22: CLS

23: PRINT

24: PRINT

25: PRINT "One day many years ago, "; someone$; " was
"; actioning$; " when suddenly there was a(an) ";
funny$; " sound, much 1like a "; animal$; ". ";
"Frightened and scared "; someone$; " tripped over
a"; farm$; ". "; " In haste to get away, ";
someone$; " broke "; pronoun$; " "; bodypart$; "."

26: END

Program Notes:

 In MADLIB2.BAS you will find the GOTO statement and a line location (the

mysterious statement “Done” on our reference line 18). It was used in this

example to illustrate how to jump from one spot in the code to another. In later

examples, the GOTO command has been replaced because it allows the

programmer to jump from place to place without much regard to programmers

who may inherit the application. It is recommended to only use the GOTO

statement when absolutely necessary and, if used, to comment the location and

the reasoning in your work.

IF THEN ELSE |F Satement

IF THEN usually has another option called ELSE IF. The IF THEN ELSE IF

command allows you to have multiple IF THEN statements in a row to cover all of
the possible combinations, instead of only working with yes/no type questions like the

standard IF THEN.

In the following example, you are going to the store for a few things:

1: IF I purchase the gummy bears THEN I have a snack

2: ELSE IF I purchase the fruit snacks THEN I have a
snack

3: ELSE IF I purchase the chocolate covered peanuts
THEN I have a snack

4: ELSE I haven’'t bought a snack THEN I don’'t have a
snack

5: END IF

On the end of this example, notice the END IF. This returns the program back to
where you left the original branch of logic or flow of the program.

The following demonstrates an example of IF THEN statements with a new command

called ELSE IF.

Programming Concepts

35

[]

New Command and Syntax Summary:

Command
ELSE IF

ELSE

END IF

ntax

Return after each
THEN statement

Example Program Name: STEAK.BAS

Definition
Allows you to continue
withan IF THEN

statement by giving you
more choices.

Thefinal ELSE IFis
designated with asingle
EL SE statement to signal
the end of thelogic.

Stopsthe IF THEN ELSE
I F string of commands.
This hasreplace the
GOTO command.

Definition
The format for IF THEN
ELSE IF must be

followed asit is shown
below.

INPUT cooklevel$

"well done"

medium

"medium" THEN

"medium well" THEN

THEN

1: ' Cooking a Steak

2: ' IF THEN ELSE IF example

3:

4: CLS

5: DIM cooklevel$, cooktime

6: PRINT "How do you want your steak cooked?"

7. PRINT "Please choose from rare, medium,
well, and well done":

8: IF cooklevel$ = "rare" THEN

9: cooktime = 2

10: ELSEIF cooklevel$ =

11: cooktime = 5

12: ELSEIF cooklevel$ =

13: cooktime = 9

14: ELSEIF cooklevel$ =

15: cooktime = 15

16: ELSE cooktime = 20

17: END IF

18: PRINT "Cook the steak for"; cooktime; "
each side for a perfect steak"

19: END

minutes on

36

Programming Concepts

Program Notes:

* Lines 1to 3 are comments.

* Line 4 clears the screen.

» Line 5 sets up the two variables to be used in the program.
» Line 6 sends the question to the user.

» Line 7 gives the options for the input.

* Lines 8 and 9 find that if the item is rare, then set the variable cooktime to 2. If
not, it is to continue to evaluating lines.

e Lines 10 through 15 continue like lines 8 and 9.

» Line 16 sets the variable cooktime to 20 if the input does not match lines 8
through 15

* Line 17 ends the IF THEN loop and continues with the program.
» Line 18 sends the output to the user.
* Line 19 ends the program.

Exercise4: Add a feature irSTEAK.BAS so the program accepts
cooklevel$ entries with any capitalization combination. For example,
the program would accept RARE, Rare, or rare as correct ehtiigs.
you only need to enter one line of code!

TIP: When working with I[F THEN ELSE IF, try to plan for all
possibilities. Notice in this example that only the four choices are listed.
Good guestions to ask yourself might include “What if the user entered
nothing?” or “What if the entry is not even a word?”

Exiting QBasic After you have saved your work, you can exit QBasic.

Using the mouse:

1. Click FILE.
2. Click ExiT.

Using the keyboard:

1. Press<ALT> +<F>.
2. PressX> for Exit.

Programming Concepts 37

HOMEWORK 1

To successfully complete this course, this homework assignment must be compl eted
by the due date.

The assignment for homework 1 isto create a ssimple QBasic program that asks
guestions about the first session of the programming fundamentals class or manual.
Theformat islike a quiz that you would have to take at the end of a course. Please
make sure to give the users feedback by using some form of output.

The program requiresthese four components:

1. The program must work when run.

There are comments to show the reader the intentions of the programmer.
Thereisinput and output of variables.

The program must include the use of IF THEN statements

The program contains between 7 and 20 lines of code.

g s wbN

To Get QBasic Files From the MERC, type SST in the address bar.
Click PROGRAMMING FUNDAMENTALS.
Click FILES on the | eft side of the page.

Follow the given instructions on the page.

A w NP

OR
1. Go to http://htmlprod.micron.com/webapps/is/cmpsrv/sst/sstportal/apps/
Programming/Programmingfun/Programmingfun.htm
2. Click FILEs on the left side of the page.
3. Follow the given instructions on the page.

Saving Homework To save your homework #1 whilein QBasic:

Click FILE.
Click SAVE As.
Using the scroll bar on the right, scroll down to [-H-] drive.

Double-click to drill down each stepto MTI >MSI >1S>SMCMIKLE >
PROGRAMMING.

Note: To go back up a directory, double-click the “.” at the top of the list.
5. Enter the program name, which shouldib& name.BAS.

War ning: The program name must be 8 characters or less!

6. ClickOK.

Eal A o

To get more help on QBasic, refer to “Appendix 1 - Additional QBasic Resources” on
page 66.

Due Date: On or before the beginning of Session 2.

38 Homework 1

PROGRAMMING FUNDAMENTALS - SESSION 2

Objectives Goal

Establish a basic programming foundation for team members who are interested in
advancing their programming knowledge and abilities.

Objectivesfor this Session

After completing this session, the student should be able to:
» ldentify and construct basic logic structures, arrays, subroutines, and functions.

» Identify and recite the programming standards at Micron, including the usage of
the Rational Unified Process (RUP), code design, storage, security, ownership,
and distribution.

» |dentify the standard tools common to most programming languages, such as text
writers, editors, compilers, debuggers, interpreters, and bytecode.

Programming Fundamentals - Session 2 39

ADVANCED PROGRAMMING CONCEPTS

Logic Satements (Part
Two)

Don't be alarmed by the heading of “Advanced Programming Concepts.” These
concepts are not difficult, nor are the programs. These concepts are based on the
fundamentals you learned in Session 1. This section includes logical constructs; fancy
new variables called arrays; a way of breaking your program into smaller parts, called
subroutines; and, finally, functions to help you create reusable, single-variable
subroutines.

Often, you need some extra commands in your code to process the flow of the
computer program. These are called the logic statements or the control commands.
These commands can change the direction of the program or evaluate the input from
the users. In the previous area we covered IF THEN statements and now we cover
four more logic commands; you will find these commands or derivatives of them in
most programming languages.

FOR NEXT Statement

FOR NEXT loops are usually used as counters. These counters help the program
repeat itself a set number of times.

Using the recipe example, assume that you want to mix the contents of bowl #2 into
bowl #'1 at least three times to ensure that it is well blended. You can use the variable
looptimes to keep track of the number of loops that cycle through (called iterations):

1: FOR Jooptimes = 1 to 3

GET spoon

MIX contents of bowl #1 into bowl #2
MIX vigorously for 5 minutes

NEXT Jooptimes

a b~ ODN

When the computer encounters the FOR statement it sets the vhrigpkiiees

initially to 1; then, it processes the rest of the instructions until it encounters the
NEXT statement. When the set of instructions is completed, the flow returns to the
top, the variabléooptimesis set to 2, and the instructions are repeated. The same
steps are repeated when the variable is set to 3. When it is mixed for the third time,
the NEXT statement checks the valudooitimes to verify that it meets the last FOR
number. Then it ends the loop and continues with the rest of the program.

The FOR NEXT example repeats the loop in this program, but it is based upon the
number of times that the user specifies. To save time, you may suggest to the user that
he or she use a number smaller than 20. As an example of better programming
practices, you could alter this program to have an IF THEN statement that forces the
user to enter a number less than 20 before the program runs.

40

Advanced Programming Concepts

[]

New Command Summary:

Command Definition

FOR NEXT Logic command set to
loop the number of NEXT
times.

SLEEP A simple way to pause a
program. The number or
variable after sleep will
set it for how many
seconds you would like it
to sleep. FOR NEXT
loops can a so accomplish
this task.

Example Program Name: FORNEXT.BAS

—_—

© 00N O WDN

10:
11:
12:

13:
14:
15:

" FORNEXT example for Programming Fundamentals

CLS
DIM repeat, looptimes, timesleft
repeat = 5
FOR looptimes = 1 TO repeat

SLEEP 1

PRINT "This will repeat itself ";
repeat; " times"

PRINT

timesleft = repeat - Tooptimes

PRINT " Only "; timesleft; " more
times left"

PRINT
NEXT Tooptimes
END

Program Notes:

Line 4 clears the screen.

Line 5 defines the variables.

Line 6 sets the repeat variable to 5 (the number of loops to complete).

Line 7 sets the FOR NEXT loop to the number of times that the user has
specified.

Line 8 has the computer pause for one second so the user can see the output.
Line 9 prints the user input.

Line 11 sets variable timesleft to be the literal value of “repeat” minus the
current value of the FOR NEXT loop counter called looptimes.

Line 12 prints variable timesleft.
Line 14 repeats the loop as long as there are more looptimes left.

Advanced Programming Concepts

41

* Line 15 ends the program.

Exercise5: Alter the progranFORNEXT.BAS so that the user
inputs the repeat variable number. To save on time, you should also
limit the entry to a value of 20 or below.

DO WHILE LOOP Statement

In the DO WHILE LOOP—or known in some languages as DO WHILE—the basic
logic lets you run several different operations while waiting for an answer. Going
back to the recipe example, you might have several batches of cookies that need
various baking times, since oven temperatures and sizes can vary. This means that
some batches only take 8 minutes of cook time to finish, while others require 10 to 12
minutes of cook time. The condition of the “rawness” is evaluated and the computer
knows whether to repeat the loop.

1: DO WHILE (cookies are raw)
2: Cook at 375 degrees for one minute
3: LOOP

CAUTION: Be careful not to create code like the sample below. If you review this
loop carefully, you will notice that it will run continuously, causing an infinite loop—
a very bad condition in a program.

1: DO WHILE (cookies are done)
2: Cook at 375 degrees for one minute
3: LOOP

In the following example program, the DO WHILE LOOP is evaluated at the
beginning of the process, and it tells the computer to continuously run a function until
you enter a certain key combination. This functionality was originally created for
game programming, allowing the computer to continue working on a graphic while
the user sent instructions to other parts of the program.

