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Analytical Approaches to a Disc-Loaded Cylindrical
Waveguide for Potential Application in Wide-band

Gyro-TWTs
Vishal Kesari, P. K. Jain, and B. N. Basu

Abstract—An all-metal disc-loaded cylindrical waveguide ex-
cited in TE modes was cold-analyzed in the fast-wave regime for
dispersion characteristics, keeping in view of its potential applica-
tion as an interaction structure for wide-band gyro-traveling-wave
tubes (TWTs). The analysis was carried out considering the
standing and propagating waves in the disc-occupied and disc-free
regions, respectively, using three approaches which differ from
one another with respect to how they process the boundary
conditions at the interface between these two regions. One such
approach is capable of including higher order harmonics in both
the structure regions. An adequate number of harmonics with
reference to the two regions was taken in the calculation to ensure
the convergence of results. The results have been validated against
available published results based on different other approaches.
The passband and shape of the dispersion characteristics both
depend on the disc-hole radius and periodicity, being more sen-
sitive to the latter. The adjustment of disc parameters led to the
widening of the straight-line portion of - dispersion charac-
teristics, for wide-band coalescence between the beam-mode and
waveguide-mode dispersion characteristics of a gyro-TWT as
required for wide-band device performance.

Index Terms—Disc-loaded waveguide, gyrotron, periodic
electromagnetic structure, wide-band gyro-traveling-wave tube
(TWT).

I. INTRODUCTION

MODIFYING the characteristics of a smooth-wall cylin-
drical waveguide by corrugation has been a well-known

practice in microwave engineering [1]–[11]. For instance, the
RF phase velocity of a cylindrical waveguide changes due to
the loading of the waveguide by axially periodic annular discs
projecting radially inward from the waveguide-wall depending
upon the mode and depth of corrugation. Typically, for example,
the phase velocity of the mode of a disc-loaded cylin-
drical waveguide decreases if a corrugation depth smaller than
a quarter wavelength is introduced, but increases if a corruga-
tion depth between a quarter and half a wavelength is present.
Such a structure is used as a slow-wave structure in the linear
electron accelerator [1].

Interest in the study of all-metal structures like a disc-loaded
cylindrical waveguide that avoids the presence of a dielectric in
the structure and the associated problem of dielectric charging
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Fig. 1. Schematic of a cylindrical waveguide loaded with annular discs.

and heat generation due to dielectric loss [12]–[14] has been
revived after the advent of gyro-traveling-wave tubes (TWTs),
which are still in the experimental stage of development and
have a potential for wide-band performance and a scope in high
information density communication as well as long range and
high-resolution radar. Adjusting the disc parameters can control
the dispersion characteristics of a disc-loaded cylindrical wave-
guide in the fast-wave regime. Hence, such a structure has been
considered as a potentially wide-band structure for wide-band
gyro-TWTs.

The basic method of analysing a disc-loaded waveguide,
which is essentially a periodic structure (Fig. 1), that considers
the effects of space harmonics due to the axial periodicity of
the structure is outlined in the literature [1]–[5]. In this method,
the structure is considered as a series of coupled unit cells
supporting standing waves in the disc-occupied region and
propagating waves in the disc-free region. A surface impedance
model is in vogue for the analysis of a disc-loaded cylindrical
waveguide, for closely spaced discs, in which the surface
impedance is matched at the interface between the corrugation
and corrugation-free regions, the interface being treated as
a homogeneous reactive surface [3], [9]–[11]. Amari et al.
[15] analyzed a disc-loaded cylindrical waveguide by cou-
pled-integral-equation technique [16] in which the propagation
constants of Floquet’s modes are determined from the classical
eigenvalues of a characteristic matrix instead of a nonlinear
determinantal equation. The analysis of a corrugated rectan-
gular waveguide based on the scattering matrix formalism due
to Wagner et al. [17] can take into account the precise shape of
the corrugation profile.

In the pioneer work of Choe and Uhm [5] the problem has
been studied by considering infinitesimally thin annular discs
and taking only the lowest order, standing-wave mode in the
disc-occupied region and only the fundamental, traveling-wave
mode in the disc-free region. Hence, they studied the depen-
dence of the shape of dispersion characteristics of the waveguide
on the disc-hole radius and periodicity—a study that is useful in
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broadbanding a gyro-TWT by increasing the coalescence band-
width between the beam-mode and waveguide-mode dispersion
characteristics of the device. The objective of this paper is to
consider in the analysis higher order harmonics in both the disc-
free and disc-occupied regions and, thus, to present the disper-
sion characteristics of the structure modified over those ignoring
such higher order harmonics.