42

Advanced Programming Concepts

New Command Summary:

Command Definition

DO WHILE Runs a continuous loop
while the computer is
waiting for new input or a
change in a condition;
loops always need away
out or they will continue
forever. DO WHILE
evaluates the logic at the
beginning of the process.

INKEY$ Much like INPUT, but it
only captures (gets from
the keyboard) asingle
keystroke.

CHR$ (n) Thisisused to call out a
specific key on the
keyboard. It isusing
ASCII code, which can be
found in “Appendix 3 -
ASCII Character Set” on
page 77.

Example Program Name: DOWHILE1.BAS

1: ' Do While1

2: CLS

3: DIM pause

4: DO WHILE (INKEY$ <> CHR$(33))

5: PRINT "This will print until you

press the ! key";

6: FOR pause = 1 TO 100000: NEXT
pause

7: LOOP

8: PRINT

9: PRINT "You escaped!!"

10: END

Program Notes:

* Line 1 comments the name of the program.
* Line 2 clears the screen.
» Line 3 defines the variable pause.

* Line 4 starts the DO WHILE LOOP with an evaluation of the first run. DO
WHILES do not have to run, but in this case it will continue until you press the
<I> key.

» Line 5 prints the statement over and over again.

Advanced Programming Concepts 43

Line 6 has a seemingly useless FOR NEXT statement using the variable pause.

This is a simple way to keep the computer busy for a brief moment so that the
text is readable.

Line 7 loops back up to check on the line 4 start of the DO WHILE.

Lines 8 and 9 print a statement to the screen when the loop is completed.
Line 10 ends the program.

Exercise6: Comment out line 6 dDOWHILEL1.BAS and run the
program to observe the effects. What happens?

The more complex version fOWHILE1.BAS, calledDOWHILE2.BAS, is
available for your reference after you have had a chance to work with more programs.

[]

New Command Summary:

Command Definition

SPC (n) Used to set a print point
that is “n” number of
spaces from the left of the
screen.

Example Program Nam&OWHILE2.BAS

—_—

= O 00 NO O h~WN

11:

12:
13:
14
15:
16:

0:

' Do While2
CLS
DIM location, pause
DO WHILE (INKEY$ <> CHR$(33))
lTocation = location + 1
IF Tocation = 40 THEN
Tocation = 0
END IF
PRINT

PRINT SPC(location); "This will
print until you press the ! key";

FOR pause = 1 TO 10000: NEXT

pause
LOOP
PRINT
PRINT
PRINT "You escaped!!"
END

Program Notes:

Line 1 comments the name of the program.
Line 2 clears the screen.
Line 3 defines the variables location and pause.

Advanced Programming Concepts

» Line 4 sets up the loop and evaluates the input from the keyboard to see
whether anyone has pressedhe key.

* Line 5 sets the variable location to location +1.

* Line 6 evaluates location, and if location = 40, then it sets it back to 0. This
was included so that the message would start back on the left after it
reached the right side.

e Lines 9 and 10 print the message about pressing thieey to the screen
for the user, but it prints it at the point where the location variable tells it.

< Line 11 has a seemingly useless FOR NEXT statement using the variable
pause. This is a simple way to keep the computer busy for a brief moment
so that the text is readable.

e Line 12 repeats the loop.
« Lines 13 through 15 give feedback to the user when he/she has escaped
e Line 16 ends the program.

Exercise7: Comment out line 11 ddOWHILE2.BAS to observe
the effects. What happens?

DO LOOP UNTIL Satement
The following DO LOOP UNTIL is evaluated at the end of the process. In the

following example, the loop continues until you guess the correct number between 1
and 1000.

[]

New Command Summary:

Command Definition

DO LOOP UNTIL Runs a continuous loop
until it meetsthe
conditions set by the
programmer; loops
always need away out, or
they will run forever. DO
LOOP UNTIL evauates
the logic at the end of the
process and will dways
run at least once.

RANDOMIZE Sets the start of the RND
random number generator
to simulate real random

numbers.
RND Creates a random number.
Example Program Nam&UESS.BAS
1: ' Number guessing game
2 CLS
3: DIM count, user, guessable
4 count = 0

Advanced Programming Concepts 45

= =2 O 00 N O O

12:
13:
14
15:

16:

17:
18:
19:

20:
21:
22
23:

0:
1

PRINT "Please enter a number as instructed below"
RANDOMIZE
guessable = INT(RND * 1000)

PRINT
PRINT "Number guessing game"
PRINT
: PRINT "I am thinking of a number between 1 and
1000...."
PRINT
DO
INPUT "What 1is your guess"; user
IF user < guessable THEN PRINT
"Higher"
IF user > guessable THEN PRINT
"Lower"

count = count + 1
LOOP UNTIL (user = guessable)

PRINT "You have guessed the computer’s number";
guessable

PRINT "Your guess was"; user

PRINT

PRINT "It took you"; count; " tries"
END

Program Notes:

Line 4 sets the count variable to 0. This is used to ensure that the number is
starting at O, just in case count is used in another area of the program.

Line 5 gives user instructions about the RANDOMIZE function.
Line 6 starts the random number generator.

Line 7 creates a variable called guessable and sets it equal to a number
between 1 and 1000.

Lines 8 through 12 give instructions to the user.

Line 13 starts a DO loop.

Line 14 asks for a guess.

Line 15 hints Higher if the user’s number is less than the guessable number.

Line 16 hints Lower if the user’'s number is more than the guessable
number.

Line 17 increments the count variable by 1 (counting the number of times in
the loop).

Line 18 finishes the loop by evaluating to see if the user’'s number equals
the guessable number. If this is true, then it will leave; if not, it will
continue to loop.

Lines 19 through 22 give the user feedback on his or her attempt and the
number of times that it took to guess the number.

Line 23 ends the program.

46

Advanced Programming Concepts

[]

TIP: If you get stuck in QBasicin aloop, pressthe <CTRL> +
<BREAK > keys simultaneously.

Logic Satement The following table summarizes when to use the various common logic statements:
ummary

Command When to use

IF THEN To ask a closed-ended question with only

two outcomes, such as adecision
diamond in a flow chart.

IF THEN ELSE IF To ask a closed-ended question with
many different possible answers; it is
important to include all possible answers.

FOR NEXT To create aloop that is repeated a specific
number of times.

DO WHILE To create a continuous loop that may
never get to run. At the beginning of the
loop, it evaluates alogic statement; if
correct, it continues the program; if not
correct, it continues to loop.

DO UNTIL To create a continuous loop that will
alwaysrun at least once. At the end of the
loop, it evaluates alogic statement; if
correct, it continues the program, if not
correct, it continues to loop.

Arrays Our Phake programming language did not directly include arrays, but you can
incorporate them. Arrays are best described as variables that hold alist of items. For
example, atypical list of ingredients for the cookie recipe example would read:

« flour
e sugar
* Dbutter
° €ggs

For this example,ifigredients’ is the name of the array, and the recipe items you need
are added into the new array variable. The array cailtggedients” would look
something like this:

ingredients (flour, sugar, butter, eggs)

If you wanted to tell someone what the third item on your list is, you would say that it
is butter. Arrays work the same way; the third item initigeedients array is butter.
Arrays can be useful to the programmer for listing items, for sorting, or for keeping
together variables of a related type.

Now you can apply the array structure to a program.

Advanced Programming Concepts 47

Example Program Name: ARRAY 1.BAS

1: " My Array1 program

2: '

3:

4: CLS

5: DIM dayofweek$(3)

6: PRINT "What day of the week was yesterday": INPUT

dayofweek$ (1)
7: PRINT "What day of the week is today": INPUT

dayofweek$(2)

8: PRINT "What day of the week is tomorrow": INPUT
dayofweek$ (3)

9: PRINT

10: PRINT "THANK YOU!"

11: PRINT

12: PRINT "You entered: "; dayofweek$(1); ", ";
dayofweek$(2); ", and "; dayofweek$(3)

13: END

Program Notes:

* Lines 1 to 3 are the comments.

» Line 4 clears the screen.

» Line 5 sets a new array variable called “dayofweek” to three positions.
» Line 6 asks for user input for yesterday’s day.

» Line 7 asks for user input for today’s day.

» Line 8 asks for user input for tomorrow’s day.

* Line 10 thanks the user.

» Line 12 sends the entered information back to the user.

» Line 13 ends the program.

Exercise 8: Modify ARRAY 1.BAS so the user also enters the day
after tomorrow (2 days from today). Be sure to change the number of
items in the array and modify the printed text accordingly.

[]

New Command and Syntax Summary:

Syntax Definition
(n) A number used after an
array to designate the

placement number of the
itemin the array.

[l
TIP: Be careful with array types and names in different programming
languages. Some arrays consider number (1) to be the first in the list, and
others start with number (0). While an array can start at any number the

Advanced Programming Concepts

programmer would like, you should only change it if it helps explain the
code or if it is commented. Otherwise, stick to the standards for the
language with which you are working.

The next example uses an array that is predefined by the program so it can ask one
guestion and produce the same results.

Example Program Name: ARRAY 2.BAS
1: ' My Array2 program

2

3

4: CLS

5: DIM dayofweek$(7), inputday
6.

7

8

dayofweek$ (1) "Sunday"
dayofweek$(2) = "Monday"

. dayofweek$(3) = "Tuesday"
9: dayofweek$(4) = "Wednesday"
10: dayofweek$(5) = "Thursday"
11: dayofweek$(6) = "Friday"
12: dayofweek$(7) = "Saturday"

13: PRINT "Enter the number that corresponds to the day
of the week"

14: PRINT

15: PRINT "Sunday is 1"

16: PRINT "Monday is 2"

17: PRINT "Tuesday is 3"

18: PRINT "Wednesday is 4"

19: PRINT "Thursday is 5"

20: PRINT "Friday is 6"

21: PRINT "Saturday is 7"

22: PRINT

23: INPUT 1inputday

24: PRINT

25: PRINT "THANK YOU!"

26: PRINT

27: PRINT "Yesterday was "; dayofweek$(inputday - 1);
", Today is "; dayofweek$(inputday); ", and
Tomorrow is "; dayofweek$ (inputday + 1)

28: END

Program Notes:

e Lines 1to 3 comment the program.

* Line 4 clears the screen.

e Line 5 sets up a new 7-position array called dayofweek and defines a
variable called inputday.

e Lines 6 to 12 set the dayofweek slots in the dayofweek array to the
appropriate days.

Advanced Programming Concepts 49

» Lines 13 to 21 give the user the available days of the week and their
corresponding numbers.

e Lines 22 to 23 asks for the user input.
e Line 25 is polite.

« Line 27 gives the output like the previous program, only now the computer
knows the right dates (but only if the right date is entered!).

Exercise9: In ARRAY2.BAS, if the user indicates that today is

either Saturday or Sunday, the program will not function correctly
because 0 (1 - 1) and 8 (7 + 1) are not defined in the array. Improve the
logic of the program so the program will run correctly.

[]

TIP: Some programming languages save you some work by including
predefined days-of-the-week or days-of-the-month arrays.

Subroutines Subroutines simply take repeated or commonly used code and set it aside from the
main code. This makes editing easy; if you want to change every instance of a
repeated set of instructions in your code, you simply change it once in the subroutine
window. In QBasic, subroutines are saved when the main program is saved.

New Command and Syntax Summary:

Command Definition

DECLARE SUB The declaration does two

subname (variables) things: 1) setsup asub
with subname and 2) sets
the variables that will be
used by both the main
program and the
subroutine.

SUB Starts the subroutine.

CALL Runs the program or
subroutine name that
follows.

END SUB Returns the flow of the
program back to where it
left to go to the
subroutine. Thisis much
more predictable than
earlier GOTO statements.

ntax Definition

DECLARE SUB The variables declared in

subname (variables) the variables section have
to be the same type as the
variables used with the
SUB command.
50 Advanced Programming Concepts

Review the example below to see the usage. Notice instead of using DIM to define the
variables, you use DECLARE, which makes the variables available not only to the
main program but also to the subroutines.

Example Program Name: SUBROUTE.BAS

1:

9 .

0 NO Ok WDN

DECLARE SUB combo (name$, message$)
'A simple example of subroutine

CLS

PRINT "This is a sample of how subroutines work"
PRINT

PRINT

PRINT "Please enter your name": INPUT name$

10: CALL combo(name$, message$)
11: PRINT message$
12: END

Thefollowing is the subroutine of the SUBROUTE.BAS program.

SUB combo (name$, message$)
IF name$ = "Shaun" THEN
message$ = name$ + " is a great instructor"
ELSE message$ = name$ + " is a good student"
END IF

END SUB

Program Notes:

Line 1 declares the subroutine called combo and states that this subroutine has
two variables called name and message.

Lines 2 to 4 are comments.

Line 5 clears the screen.

Line 6 prints a message saying this is a sample of how subroutines work.
Line 9 asks the user to input his or her name.

Line 10 calls the subroutine (or goes to the subroutine). The program will
return to this same spot when it receives the END SUB command.

Line 1 of the SUB sets up the two variables to be used by both the main
program and the subroutine.

Line 2 checks to see whether the name string variable is equal to Shaun
(comparison).

Line 3 says if the name is Shaun, then the program sets the message variable to
the name string variable plisa great instructor (concatenate).

Line 4 says if the name is not Shaun, then the program sets the message
variable to the name string variable pisa good student.

Line 5 of the SUB ends the IF statements.

Advanced Programming Concepts

51

Line 6 ends the subroutine and returns to the place in the main program where

it originally branched to the subroutine (in this case, Line 10).

Exercise 10: Add a new question in the main program of

SUBROUTE.BAS that asks the user to input a description of the
person whose name was entered. Then pass that variable information to
the subroutine for concatenation.

The Mad Lib program that we used earlier has been converted to provide another
example of the use of subroutines.

Example Program Nam& ADLIB3.BAS

1: DECLARE SUB gender (them$, pronoun$)

2: ' This is my program called madlib3.bas

3: ' I wrote it for my Programming Fundamentals Class

4.

5: CLS

6: DIM actioning$, animal$, someone$, funny$, farm$,
bodypart$

7: PRINT "Here is a little quiz. Please use funny
words, "

8: PRINT "because they make this more interesting."

9: PRINT

10: PRINT

11: PRINT "Enter an action word ending in ING": INPUT
actioning$

12: PRINT "Enter an exotic animal name": INPUT animal$

13: PRINT "Enter your friend's name": INPUT someone$

14: PRINT "What gender is, "; someone$; "? Enter Male
or Female": INPUT them$

15: CALL gender (them$, pronoun$)

16: PRINT "Enter a funny sound": INPUT funny$
17: PRINT "Enter a farm animal": INPUT farm$
18: PRINT "Enter a body part": INPUT bodypart$
19: CLS

20: PRINT

21: PRINT

22: PRINT "One day many years ago, "; someone$; " was
"; actioning$; " when suddenly there was a(an) ";
funny$; " sound, much 1ike a(an) "; animal$; ". ";
"Frightened and scared "; someone$; " tripped over
a"; farm$; "."; " In haste to get away, ";
someone$; " broke "; pronoun$; " "; bodypart$; "."

23: END

The following is the subroutine of tid ADLIB3.BAS program.

1: SUB gender (them$, pronoun$)
2: IF them$ = "Male" THEN

Advanced Programming Concepts

© 00N O~ W

pronoun$ = "his"

ELSEIF them$ = "Female" THEN

pronoun$ = "her"

ELSEIF them$ = "" THEN

pronoun$ = "his or her"

ELSE

PRINT "BAD ENTRY, ERROR.": pronoun$ = "his or

her

10: END IF
11: END SUB

Creating a Subroutine To create a subroutine

1

2
3.
4

5.
6.

Save your program.

. Click EDIT, and then select NEw SuB.

Enter the name of the subroutine, and then click OK.

. On the same line as the name of the subroutine, specify the name of the

variables you would like to make available for both the main program and the
subprogram. Enclose these variables in parentheses ().

Write your subroutine.
SAVE your work.

Within the program, use the <F2> key to switch back to the main program area. Use
the Call command to access the subroutine when needed.

Functions A function is simply a single variable subroutine that you can teach the computer to
run when you need arepeated action. The advantage of using a function isthat you
can change or upgrade the function without changing the main program. For example,
you can create afunction to calculate your after-tax paycheck when Uncle Samis
finished with your origina grossincome. Then when you evaluate salary levels, you
will know your take-home pay.

[]

Note: The calculationsin the following example are just for fun and do

not reflect actual payroll information.

New Command and Syntax Summary:

Command Definition

DECLARE Function Declares the function so

(Variable) that the program can find
it later when called.

FUNCTION Defines the start of the

function areaand the
function name.

END FUNCTION Ends the Function and
returns to the call point.

Advanced Programming Concepts

53

ntax Definition

Function (variable) Verifies that the variable
typein the function
matches the function
itself.

Example Program Name: FUNCTION.BAS
1: DECLARE FUNCTION Taxes! (number)

2: 'Function Program

3:

4: !

5: CLS

6: ' Constant hours in year based on standard hours

7: hoursinyear = 2080

8: PRINT "Are you paid hourly or salary? Input H or
S": INPUT Howpaid$

9: 1IF Howpaid$ = "S" THEN

10: PRINT "Input your annual salary": INPUT
wages

11: hourly = wages / hoursinyear

12: END IF

13: IF Howpaid$ = "H" THEN

14 PRINT "Input your hourly wage": INPUT
hourly

15: wages = hourly * hoursinyear

16: END IF

17: PRINT

18: PRINT "Your hourly wage before taxes is "; hourly

19: PRINT "Your annual salary before taxes is "; wages

20: PRINT

21: PRINT "Your hourly wage after taxes is ";
Taxes (hourly)

22: PRINT "Your annual salary after taxes is ";
Taxes (wages)

The following is the breakdown of the functionin the FUNCTION.BAS program.

FUNCTION Taxes (number)
incomeTaxes = number * .15
Taxes = number - incomeTaxes
END FUNCTION

A WODN -

Program Notes:

e Line 1 declares the function.
* Line 6 comments about the constant.

Advanced Programming Concepts

* Line 7 sets a constant called hoursinyear.

» Line 8 asks the user to input pay type.

» Line 9 asks a question only if the user’s income is paid in salary.
» Line 13 asks a question only if the user’s income is paid hourly.
e Lines 18 and 19 print the current salary information.

» Lines 21 and 22 print the salary after taxes.

» Line 1 of the Function sets up the function called Taxes.

» Line 2 of the Function will take the number in Taxes and acts upon it by
multiplying it by 15%.

» Line 3 of the Function sets taxes to the number - the incomeTaxes.

» Line 4 of the Function ends the function.

Creating a Function To create a function:

1. Save your program.
2. Click EpiT, and then sele®iew FUNCTION.

3. Enter the name of the function. On the same line as the name of the function,
specify the name of the variable that you would like to make available for both
the main program and the subfunction. Enclose that variable in parentheses (),
and then cliclOK.

4. Write your function.

5. SAVE your work.

Within the program, press thk&2> key to switch between the main program and
your functions.

Subroutine and The table summarizes when to use subroutines or functions:
Function Summary

Command When to use

SUBROUTINE Used when you have more than one

variable that you would like to pass back
and forth from the main program and the
subroutine.

FUNCTION Used when you only have asingle
variable that you would like to passto a
subfunction and have a series of actions
(commands) applied to it.

Advanced Programming Concepts 55

PROGRAMMING STANDARDS

Developing using

Micron’s Standard

Computer programming is more than just writing code and running the programs that

you have created. It includes standards for developing and designing code, as well as
methods for securing, saving, and distributing that code. The topics discussed in this
section will prevent you from making the same mistakes that others have made in the

past. Keep in mind that this is only a small portion of the “required” knowledge for
Micron programmers. If you continue to program, it is highly recommended that you
study the information provided in the Appendices, consult with Information Systems
web sites, and review the books listed as references.

Micron uses the Rational Unified Process (RUP) to help programmers develop an
application that meets Micron standards. RUP consists of a series of steps and helps
ensure that we are producing high-quality software that meets our end-users’ needs,
within a predictable schedule and budget. Here is a summary of the RUP stages:

Business Modeling is the “investigation” stage where

Business you observe and document how the current business
Modeling process works.
L

_ Requirements is the “clarification” stage where you
Requirements work with your customers to verify their expectations
and confirm that you can build the product.

L

) _ Analysis & Design is the “write it down” stage where
Analysis & Design you take the modeling and requirements and actually
develop a comprehensive plan.

L

Implementation is the “just do it” stage where you take

Implementation the plans and build the product.

L

Test is the “break it” stage where you verigy that your
Test product meets all of your customers’ needs.

L : .
Deployment is the “release” stage where you give the
products to your customers.

Deployment

1 Post Deployment is the “improvements” stage where
you keep track of bugs, enhancements, and customer
requests.

Post Deployment

- /

56

Programming Sandards

Designing Code

For more information on the Rational Unified Process:

1. Launchthe MERC.

2. Inthe Address bar, type SQA and then press <Enter>. The SQA home page
displays.

3. Click the plussign (+) next to 3rd Party Applications, and then click
Rational Unified Process. The RUP home page displays.

The goal of every programmer should be to develop programsthat are well designed
and accomplish great tasks. Many programmers agree that the following
recommendations are essential programming standards. According to Micron’s
Software Quality Assurance group, the most important of these standards is
readability.

Commenting Your Code

Other programmers cannot capture your intentions and thought processes by simply
looking at your source code. It is extremely difficult to understand, interpret, and
navigate through code and statements that have not been commented. Adding
comments before every section of your project code is helpful when others read your
work or when you need to retrace your work. If you are unsure about the detail of the
comments, ask someone unrelated to the project to read the code; if he or she can
understand it with little or no explanation, you have been successful.