We have made three approaches labeled as approach 1, 2, and
3 (Section II) to the problem that differ or compete with one
another with respect to: 1) how they process the boundary con-
ditions at the interface between the disc-occupied and disc-free
regions; 2) capability of including higher order harmonics in
these two regions; and 3) computational time. In approach 1,
one can take into account higher order harmonics both in the
disc-free and disc-occupied regions. Approaches 2 and 3 are
the two alternative approaches that can take into account higher
order harmonics in the disc-free region but not in the disc-oc-
cupied region of the interaction structure. Thus, all three ap-
proaches enjoy more rigor than the one in which higher order
harmonics have not been included in any of these structure re-
gions, such as in Choe and Uhm [5].

The dispersion relations of the disc-loaded cylindrical wave-
guide obtained by approaches 1, 2, and 3 have been derived
(Section II) and the dispersion characteristics compared with
one another as well as with those previously obtained by other
methods due to Choe and Uhm [5], Amari et al. [15], and Clarri-
coats and Olver [3] (Section III). Out of these, approach 1, which
enjoys the most rigor with respect to taking into account higher
order harmonics, though at the cost of the computational time,
has been taken up further to study the effects of the disc-hole
radius and periodicity on the dispersion characteristics of the
structure (Section III).

II. ANALYSIS

The cylindrical waveguide loaded with annular metal discs
may be considered as a series of coupled unit cells (Fig. 1).
The analysis is carried out assuming that standing waves will
be formed in the disc-occupied region of each unit cell due to
reflection of electromagnetic waves from the metal discs [1],
[2]. For the analysis, the disc-loaded cylindrical waveguide is
divided into two free-space regions—the disc-free region, la-
beled as region I, and the disc-occupied region, labeled as re-
gion II. In the structure (Fig. 1), region I occupies
and while region II occupies and

, where is the disc-hole radius and is the
waveguide-wall radius. is the axial periodicity of discs sup-
posedly infinitesimally thin as considered in [5].

The field expressions are developed for regions I and II, which
are subsequently used along with the boundary conditions at
the interface between the two regions to obtain the dispersion
relation of the structure. The dispersion relation is used to study
the control of the dispersion characteristics of the structure by
the disc parameters.

A. Field Expressions

The present analysis is restricted to only TE modes .
This is because in a gyro-TWT, for which the waveguide is

meant, operates at or near the grazing intersection between the
beam-mode and waveguide-mode dispersion characteristics
where the TM-mode growth rate vanishes [18].
Therefore, the relevant field expressions for TE modes in the
two regions of the structure in the cylindrical system of coordi-
nates ( , , ) may be written for nonazimuthally varying mode

and under fast-wave consideration [5], as follows.
For region I

(1)

(2)

For region II

(3)

(4)

where

The superscripts and refer to regions I and II, respectively.
and are the zeroth order Bessel functions of the first and

second kinds, respectively, and the prime with these functions
indicates their derivative with respect to the argument. Here, re-
ferring respectively to regions I and II, and are the field
constants, and
are the radial propagation constants, and and are the axial
phase propagation constants, being the free-
space propagation constant. represents the space harmonic
number referring to region I, the space harmonics being gener-
ated due to the axial periodicity of the structure. is the modal
harmonic number referring to region II, it being assumed that
standing waves are supported in region II due to reflection of
waves at the discs [1], [2], [5].

A Bessel function of the second kind does not appear in (1)
and (2) to prevent fields from blowing up to infinity, in view of
the nature of the function: and , as

. Further, in (3) and (4), the boundary condition
at the metallic wall of the boundary is implied.

Also, since the structure coincides with itself as it is translated
through an axial distance equal to the axial periodicity of the
structure , one may relate to the axial harmonic number
with the help of Floquet’s theorem as [1]

(5)



2146 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 5, OCTOBER 2004

Similarly, since region II supports standing waves at ,
being the guide wavelength, one may relate the standing wave

modal number to as [2], [5]

(6)

B. Dispersion Relation

In order to obtain the dispersion relation of a cylindrical
waveguide loaded with annular discs we have used here
three different approaches (as mentioned in Section I) which
differ with respect to how they process the boundary con-
ditions at the interface between regions I and II, and the
capability of including harmonics in these two regions. In
principle, approach 1 can take into account the space harmonic
numbers , in region I and the
standing wave modal numbers, , in
region II. In approaches 2 and 3 each, though one can take

in region I, one can consider
only the fundamental mode in region II. These two ap-
proaches differ with respect to how they process the boundary
conditions, as has been described later in this section.