Ensuring Readability

Readability refers to the structure and general format of the code that you write and is
considered the most important programming standard at Micron. In many
programming languages you can write many instructions together, write complex
nesting structures, and make calls to external files and programs. In each of these
cases, you should keep readability foremost in your mind. Using correct line
structure, indenting code, and commenting the code is expected at Micron. How you
implement these techniques will directly impact how you are evaluated as a
programmer.

Writing Efficient Code

Efficient code is best defined as using the fewest number of steps to accomplish a
computing task or making the most efficient use of resources. Shorter and more
efficient code saves hard drive space and requires fewer computing resources to run.
It is much easier to find errors and problems in small, easy-to-follow programs. Be
careful to balance the readability of the code with the required performance level;
with today’s computing power and the fact that many people read Micron code, make
readability a higher priority.

Programming Sandards

57

Saving Your Work

PVCSat Micron

Handling Errors

Error handling is anticipating user responses by brainstorming all possible outcomes
and then generating code or subroutines to match those possibilities. Sometimes the
ambiguities or other interpretations of the interface cannot be seen by the programmer
because he or she makes assumptions or istoo close to the project. To determine
whether a choice is ambiguous in nature, ask others for help with this process. See
“Appendix 4 - Vocabulary Exercise Answers” on page 78 for more information on
testers and testing processes.

Trapping Errors

Another approach to handling errors is to use error trapping. With this method, you
trap errors generated by your program to a holding bin or file so that you can review
and fix them later. Tracking errors and problems that have occurred in the past will
improve not only the program but also the programmer. The use of log files, trace
files, and archive files help facilitate this process. For more information on errors and
error trapping, see “What's Next?” on page 88.

ALWAY S SAVE YOUR WORK. ALWAY S SAVE YOUR WORK.
ALWAY S SAVE YOUR WORK. ALWAY S SAVE YOUR WORK.

Repeat this statement numerous times, so you are sure to remember. When working
with computers, it is critical that you regularly save your work because there is always
the possibility of power loss, corruption, or other circumstances beyond your control.

Equally important isvher e you save the work. At Micron, you must save your files to

a network drive. The most likely drive for this use is the F: drive, which is accessible
only by you. It is backed up nightly and can be retrieved by the Support Center if
deleted or corrupted. You should not save programs or related files on a floppy drive
(A:) or on your local hard drive (C:). Neither of these volatile and insecure places of
storage are acceptable long-term storage locations for Micron property. You may find
it necessary to store files on the C: drive temporarily for a large work in progress, but
you should only do this if you have automated a method for making a nightly copy to
a network server.

When creating files on the F: drive, first create a folder that contains all the project
files for the program on which you are working. Many programming languages create
multiple files that are required for running the code. For ease of navigation, name the
folder exactly the same as the project.

If you have any work saved to a common network drive, such as G:, it is imperative to
establish strict security permissions. Copying a program file out to a public drive can
subject yourself and Micron to many different dangers. If you have questions about
creating permissions and establishing safe zones, consult the Information Security
Team in Information Systems.

To protect our valuable software assets, Micron’s mission-critical programs are stored
in a system called Project Version Control System (PVCS). PVCS Version Manager
serves as the primary repository for all the source files used to create production
applications.

58

Programming Sandards

These files can include specifications, source code, and make files, aswell as
binaries, such as bitmaps, application-specific DLLs, and specia controls.

PV CS provides Micron the ability to:

» Store multiple revisions of each source file in the archive
» Lock an archive so that it can be updated by only one developer at a time
» Tie specific revisions of each source file to specific releases of an application

» Automatically maintain an audit trail of changes to all of the files under
version control

PVCS should be used:

» To store revisions dll production source files

e To coordinate development between two or more developers working on the
same project

» To store a revision of a project under development whenever any major
changes are made

To access more information about PVCS:

1. Launch the MERC.

2. TypeSQA into the Address field, and then pref&NTER>.
3. Click the plus signH) next to3rRD PARTY APPLICATIONS.
4. Click PVCSVERSION MANAGER.

You can also send an e-mail message to the SQA tesqa@micron.com.

Securing Your Work After your code is in production, the program security that you use will affect not only
your access but also the access of anyone else in the enterprise. There are three issues
to consider when setting security on your programs.

» Asyou develop your code, test the authentication from a developer’s account,
an anonymous account, and from a user’s account. Authentication may require
a different syntax or may expose authentication issues that would otherwise
stay hidden until after the code has been released.

» Do not enforce complex or unique passwords during the development stages
because that may become a nuisance. These restrictions can be added later.

» Do not use administrative (admin) accounts when developing code. Admin
accounts have no access restriction, and the code can do anything at anytime.

Source Code The programming code written at Micron, or for Micron, belongs to Micron. You may

Ownership be the author, but Micron is the owner. Many programs that you use today are critical
to the operations of the company. The loss of this data or loss of the process by which
it is created can cost the company millions of dollars. Code developed at Micron or
for Micron cannot leave Micron, even if you leave the company. If there is ever a
doubt, consult your supervisor or Information Security immediately.

Programming Sandards 59

Distribution of Your
Work

With the advances of computer programming and networking, creating and
distributing programs have become much easier. One of the greatest responsibilities
of aprogrammer isto distribute programsin an organized and beneficial way. Whole
teams of |S professionals have been developed to ensure that computer programs are
developed and distributed correctly. The Developer Tools and Languages (DTL) and
Software Quality Assurance (SQA) teams have volumes of information on
developing better code.

The Software Quality Assurance (SQA) group is chartered with overseeing
development, training, and administration of software changes on all
platforms. This includes producing procedures, tools, and processes that will
enforce a strong commitment to software quality among the development
community. While this team isot responsible for the overall software quality
here at Micron, they are responsible for ensuring that developers produce
quality software. To visit the SQA group web site, tH¥A in the Address

field of the MERC.

The Developer Tools and Languages (DTL) group provides quality support
and training for the many different programming languages and development
tools used by Micron's IS developer community within the NT, Unix, and
OpenVMS environments. If you are having problems with a program written
in Visual Basic, C, C++, Perl, or other supported programming languages at
Micron and cannot find a documented solution, you can contact the DTL group
for assistance in solving your problem. To visit the DTL group web site, type
DTL in the Address field of the MERC.

60

Programming Sandards

PROGRAMMING TOOLS

Text Editors

Code Editors

Debuggers

Compilers

To start programming in an authentic programming language, you first need to have
the tools of the computer programmer. Each programming language has its own tools
to aid you in the programming process, but they all use the same basic models.

The most basic way to write a program is to use atext editor. These editors create
CUI-based text files, and they do not have any tools to aid the programmer. Many
people who create web pages, or develop for PERL, use only text editors because the
resulting files are universal to all computer systems. One of the first text editors that
came with DOS was ED (and later EDLIN), and Unix’s editor is calledsi. Today, all
Microsoft operating systems come with a simple text editor called Notepad.

Code editors are one step above simple text writers because they take a simple word
processor and add some specific tools related to a specific programming language.
Code editors include tools that help the programmer, such as syntax checkers, help
files, and debugging tools (described in QBasic).

When you purchase a computer programming package, a code editor is usually
included. In some cases the code editor can be obtained for free.

Removing the errors that can occur in a computer program is called debugging. In
programming, there are many points of failure: your source code, the editor you are
using, the compiler, the compiled program, the dependency libraries, and interaction
with other programs. While code editors and compilers often warn you of specific
error types, the quest to create a bug-free (error-free) program never ends. For further
information on errors, consult “Debugging” on page 72.

Common ways to debug a program include:

» Septhrough the program: Use the debugger to find logic errors by configuring
the editor to show you each error as it occurs in the program.

» Usebreakpoints: Instead of stepping throughout the entire program, use
breakpoints to step through just a specific portion of the code.

A compiler reads the source code that you have written with a text or code editor and
translates it to machine code. Because computers only talk in 1s and Os and all
computer languages are written in words, the compiler converts those words to a
language that the computer understands. This is illustrated below.

Print "I love this

. 1011010101011
class

Compiler

Figure 8: Diagram of Compiler

Programming Tools

61

Interpreters

Bytecode

After a program has been compiled, it becomes a stand-al one executable file that can
be run on any computer with which the compiler is compatible.

Note: If you want to build a program that will run on all platforms, you
either have to create multiple copies for different compilers or
use new programming languages like PERL or JAVA.

Interpreters, like compilers, translate text information that you have developed into
machine language; however, when the interpreter trand ates the code, it processes the
text information one line at atime into system memory. After it isinterpreted, the
program is very fast, but when you turn the computer off, the information islost.
Interpreters work very well for web-based programming like JAVA Script and VB
Script, but they are not very effective for general programming. QBasic is an example
of both an editor and an interpreted language.

The bytecode approach to compiling is a bit more interesting than the previous
examples. Instead of writing a program and then translating it to machine code for the
computer, you how write your program and translate it to a universal code. This
universal code can be sent to other users, who can then compileit for their computers.
It would become very problematic to learn how to compile a program each time, so
computer program manufacturers, such as Microsoft and Netscape (AOL), have built
the trandators (just-in-time compilers) into their Internet browsers, such as Internet
Explorer or Netscape Navigator.

The best-known language today that uses the bytecode (virtual machine) approachis
JAVA. Rather than being interpreted one ingtruction at atime, JAVA bytecode can be
recompiled on each particular system platform by ajust-in-time compiler. Usualy,
this enables the JAVA program to run faster.

Print "I love this
class" —p Bytecode

-

. 1011010101011
Bytecode ——» Browser Compiler

Figure9: Diagram of Bytecode Compiler

62

Programming Tools

uoJoIN Te Bunuwresbo.d

€9

PROGRAMMING AT MICRON

D

use. JAVA also is known for its bytecode capability (see “Bytecode” on page 62).

Program Description Primary Example
Tool

C Cisthefirst procedural language that fallsinto the portable assembler class. It can directly | Editor All Windows, Linux,
g, manipulate hardware like machine code or assembly, but it is a high-level program. Cis Netscape, Quicken
g difficult to learn — it was written by programmers for programmers.
(o)
g C++ C++ expands on the functionality of the C language with a super set of instructions. I| Editor All Windows, Linux,
5)1 uniquely use C code within C++ programs. Netscape, Quicken
= Cobol (Common Cobol was the first high-level programming language that was widely used for busing Editor
= Business Oriented applications. Since Cobol continues to run huge, mission-critical applications, many
§ Language) companies are continuing with Cobol support until the applications can be rewritten i
Q modern languages.
a Fortran Fortran was designed for use by engineers, mathematicians, and creators of scientifi Editor OPERCERT
® (Formula Translator) algorithms. Fortran is one of the original programming languages and many applicati
.§ were written with it.
8 PERL (Practical PERL is a C-based procedural language and can work from virtually any platform wit| Text Writer / Data extraction, systems
a Extraction and any changes to the code. PERL defies normal programming conventions in that it ca| Editor management

Reporting Language) used as either a procedural or an object-oriented language, and PERL also has byte

capabilities (see “Bytecode” on page 62).
JAVA and JAVA Script JAVA was developed by Sun Microsystems. JAVAs design can work exclusively fromp Text Writer / Web page pull-down
networks, instead of from single workstations or servers. It is similar to C++ but easigr Exlitor menus

(@]

=

5

5 ¢ | Visual Basic (VB) VB allows a user to create GUI applications. This language is an extension of the orjgWiaual Editor Ship Doc, FAB

Dﬂ:’ 2 BASIC; it encompasses many of the same functions and commands. applications on the PCs
=)

2 2 | Visual C++ Visual C++ takes the C++ language and expands it to be object-oriented with a GUI | Visual Editor Windows, front-end

*g ﬁ interface. applications

28

8 N

=

O

P HTML (Hypertext HTML is a text-based language that describes web pages to an interpreter (browser)| Text Writer / Web pages

2 Markup Language) then displays the page to the user. Editor

§> XML (Extensible XML is a way to extract data in a universal format regardless of platform. This expan{ Text Writer / Electronic Data

Lﬁ Markup Language) use of data models without having to worry about inter-operability. Editor Interchange

o

)

=

3

=

VOCABULARY EXERCISE

Match the vocabulary items on the top with their correct definitions on the bottom.

Compiler Debugger L oop Binary Variable
Syntax Sring Variable Function Constant Flow Chart
Subroutine Array Phake GUI Literal
A variable that holds alist of 9. Used when you have only one
items that share the same variable that you need to pass
properties or need to be grouped between the main program and
together. the sub program.
A container that holds 10. A tool to aid the programmer in
information. removing all of the possibleerrors
that can occur in computer
programming.
Used to describe the interface 11. Used when you have more than
where the actions that drive the one variable that you need to pass
computer are all based upon the between the main program and
user’s input through visual the sub program.
navigation.

The name for the value that is 12. A programming tool that converts
contained within a variable. source code written in a high level

language into machine code.

A pseudo-code programming 13. A continuous logic construct that
language invented for this class to evaluates a logic statement; if
illustrate programming logic. correct it continues the program,

if not correct it continues to cycle.

A modeling tool used to best 14. A type of variable that holds
simulate computer logic or step- character based information.
by-step instructions. It is very
useful when there are multiple
ways to produce an outcome.

The exact order or logical 15. A numbering system that
structure of a programming computers use to communicate,
command. This word is used to and consists of just two unique
denote the order in which a digits, "1s" and "0s."
language is grammatically
correct.

A variable that holds a specific
piece of information throughout
the program.

64 Vocabulary Exercise

HOMEWORK 2

Before you can receive credit for this class, there isafinal homework assignment that
is due two weeks after the second session.

The assignment for homework 2 is to expand upon the homework from last week by
creating a more sophisticated version of the quiz on the contents of the Programming
Fundamental s course. Remember, in programming there is no restriction on how you
accomplish this task as long as you meet the requirements.

The program requiresthese seven components:

1. The program must work when run.

There are comments to show the reader the intentions of the programmer.
Thereisinput and output of variables.

The program contains both numerical variables and string variables.

You grade the input of the user, and give the output asto his or her progress.

The program includes at |east two of these advanced features: logic statements,
arrays, subroutines, or functions.

7. The program contains between 20 and 50 lines of code.

o U A~ wbN

To save your homework #2 in QBasic:

Click FILE.
Click SAVE AS.
Using the scroll bar on the right, scroll down to [-H-] drive.

Double-click to drill down each steptoMTI >MSI >1S>SMCMIKLE >
PROGRAMMING.
Note: To go back up a directory, double-click thé at the top of the list.

5. Enter the program name, which shouldib&nam2.BAS (be sure to include
the 2 so that you do not copy over your first homework).
Warning: This must be 8 characters or less!

6. Click OK.

> w DN

To get more help on QBasic, refer to “Appendix 1 - Additional QBasic Resources” on
page 66.

Due Date: Within two (2) weeks of class.

Homework 2 65

APPENDIX 1 - ADDITIONAL QBASIC RESOURCES

Accessing Help in Online help isavailable in QBasic to aid the programmer with various tasks.
QBasic . .
To access help in QBasic:

1. Inthestandard Edit mode, press <SHIFT> + <F1>. (In the Introduction Screen,
press <F1>.) The QBasic help screen displays, asillustrated below.

& F:ABASIC\qgbasic_exe

File Edit Uiew Search Run Debug Options He 1y

HELF: Using Help

— H"Contentslk AIndexk <ABackk
Uzing QBasic Help:

I To get help on a Baszic keyvword, place the cursor on it and press F1
or click the right mouse button.

To get help on a QBasic menu, command, or dialog bhox,. place the curzor
on the menu item or <Help>* button and press Fi.

To view QBasic Help topics. press Alt+H,. then press the highlighted
letter to choosze a command.

To move the cursor into the Help window, press Shift+Fb.
To scroll the help information. press PgDn or Pglp.

To copy help information <such asz a programming example? to the
View window, use the commands on the GBasic Edit menu.

I To close the Help window, press Esc.
{8hift+F1=Help> <{F6=Window> <{Esc=Cancel?> {Ctrl+Fl=Mext> {Alt+F1=Back>
Figure 10: QBasic Help Screen
2. Review theinstructions for using QBasic help.

3. Double-click on Contents to display the table of contents for the help section,
asillustrated below.

i k]

& C:ABasic\gbasic_exe

ile dit ieuw earch un ehug ptions elp

HELF: Tahle of Contents
AContentsk Alndexk +ABackk

rientation Keys

Adlzing Helpk A%hortcut Keys Summaryk

Adlzing Menus and Commandsk HAEditing Keyshk

dlzing a Dialog Boxk Adliew and Search Keyshk

A%yntax Conventionsk “Run and Debugy Keyshk
“4Help Keyshk

sing QBasic

4QBazic Command Linek uick Reference

4Bazic Character Seth 4ASCII Character Codesk

AKeywords hy Programming Tazkk “dKevhoard Scan Codeshk

4QBazic Environment Limitshk 4RBun—-Time Error Codeshk

dlerzion Differenceshk ACopyright and Trademarksk

AConverting BASICA Programsk

“Bevond QBasichk

Untitled ——————————fi

Immediate
£8hift+Fl=Help* <{F6=Window> <Esc=Cancel’ <Ctrl+Fl=Mext> <Alt+Fl1=BackX>

66 Appendix 1 - Additional QBasic Resources

Figure 11: QBasic Help Screen - Table of Contents

To search for a specific topic in the index:

1. Double-click INDEX. The Index screen displays asillustrated below.

i k]

& C:ABasic\gbasic_exe
dit

ieuw earch un ehug ptions elp
HELP: QBaszic Online Help Index

AContentslk Alndext +ABackk

ile

To get help on a QBasic keyword in the list helow:
1. Press the key of the first letter of the keyword.
2. Use the direction keys to move the cursor to the keyword.
3. Press Fl1 to display the help text in the Help window.

————————]|

ABS Function APPEND Keyword
ABSOLUTE Kevyword A% Keyuword
ACCESS Keyword ASC Function
AND Operator ATH Function
ANY Keyuword

BASE Keyword BLOAD Statement
Baszic Character Set Boolean Operators
BEEF Statement BSAUE Statement
Untitled
Immediate
£8hift+Fl=Help* <{F6=Window> <Esc=Cancel’ <Ctrl+Fl=Mext> <Alt+Fl1=BackX>

Figure 12: QBasic Help Screen - Index
2. Typethefirst letter of the command for which you want to search.

3. When thelist displays, double-click on the command for the related help file
topic. This help file assumes basic knowledge of the program, but does give
practical examples of use.

Runni ng QBasicinFull By default, QBasic runsin asmall window. This restore window display runs the

Screen Mode QBasic program like a standard Windows application (which it is not), and it
consumes alarge amount of computing resources. Switching to full screen mode will
dedicate your system to working on QBasic alone. This will, however, step your
computer back to abasic CUI hybrid platform without the aid of standard Windows
icons or menu bars.

To run QBasic in full screen mode:

Press <ALT> + <ENTER> to switch from QBasic full screen mode and restore
window display.

To return to Windows programs;

Press <ALT> + <TAB> to switch between QBasic and standard Windows programs.

Graphics Because QBasic graphics were created using languages that were limited to basic
programming instructions, they are nothing like what you see today on Nintendo 64
or PS/2. Modern programming languages can access millions of colors and create
complex simulations of real environments, but you have to start somewhere.

Appendix 1 - Additional QBasic Resources 67

[]

New Command Summary:

Command Definition

COLOR Determines the
foreground and
background colors.

INT Changes the number from
adecimal to an integer.

LINE Drawsaline.

CIRCLE Draws acircle.

Example Program Name: PRETTY.BAS

1:

0N Ok WOWDN

9 .

10:
11:
12:
13:
14:
15:
16:
17:

CLS

SCREEN 9
RANDOMIZE

CLS

c1 = INT(RND * 15)
c2 = INT(RND * 15)
COLOR c1, c2

FOR Z = 1 TO 75

x = INT(RND * 800)
y = INT(RND * 800)

x2 = INT(RND * 3)
y2 = INT(RND * 3)
x3 = INT(RND * 200)

LINE (x, y)-(1 * x2, 1 * y2)
CIRCLE (x, y), x3, c1 + 1
NEXT Z

END

Program Notes:

Line 2 sets the screen to a VGA mode.

Line 3 sets the random number generator.

Line 4 clears the screen.

Line 5 sets the variable c1 to a number from 1 to 15.
Line 6 sets the variable c2 to a number from 1 to 15.
Line 7 sets the color scheme to c1 and c2 values.
Line 8 sets the FOR NEXT loop to 75 times.

Line 9 sets x at a random number from 1 to 800.
Line 10 sets y at a random number from 1 to 800.
Line 11 sets x2 at a random number from 1 to 3.
Line 12 sets y2 at a random number from 1 to 3.
Line 13 sets x3 at a random number from 1 to 200.
Line 14 creates a line.

68

Appendix 1 - Additional QBasic Resources

Line 15 creates a circle.
Line 16 completes the FOR NEXT loop for 75 times.

Sound QBasic is able to handle sound through the PC speaker. Please note that your
computer must have a basic internal speaker, but no sound card is required. Here is a
simple noise-making program that increases sound, and then decreases the sound. It
starts at a frequency roughly equal to the musical note A, then works up at least an
octave, and then returns to A.

[]

New Command Summary:

Command Definition

SOUND Produces sound on the PC
speaker at atone
frequency.

STEP Used with the FOR

NEXT command to have
the FOR NEXT loop to
skip by the number stated.
In this example it jumps
by 5s through the number
sequence.

Example Program Nam&0OUND.BAS

1:

0 N Ok WDN

9:

10:
11:
12:

CLS
PRINT "Hold your ears...."
FOR note = 450 TO 750 STEP 5
SOUND note, 1
SOUND 800 - note, 1
NEXT note

FOR note = 700 TO 450 STEP -5
SOUND note, 1
SOUND 750 + note, 1
NEXT note
END

Program Notes:

Line 2 gives the user a warning.

Lines 3 to 6 set up a FOR NEXT loop that starts the process of STEPping
through 450 to 750 cycles.