In approach 1, the field expressions (1)–(4) are substituted
into the following boundary conditions stating respectively the
continuity of the axial magnetic field intensity and the azimuthal
electric field intensity at the interface between the regions I and
II

(a)

(b)
(7)

to obtain

(8)

and

(9)

Multiplying (8) by and integrating it from to
and using the orthogonal properties of trigonometric func-

tions, an expression for in the form of a series involving
may be obtained as follows:

(10)

where

(11)

Similarly, multiplying (9) by and proceeding as dis-
cussed following (9), one may obtain another expression for
in the form of another series involving as follows:

(12)

where

Equating the right hand sides of (10) and (12), one obtains

(13)

where

(14)
With the help of (13), one can form a series equation each

for each value of considered. Thus such series equations
in field constants can be formed. Taking the same number of
values, say, of standing wave modal number as that of space
harmonic number (for instance, 0, 1, 2, 3, and
1, 2, 3, 4, 5, 6, 7, corresponding to ), one may then find
the dispersion relation as the condition for the existence of a
nontrivial solution in the form of a determinant put equal to zero
as follows:

approach 1
(15)

where represents the element at the intersection between
the th row and the th column of the determinant.

In approach 2, starting from (8), as discussed following (9),
one has to obtain the same expression as (10) for in the
form of a series involving . However, in
addition, now one has to obtain an expression for in the form
of a series involving . For this, let us first
multiply (9), in which is interpreted as (5), by , to
obtain

which is then multiplied by and integrated from
to , while using the orthogonal properties of trigono-

metric function, to obtain

(16)

where

(17)
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Substitution of (16) into (10) yields

(18)

Putting in (18) all s equal to zero except ,
which amounts to taking only the lowest standing-wave mode
in region II, as has been done in [2] with reference to a general
analysis of a two-dimensional planar periodic structure, one ob-
tains

which may be read with the help of (11) and (17) to obtain the
dispersion relation of the structure as follows:

approach 2 (19)

In approach 3, the standing wave corresponding only to
is considered as discussed with reference to approach 2 fol-

lowing (18). Here, the expression for from (1) and that for
from (3), the latter interpreted for , are substituted

into (7a) at the axial position , the midpoint at the in-
terface between regions I and II [1], to obtain an expression for

in the form of a series involving as
follows:

(20)
Further, multiplying both sides of (9), the latter interpreted for

, by and integrating it from to , one
obtains in terms of as

(21)

Substituting from (21) into (20), one obtains the dispersion
relation of the structure as

approach 3 (22)

III. RESULTS AND DISCUSSION

As a special case of the disc-hole radius being equal to the
waveguide-wall radius , the function appearing
in each of the dispersion relations (15), (19), and (22), obtained
by approaches 1, 2, and 3, respectively, becomes zero which in
turn will lead each of these dispersion relations to the one and
the same relation , which may be identified with

Fig. 2. Variation of the factorsF , which appear in the special case (n = 0;
m = 1) of the dispersion relation, with � L.

the characteristic equation of a smooth-wall cylindrical wave-
guide excited in nonazimuthally varying TE modes.

Further, it is of interest to compare the dispersion relation
obtained by the present analysis using the three approaches 1,
2, and 3 with that obtained by Choe and Uhm [5]. As a special
case ( , ), the dispersion relations (15), (19), and
(22) may be expressed as

and

(23)
where the factors refer to approaches 1, 2, and 3, respec-
tively, and are given by

(a)

(b)

(c)

(24)

It can be seen from (24) that, while the factor , referring
to approach 1 is unity irrespective of the axial periodicity
of discs, the values of the factors and , referring to ap-
proaches 2 and 3, respectively, each depending on , are very
close to one another, and each becoming closer to unity, as

(closely spaced discs) (Fig. 2). Thus, it follows from
(23), read with the help of (24), that the dispersion relation, as
a special case ( and ), obtained by approach 1 of
the present analysis, exactly passes on to that obtained by Choe
and Uhm [5]; however, the dispersion relations obtained by ap-
proaches 2 and 3 would each pass on to that obtained by Choe
and Uhm [5] though approximately and only for closely spaced
discs.