Lines 8 to 11 set up a FOR NEXT loop that reverses the process of
STEPping through 750 to 450 cycles.

Instead of using the SOUND command, you can specify musical notes with the PLAY
command:

Appendix 1 - Additional QBasic Resources

69

[]

New Command Summary:

Command
PLAY

Definition
Plays specific notes.

Example Program Name: PLAY.BAS

1: CLS

2: PLAY "L4 C"

3: PLAY "L8 B"

4: PLAY "L4 AGFGAF"
5: END

Program Notes:

e Line 2 plays the C note for a length of 4.
e Line 3 plays the B note for a length of 8.
e Line 4 plays the notes AGFGAF for a length of 4.

QBasic Commands

Command Definition Command Definition
This little mark replaces the END FUNCTION This command ends the
REM statement in later versions Function and returns to the call
of BASIC. point.

CALL Thisis used to run the program END IF This command stops the I F
or subroutine name that follows. THEN EL SE IF string of

commands. This has helped
replace the GOTO command.

CHR$(n) Thisisused to call out aspecific | END SUB This command returns the flow
key on the keyboard. It isusing of the program back to where if
ASCII code, which can be found had left to go to the subroutine.
in “Appendix 3 - ASCII This command is much more
Character Set” on page 77. predictable than earlier GOTO

statements.

CIRCLE This command draws a circle. ELSE The final ELSE IF is designIted
with a single ELSE statement t
signal the end of the logic.

CLS This command clears the screqnELSE IF This command allows you to

of all writing. continue with an IF THEN
statement by giving you more
choices.

COLOR This command determines the] FUNCTION This command defines the star[I
foreground and background of the function area and functio
colors. name.

DECLARE Function | This command declares the FOR NEXT This command is the Logic

(Variable) function so that the program c Command set to loop the
find it later when called. T number of NEXT times.

70 Appendix 1 - Additional QBasic Resources

Command Definition Command Definition

DECLARE SUB When declaring, you are doing GOTO This command movesyou to a

subname (variables) | two things: 1) setting up a sub specific line or location.
with subname and 2) setting the
variables that will be used by
both the main program and the
subroutine.

DIM This command creates and IF THEN IF THEN works on the
defines new variablesfor usein condition; if the statement is
the program. true, then the action that follows

will occur.

DO LOOP UNTIL Thiscommand runsacontinuous | INKEY$ This command is much like
loop until it meetsthe conditions INPUT, but it only captures (gets
set by the programmer; loops from the keyboard) a single
always need away out, or they keystroke.
will continue forever. DO LOOP
UNTIL evaluatesthelogic at the
end of the process and will
alwaysrun at least once.

DO WHILE Thiscommand runsacontinuous | INPUT This command receives input
loop while the computer is from the keyboard and assignsit
waiting for new input or a to avariable.
change in a condition; loops
always need away out, or they
will continue forever. DO
WHILE evaluates the logic at
the beginning of the process.

END This command finishes the INT This command changes the
program. number from a decimal to an

integer.

LCASE$(variable$) | Thiscommand changesthe SLEEP This command is asimple way
string variable$ to al lowercase to pause a program. The number
letters. or variable after deep will set it

for the number of seconds you
would like. FOR NEXT loops
can also accomplish this task.

LEFT$(variable$, n) | This command cuts the string SOUND This command produces sound
variable$ by (n) number of on the PC speaker at atone
characters from the | eft. frequency.

LINE This command draws aline. SPACES$(n) This command inserts the
number of spaces that are
specified in the parentheses ().

PLAY This command plays specific SPC(n) This command isused to set a
notes. print point that is (n) number of

spaces from the | eft of the
screen.

PRINT This command sends STEP This command is used with the

information to the screen.

FOR NEXT command to have
the FOR NEXT loop to skip by
the number stated.

Appendix 1 - Additional QBasic Resources

71

Command Definition Command Definition
RANDOMIZE This command sets the star of SUB This command starts the
the RND random number subroutine.
generator to simulate real
random numbers.
REM Remarks or statements that are UCASES$(variable$) | Thiscommand changesthe
not included in the code, but are string variable$ to all uppercase
used for those observing the letters.
code later.
RND This command creates a USING This command is used with the
simulated random number. PRINT to format the output of
the variable to fit the format that
is expected.
Variable Types Now that you have worked with variables, hereis a chart of the specific variable types
used in QBasic. Each programming language has its own notation and definitions.
These are included here to aid you in developing QBasic.
Data Type Minimum Value Maximum Value Sample Declaration
String 0 characters 32,767 characters DIM Words$ or DIM
Words AS STRING
Integer -32,768 32,767 DIM Number% or DIM
Numbers AS INTEGER
Long Integer -2,147,483,648 2,147,483,647 DIM Bignumber& or DIM
Bignumber ASLONG
Single Precision -3.0402823E+38 3.0402823E38 DIM Single! or DIM Single
ASSINGLE
Double Precision 1,79769313486231D 1,79769313486231D DIM precisecurvet or DIM
E -308 E +308 precisecurve AS DOUBLE

Example QBasic variable types:
» String Variable: Name$ = “Laura White” or Name AS STRING = “Laura
White”
» Integer Variable: Age% =23 or AGE AS INT = 23
» Long Integer Variable: Salary& = 200000 or Salary AS LONG = 200000

» Single Precision Variable: Hourlywage! = 12.45 or Hourlywage AS SINGLE
=12.45

Here are a few common methods for finding problems in your QBasic code.

Debugging

e Print variablesat key points: Before using variables throughout a program,
create simple PRINT statements during the program to check the values of the
key variables. If the variables are wrong, they will continue to be wrong
throughout the program.

 Manual linereview: Pretend you are the computer, and follow the program
exactly as it is written This can be extremely time-consuming if you have a very
large program.

72 Appendix 1 - Additional QBasic Resources

» Sep through the program: Use the debugger included with the QBasic editor
by having the editor show you each step as it occurs in the program. To run
stepping in QBasic:

Click DEBUG.

Click STeP.

PressF8> to advance each line through the code.
PressF10> if you want to skip subroutines or functions.

» UseBreakpoints: Instead of stepping through the entire program, use
breakpoints to step through just a specific portion of the code. To run breakpoints
in QBasic:

Move to where you want to start, then PreS8>. QBasic will highlight
the entire line.

Run the program<SHIFT> + <F5>).
Press<F8> to advance each line through the code.
Press<F10> if you want to skip subroutines or functions.

Appendix 1 - Additional QBasic Resources

73

Error Codesin QBasic

When you encounter an error in avery large program, it becomes difficult to find the
specific issue or problem. In this condition, the computer usualy isableto tell you the
error that has occurred. The ERR variable stores the error code returned by the
computer. In advanced programming, the program allows for potential errors and
writes error handling subroutines. The following chart lists QBasic error codes that
are stored in the ERR variable and their meanings:

Vaue | Error Vaue | Error
1 NEXT without FOR 37 Argument count
mismatch

2 Syntax error 38 Array not defined

3 RETURN without 40 Variable required
GOsuB

4 Out of data 50 Field overflow

5 [1legal function call 51 Internal error

6 Overflow 52 Bad file name or number

7 Out of memory 53 File not found

8 Label not defined 54 Bad file mode

9 Subscript out of range 55 File already open

10 Duplicate definition 56 Field statement active

11 Division by zero 57 Device /O error

12 Illegal in direct mode 58 File already exists

13 Type mistmatch 59 Bad record length

14 Out of string space 61 Disk full

16 String formula too 62 Input past end of file
complex

17 Cannot continue 63 Bad record number

18 Function not defined 64 Bad file name

19 No RESUME 67 Too many files

20 RESUME without error 68 Device unavailable

24 Devicetime out 69 Communication -buffer

overflow

25 Device fault 70 Permission denied

26 FOR without NEXT 71 Disk not ready

27 Out of paper 72 Disk-media error

29 WHILE without WEND 73 Feature unavailable

30 WEND without WHILE 74 Rename across disks

33 Duplicate label 75 Path/File access error

35 Subprogram not defined 76 Path not found

74

Appendix 1 - Additional QBasic Resources

APPENDIX 2 - MAJOR CAUSES OF ERRORS

Aswe discussed in the introduction, errors are not caused by computer mistakes.
Computer programming “bugs” or errors are usually attributed to three possible
causes: syntax errors, run time errors, and logic errors.

Syntax Errors If your program contains a syntax error, your implementation of the commands and
notation does not meet the precise requirements of the programming language.
The syntax for the Phake programming language is as follows:
1: Command - Variable - Linker - Variable

Therefore, the program line should read:
1: MIX brown sugar With spoon

If the programmer writes:
1: Mix With brown sugar spoon

Then the line violates syntax because it follows the form:
1: Command - Linker - Variable - Variable

The QBasic editor does not allow you to have syntax errors. The editor reads each line
of code when you press return and evaluates the syntax; however, not all
programming languages have this capability, and they will let you make many
mistakes before you discover the problem.

Run Time Errors A run time error occurs when you have input that is not expected by the program. For
example:

1: PRINT “what is your mood today” : INPUT mood$
2: IF mood$ = “happy” THEN PRINT “Great, have fun

today”

3: IF mood$ = “sad” THEN PRINT “Sorry to hear that,
cheer up”

4: END

If the user enters “fine,” the program will end with no output.

The QBasic editor cannot prevent run time errors, but the programmer can build error
handling into the program by anticipating the errors and coding solutions for them.

QBasic has a line that can be added to the code called “ON ERROR Goto” that sends
the program to an error handling subroutine. See “Appendix 1 - Additional QBasic
Resources” on page 66 for the types of run time errors that are found by the special
ERR variable in QBasic.

Appendix 2 - Major Causes of Errors 75

Logi c Errors Logic errors occur when you give instructions to the computer and it executes the
code exactly as you programmed, but the results are garbled. This can be frustrating
when you believe the logic is sound, but the computer operates contrary to your
expectations.

The following example depicts a subroutine that manipulates avariable, whichisaso
in the main body of the program:

1: a =25 ‘ sets a to 5

2: b=26 ‘ sets b to 6

3: call sub oops (b) ‘ goes to the subroutine
below and returns

4: c=a+b ‘ sets the c variable to the
product of a+b

5: Print c ‘ prints the c variable

1: sub oops (b)
2: b =3 ‘ sets b to 3
3: end sub

If you were not aware of the call to the subroutine oops, you would expect ¢ to be
equal to 11 (becauseit isthe product of [a=5] + [b = 6]). It isnot completely obvious
that the subroutine oops changes the value of b to 3, making ¢ equal to 8 (the product
of [a=5] +[b = 3]), and it may be unintentional due to duplicate variable names.

QBasic lets you make logic errors and, in fact, will help you make those errors.

QBasic and all programming languages will follow all instructions given to them with

no deviations. See “Appendix 1 - Additional QBasic Resources” on page 66 for more
information on fixing logic errors in QBasic.

76 Appendix 2 - Major Causes of Errors

APPENDIX 3 - ASCIlI CHARACTER SET

ASCII, pronounced "ask-key," is an acronym for American Standard Code for

Information Interchange. Computers can only understand numbers, so an ASCII code

isthe numerical representation of a character, such as “a” or “@,” or an action of

some sort. ASCII was established to achieve compatibility between various types of
data processing equipment.

The standard ASCII character set consists of 128 decimal numbers ranging from zero
to 127, assigned to letters, numbers, punctuation marks, and the most common special
characters. The Extended ASCII Character Set also consists of 128 decimal numbers
and ranges from 128 to 255 representing additional special, mathematical, graphic,
and foreign characters. Here is the standard ASCII chart with the decimal number, the
hexidecimal number, and the ASCII character representation:

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
[o | R Y 32 20 ZSpace 64 40 0 95 a0
1 01 Start of heading 33 21 ! 65 41 A 97 6l a
2 02 Start of text 34 z2 " 66 42 B 95 62 b
3 03 Endoftext 35 23 # g7 43 C 99 83 o
4 04 End of transmit 3ge 24 % 68 44 D 100 64 d
5 05 Enguiry 37 25 % 58 45 E 101 &5 e
6 06 Acknowledge 38 Ze & 70 48 F 10z 66 £
707 Audible bel g 27 ! 7147 & 103 87 o
8 08 Backspace 40 28 T2 45 H 104 88 h
9 09 Horizontal tab 41 28 T3 48 I 105 B89 i
10 0A Line feed 42 ZA % T 4A J 106 BA&]
11 0B “ericaltab 43 EZB + TS5 4B K 107 8B k
12 0C Form feed 44 ZC e 4C L 103 68C 1
13 0D Carriage return 45 2D - 7Y 4D M 108 6D m
14 0OE Shift out 45 ZE . 75 4E N 110 6E n
15 0OF Shiftin 47 ZF / 72 4F O 111 6F o
16 10 Datslink escape 43 30 O g0 50 P 112 70 »p
17 11 Device control 1 49 31 1 g1 51 ©Q 113 71 g
15 12 Device control 2 50 32 2 g2 52 R 114 72 «r
19 13 Device control 3 51 33 3 g3 53 3 115 73 =
20 14 Device control 4 52 34 4 g4 54 T 11 74 €
21 15 RMeqg.acknowledge 53 35 & g5 55 0O 117 75 u
22 16 Synchronous idle 54 38 & g6 58 WV 118 78 W
23 17 Endtrans. block 55 37 7 g7 57 W 119 77 w
24 18 Cancel 56 38 &8 g8 58 X 120 78 x
25 19 Endof medium 57 38 9 g8 59 ¥ 121 79 ¥
26 1A Substitution 58 3A oo 5a Z 122 7A =
27 1B Escape 539 3B 91 5B [123 7B o
28 1C File separator g0 3C < 9z BC Y 124 7C |
29 1D Group separator 6l 3D = 93 5D] 125 7D %
30 1E Record separator g2 3E = 94 E§KE * 1Z2e 7E ~
31 1F Unit separator 63 3F 7 95 5F 127 7F 0O

Appendix 3 - ASCII Character Set

77

APPENDIX 4 - VOCABULARY EXERCISE ANSWERS

Match the vocabulary items on the top with their correct definitions on the bottom.

Compiler Debugger L oop Binary Variable
Syntax Sring Variable Function Constant Flow Chart
Subroutine Array Phake GUI Literal

__Array 1. Avaiablethat holdsalist of _Function__ 9. Used when you have only one
items that share the same variable that you need to pass
properties or need to be grouped between the main program and
together. the sub program.

__Variable 2. A container that holds _Debugger ~ 10. A tool to aid the programmer in
information. removing all of the possibleerrors

that can occur in computer
programming.

__GUI 3. Used to describe the interface _Subroutine_ 11. Used when you have more than
where the actions that drive the one variable that you need to pass
computer are all based upon the between the main program and
user’s input through visual the sub program.
navigation.

__Literal 4. The name for the value thatis _Compiler __ 12. A programming tool that converts
contained within a variable. source code written in a high level

language into machine code.

__Phake_ 5. A pseudo-code programming _Loop 13. A continuous logic construct that
language invented for this class to evaluates a logic statement; if
illustrate programming logic. correct it continues the program,

if not correct it continues to cycle.

Flow Chart 6. A modeling tool used to best String 14. A type of variable that holds
simulate computer logic or step- Variable character based information.
by-step instructions. It is very
useful when there are multiple
ways to produce an outcome.

_Syntax__ 7. The exact order or logical _Binary 15. A numbering system that
structure of a programming computers use to communicate
command. This word is used to and consists of just two unique
denote the order in which a digits, "1s" and "0s."
language is grammatically
correct.

_Constant__ 8. A variable that holds a specific
piece of information throughout
the program.

78 Appendix 4 - Vocabulary Exercise Answers

APPENDIX 5 - QBASIC EXERCISE ANSWERS

There are many ways to solve each programming challenge; these are possible
solutions to the QBasic Exercises.

Exercisel: Change the operator MUMBERS.BAS to addition.
Be sure to change the user instructions so they reflect the functional
differences of the program.

Solution:

9:

o NO O b

REM This works with simple numbers
CLS

PRINT "Enter two numbers that you would 1like to
add"

PRINT

PRINT "Enter your first number": INPUT x

PRINT "Enter your second number": INPUT y
z=x+y

PRINT "The first number plus the second number is";
z

END

Solution Notes:

e Line 3 changes from multiply to add.
« Line 7 changes the operator from * (multiply) to + (add).
< Line 8 changes from multiplied by to plus.

Exercise 2. Modify STRING1.BAS so that the users also must enter
their middle initial.

Solution:
1: ' This is a sample string variable handling program
2: !
3:
4: CLS
5: PRINT "What is your first name": INPUT first$
6: PRINT "What is your middle name": INPUT middle$
7: PRINT "What is your Tast name": INPUT last$
8: name$ = first$ + SPACE$(1) + middle$ + SPACE$ (1) +
last$
9: PRINT "Your name is ": name$
10: END

Appendix 5 - QBasic Exercise Answers

79

Solution Notes:

e Line 6 is inserted to ask the user for his or her middle name, thereby
declaring a middle$ variable.

Line 8 (was 7) now contains the middle$ and an additional space to the
variable name$.

Exercise 3: Modify STRING2.BAS to correctly produce your
Micron username.

Solution:

1: ' This 1is a another string variable handling pro-
gram

2: !

3:

4: CLS

5: PRINT "What is your first name": INPUT first$

6: PRINT "What is your middle name": INPUT middle$

7: PRINT "What is your Tast name": INPUT last$

8: name$ = first$ + SPACE$(1) + middle$ + SPACES$ (1) +
last$

9: Upname$ = UCASE$ (name$)

10: Lname$ = LCASES$ (name$)

11: micron$ = LCASES$ (LEFT$ (first$, 1) + LEFT$ (middle$,
0) + LEFT$(1ast$, 10))

12: PRINT

13: PRINT "Your name 1is "; name$

14: PRINT

15: PRINT "Your name is "; Upname$; " in upper case."

16: PRINT

17: PRINT "Your name is "; Lname$; " in Tower case."

18: PRINT

19: PRINT "Your Micron username should be ":; micron$; "

20: END

Solution Notes:

* Line 11 now limits first$ to a single letter and specifies that the middle
name contributes no letters to the username.

Exercise4: Add a feature ir8STEAK.BAS so the program accepts
cooklevel$ entries with any capitalization combination. For example,
the program would accept RARE, Rare, or rare as correct ehtiigs.
you only need to enter one line of code!

Solution:

1:

Cooking a Steak

80

Appendix 5 - QBasic Exercise Answers

Each solution is different depending on your individual Micron username.

N O ok WN

8:
9 .

10:
11:
12:
13:
14:
15:
16:
17:
18:

19

20

' IF THEN ELSE example

CLS

DIM cooklevel$, cooktime

PRINT "How do you want your steak cooked?"

PRINT "Please choose from rare,medium,medium well
and well done": INPUT cooklevel$

cooklevel$ = LCASE$ (cooklevel$)
IF cooklevel$ = "rare" THEN
cooktime = 2
ELSEIF cooklevel$
cooktime = 5
ELSEIF cooklevel$
cooktime = 9
ELSEIF cooklevel$
cooktime = 15
ELSE cooktime = 20
END IF

"medium" THEN

"medium well" THEN

"well done" THEN

: PRINT "Cook the steak for"; cooktime; " minutes on

each side for a perfect steak”
: END

Solution Notes:

Exercise5: Alter the progranFORNEXT.BAS so that the user
inputs the repeat variable number. To save on time, you should also
limit the entry to a value of 20 or below.

Solution:

1: ' MY FORNEXT example for Programming Fundamentals

2: '

3:

4: CLS

5: DIM repeat, looptimes, timesleft

6: PRINT "Enter the number of times you would like
this program repeated”

7: PRINT "WARNING: Enter a number lower than 20!":
INPUT repeat

8: FOR T1ooptimes = 1 TO repeat

9: SLEEP 1

10: PRINT "This will repeat itself ";
repeat; " times"

11: PRINT

12: timesleft = repeat - looptimes

13: PRINT " Only "; timesleft; " more
times left"

Line 8 is added to convert the cooklevel$ entry to lowercase letters.

Appendix 5 - QBasic Exercise Answers

81

14: PRINT
15: NEXT Tooptimes
16: END

Solution Notes:

e Line 7 is added and requires that the user input the value for repeat variable.

Exercise6: Comment out line 6 dDOWHILEL1.BAS and run the
program to observe the effects. What happens?

.Solution:
1: 'Do while1
2: CLS
3: DIM pause
4. DO WHILE (INKEY$ <> CHR$(33))
5: PRINT "This will print until you

press the ! key";

6: ' FOR pause = 1 TO 10000: NEXT
pause

7: LOOP

8: PRINT

9: PRINT "You escaped!!"

10: END

Solution Notes:

< If you comment out line 6, the program scrolls so quickly that you cannot
observe the program.

Exercise7: Comment out line 11 ddOWHILE2.BAS to observe
the effects. What happens?

Solution:

1: 'Do while2

2: CLS

3: DIM location, pause

4: DO WHILE (INKEY$ <> CHR$(33))

5: lTocation = location + 1

6: IF Tocation = 40 THEN

7: Tocation = 0

8: END IF

9: PRINT

10: PRINT SPC(location); "This will
print until you press the ! key";

11: FOR pause = 1 TO 10000: NEXT
pause

12: LOOP

13: PRINT

Appendix 5 - QBasic Exercise Answers

14
15
16

Solutio

: PRINT
: PRINT "You escaped!!"
: END

n Notes:

effect to one that is difficult to observe.

Exercise 8: Modify ARRAY 1.BAS so the user also enters the day

If you comment out line 11, the program display changes from a waterfall

after tomorrow (2 days from today). Be sure to change the number of

items in the array and modify the printed text accordingly.

Solution:

1: "My Array1 program

2: '

3:

4: CLS

5: DIM dayofweek$(4)

6: PRINT "What day of the week was yesterday": INPUT
dayofweek$ (1)

7: PRINT "What day of the week is today": INPUT
dayofweek$(2)

8: PRINT "What day of the week is tomorrow": INPUT
dayofweek$ (3)

9: PRINT "What day of the week is two days from now":
INPUT dayofweek$ (4)

10: PRINT

11: PRINT "THANK YOU!"

12: PRINT

13: PRINT "You entered: "; dayofweek$(1); ", ";
dayofweek$(2); ", "; dayofweek$(3); ", and two days
from now is "; dayofweek$ (4)

14: END

Solution Notes:

» The dayofweek$ array in line 5 now contains 4 items.
» Line 9 is added to include the input.
» Line 13 improves the statement to include dayofweek$(4).

Exercise9: In ARRAY2.BAS, if the user indicates that today is

either Saturday or Sunday, the program will not function correctly
because 0 (1 - 1) and 8 (7 + 1) are not defined in the array. Improy
logic of the program so the program will run correctly.

Solution

1:
2:

"My Array2 program

e the

Appendix 5 - QBasic Exercise Answers

83

0 NO Ok W

CLS
DIM dayofweek$(7), Inputday
dayofweek$ (1) "Sunday"
dayofweek$(2) = "Monday"
dayofweek$(3) = "Tuesday"
dayofweek$(4) = "Wednesday"
(
(

9:

10: dayofweek$(5) = "Thursday"

11: dayofweek$(6) = "Friday"

12: dayofweek$(7) = "Saturday"

13: PRINT "Enter the number that corresponds to the day
of the week"

14: PRINT

15: PRINT "Sunday is 1"

16: PRINT "Monday is 2"

17: PRINT "Tuesday is 3"

18: PRINT "Wednesday s 4"

19: PRINT "Thursday 1is 5"

20: PRINT "Friday 1is 6"

21: PRINT "Saturday is 7"

22: PRINT

23: INPUT Inputday

24: IF Inputday = 1 THEN PRINT "Yesterday was Saturday,
Today is "; dayofweek$ (Inputday); ", and Tomorrow
is "; dayofweek$ (Inputday + 1): END

25: IF Inputday = 7 THEN PRINT "Yesterday was ";
dayofweek$ (Inputday - 1); ", Today is ";
dayofweek$ (Inputday); ", and Tomorrow is Sunday":
END

26: PRINT

27: PRINT "THANK YOU!"

28: PRINT

29: PRINT "Yesterday was "; dayofweek$ (Inputday - 1);
", Today is "; dayofweek$(Inputday); ", and
Tomorrow is "; dayofweek$ (Inputday + 1)

30: END

Solution Notes:

Line 24 is added so that if the value of 1 is entered, then the program has an
alternate ending.

Line 25 is added so that if the value of 7 is entered, then the program has an
alternate ending.

Exercise 10: Add a new question in the main program of

SUBROUTE.BAS that asks the user to input a description of the
person whose name was entered. Then pass that variable information to
the subroutine for concatenation.

Appendix 5 - QBasic Exercise Answers

Solution:

BN

= O 00 NO o1 h~ WN

DECLARE SUB combo (name$, description$, message$)
'A simple example of subroutine

CLS

PRINT "This is a sample of how subroutines work"
PRINT

PRINT

PRINT "Please enter your name": INPUT name$

: PRINT "Please enter a description of this person":

INPUT description$

: CALL combo(name$, description$, message$)
: PRINT message$
: END

SUB combo (name$, description$, message$)
message$ = name$ + “ is “ + description$
END SUB

Solution Notes:

Line 1 now contains a new variable description$.

Line 10 is added and prompts the user to enter a description.

Line 11 now contains a new variable description$.

Line 1 of SUB combo now contains a new variable description$.

Line 2 of SUB combo altered to concatenate the name with the description.

Notice that the IF THEN statement and extra code is deleted in the SUB
combo.

Appendix 5 - QBasic Exercise Answers

85

APPENDIX 6 - REFERENCE GUIDE

AccessiNg HEIPTN QBESICo e ettt e e e 66
Advanced Variables as Characters (Strings)« oo v oo 30
Advanced Variablesas NUMbErs 27
AT Y S . ot 47
ASSEMBIY . 9
Binary Code & Machine LangUageo vv ittt e et et et et 9
BYtECOOE. . . . oot 62
GO EdITOrS . . . oot 61
CommOoN MiSCONCEPLIONS.ttt et et e 7
COMPIl NS . o 61
Creating aFuNCLioN. 55
Creating aSUBrOULINE.o 53
Datahase Programming.o e et e 12
DEDUGOENS. - o v ottt e 61
DEDUGOING. -« v vt ettt e 72
DESIgNING COUE. . . . o vttt e 57
Developing using Micron’s Standard 56
Distribution of Your Work 60..
Error Codes in QBasiC . ..o v i it e 74 . .
EXIting QBaSIC i 33
FloWw Charts. . ..o e 13
Funwith String Variables 31..
FUNCHIONS. . . . e 53
GraphiCs . .. e e 67
High-level Languages. it e e e e e 10..
Input-Process-Output Model. e 6....
1 (T 0] =3 = £ 62
Loading a File in QBaSICttt e e 24..
LOQIC EITOrS . . o e 76
Logic Statement SUMMAIYo e e et e AT
LOgiC StatemMENtS. . . .o e e 36
Made Up Programming Language - Phake. i 17
Markup Programming. et e e 11...
O ECHIVES . . o o e e 35
Object-Oriented Programming (OOP) e 11
Portable Assembly e e 9.
Post-Phake Language oo e e e e 20. ..
Procedural Programmingt e 11 ...

86 Appendix 6 - Reference Guide

Programming Input - QUEPUL. oot e e e e 23

PV CS A MICION . . et e 58
QBaSiC COMMANASt i ettt et e e 70
RUN TIME EITOrS . . . oottt e e e e e e e e et 75
Running QBasicin Full ScreenMode o 67
RUNNING QBaSiC .. . oot e e e e e 22
Saving aProgramin QBasiC.o vttt 24
Saving Homework o 34
SaVING YOUr WOTK. . ..o 58
SECUNNG YOUr WOrK . . oo e e 59
SOUNG . . ot 69
SOUICE COAE OWNE SN P .« o o v ettt e et e ettt e e e e e 59
Subroutine and FUNCLION SUMMArY oot et et et ee s 55
SUDFOULINGES . . . o o ettt e e e e e e e e e 50
SYNEAX EITOrS . . oo e e 75
TEXE EAITOrS. . . ot 61
ToGet QBasiCHIles e e 34
User INterfaceso 7
Variable TYPES SUMMEIY . ..ottt ettt e et e ettt e 33
VA e TYPES. . ot 72
Variables as CharaCters (SIriNgS) . ..« c vt e e e 29
Variablesas NUMBErSo 24
What iSprogramming?ottt e 6

Appendix 6 - Reference Guide

87

WHAT'S NEXT?

Class Resources

Books24x7

Courses at Micron

Xtremelearning

The following books are beneficial for those who need more information about the
basics of programming:

Absolute Beginner’s Guide to Programmiidreg Perry

Beginning Programming for Dummies, Wally Wang

SAMS Teach Yourself Beginning Programming in 24 Hours, Greg Perry
Introduction to the Personal Software Process, Watts S. Humphrey

Books24x7 is an external online IT reference library that all Micron team members

can use. Books24x7 offers hundreds of books about programming, from very basic to

advanced.

To register to use Books24x7:

1.
2. Click LIBRARY.

3.

4. Click REGISTER TO USE BOOK S24X7.COM.

From the MERC, cliclDEPARTMENTS > M ORE.

Click Book s24x7 on the top menu bar.

To log on to Books24x7:

1.
2.
3.

Go to www.books24x7.com
Click FIND BOOKS.
In the Topic List, ClickPROGRAMMING.

M C4081 Intro to Perl Programming

M C6405 HTML Web Page Basics

MC6407 HTML Forms and Cold Fusion

M C9031 Visio Basics

Plus numerous programming courses available from XtremelLearning

XtremeLearning offers hundreds of self-paced training courses degktop, IT,

and business and professional courseware. XtremeLearning courses can be taken
from any Internet connection at work or home at any time. The following
programming courses are recommended to expand your programming knowledge:

Internet & WWW Introduction
MS Visual Basic 6.0

CIW Perl Fundamentals

C++ for Non Programmers

C Programming

C++ Programming

88

What's Next?

If you aready have an existing Xtremel earning account, then you can simply modify
your training plan to include any of the above-mentioned courses. If you do not have
an XtremeL earning account, you will need to register with the site and enroll in
COUrSeS.

To log on to XtremeL earning for the first time:

1

a b w DN

N

Go to www.xtremel earning.com from any Internet connection at work or
home.

Enter the Self Registration ID: comicron
Enter the Password: elearning2001
Click NEXT.

Enter your personal information. Be sure to use your Micron username as
Username and write down your password. You can use your Micron password
or create a new one.

Note: This password will not be updated with AMS becauseit is
separate from Micron’s internal environment.

Click NEXT.
Verify your information, and then cliakONE.

After you have logged into XtremeLearning for the first time, alicisT
TIME USERS and complete the tutorial.

For more information about XtremelLearning at Micron, visit the internal
XtremelLearning web site attp://hercules.micron.com/is/support/trnres/J3/
xtreme.htm

What's Next?

89

BIBLIOGRAPHY

1. Bradley, Julia Case & Millspaugh, AnitaC. Programming in Visual Basic 6.0.
New York, NY: McGraw-Hill/lrwin. 1999.

2. Kahane, Howard & Tidman, Paul. Logic & Philosophy: A Modern
Introduction, 7th Edition. Belmont, CA: Wadsworthy Publishing Company.
1995.

3. Perry, Greg. Absolute Beginner's Guide to Programmijragd Edition. USA:
Que. 2001.

4. Perry, Greg. SAMS Teach Yourself Beginning Programming in 24 Holg4.:
Sams. 1998.

5. Potter, Richard E., Rainer Jr., R. Kelly, & Turban, Efraim. Introduction to
Information TechnologWNew York, NY: John Wiley & Sons, Inc. 2001.

6. Wang, Wallace. Beginning Programming for Dummidoster City, CA: IDG
Books Worldwide, Inc. 1999.

7. Zak, Diane. Programming in Visual Basic 6.Course Technology, Inc. 1999.
8. Books24X7.com, Inc. 1999-2001. <www.books24x7.com>

20 Bibliography

	MC 4060 Programming Fundamentals
	Table of Contents
	Programming Fundamentals - Session 1
	Introduction
	Programming Categories
	Programming Methodologies
	Getting Started
	Programming Concepts
	Homework 1
	Programming Fundamentals - Session 2
	Advanced Programming Concepts
	Programming Standards
	Programming Tools
	Programming at Micron
	Vocabulary Exercise
	Homework 2
	Appendix 1 - Additional QBasic Resources
	Appendix 2 - Major Causes of Errors
	Appendix 3 - ASCII Character Set
	Appendix 4 - Vocabulary Exercise Answers
	Appendix 5 - QBasic Exercise Answers
	Appendix 6 - Reference Guide
	What’s Next?
	Bibliography