In general, in region I, approaches 1, 2, and 3 [dispersion re-
lations (15), (19), and (22)] include all the space harmonics

. However, in region II, only approach 1
[dispersion relation (15)] includes all the standing-wave modal
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Fig. 3. Effect of including higher order harmonics in (a) approach 1, (b) approach 2, and (c) approach 3, taking typically TE -mode excitation with disc
parameters r =r = 0:5, L=r = �=10.

harmonic numbers , whereas approaches
2 and 3 [dispersion relations (19) and (22)] each consider only
the lowest order modal number . These dispersion
relations are solved using numerical methods in the software
MATLAB. The dispersion relations (19) and (22) obtained by
approaches 2 and 3, respectively, are essentially the series ex-
pressions involving infinite number of terms. In MATLAB, the
number of terms in the series is increased till the desired conver-
gence solutions are obtained, typically, thus retaining the terms
in (19) corresponding to 0, 1, 2, 3, 4 in approach 2
[Fig. 3(b)] and those in (22) corresponding to 0, 1, 2,

3, 4, 5 in approach 3 [Fig. 3(c)], for the desired conver-
gence. Similarly, the infinite-order determinant involved in the
dispersion relation (15) obtained by approach 1 is truncated typ-
ically at 7 7 for the desired converging solutions [Fig. 3(a)].

It is worth comparing the three approaches with one another
and also with an approach that considers the lowest order har-
monics ( and ) [5] [Fig. 4(a)]. Clearly, in gen-
eral, the values of the cutoff frequency predicted by approaches

1, 2, and 3 are increasingly higher than that predicted for the
lowest order harmonics ( and ), the percentage
difference from the latter being 3.9%, 7.4%, and 11.6%, respec-
tively [Fig. 4(a)]. Further, the dispersion characteristics for typ-
ical modes and obtained by approach 1, which en-
joys the rigor and flexibility with respect to including higher
order values of both and in the analysis over the other
two approaches (2 and 3), have been validated against those ob-
tained by Amari et al. [15] and Clarricoat and Olver [3]. The
dispersion characteristics obtained by approach 1 very closely
agreed with those of Amari et al. [15] both at the cutoff fre-
quency and away from it [Fig. 4(b)]. Furthermore, the disper-
sion characteristics obtained by approach 1 and those by Amari
et al. [15] have each closely agreed, away from the cutoff, and
fairly agreed, at the cutoff (within 2.4%), with Clarricoat and
Olver [3] [Fig. 4(b)]. Hence, the characteristics of a disc-loaded
cylindrical waveguide have been further investigated here using
approach 1 (Fig. 6). Obviously, however, as compared to ap-
proaches 2 and 3, approach 1 would require more computer run-
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Fig. 4. (a) Comparison of the dispersion characteristics of a cylindrical
waveguide loaded with annular discs obtained by approaches 1, 2, and 3
considering higher order harmonics with those obtained ignoring them [5]
taking disc parameters r =r = 0:5, L=r = �=10. (b) Validation of
approach 1 against Amari et al. [15] and Clarricoats and Olver [3] taking disc
parameters r =r = 0:8, L=r = 0:2. [The ordinate and abscissa are
suitably adjusted for the sake of comparison with [5] in (a) and with [15] and
[3] in (b)].

ning time that would increase with the number of harmonics in-
cluded in the calculation. For instance, the computation running
time would be, typically, 110 min for 0, 1; 1, 2, 3
using approach 1, while the same would be 10 min if either of
approaches 2 or 3 were used ( 0, 1). The running
time would increase to 550 min if the number of harmonics
were increased to 0, 1, 2, 3, 4, 5; 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11 while using approach 1, and the same would
be 15 min, if either of approaches 2 or 3 were used
( 0, 1, 2, 3, 4, 5).

At the first instance, the structure has shown the periodic na-
ture of dispersion diagram [1], [2] by exhibiting pass and stop
bands at a constant interval of in the value of between
two consecutive maxima or two consecutive minima (Fig. 5).
However, the dispersion diagram fails to become identical at

Fig. 5. Pass and stop band characteristics of a cylindrical waveguide loaded
with annular discs using approach 1 showing the effect of considering (a) lower
order harmonics (n = 0, �1, �2; m = 1, 2, 3, 4, 5) and (b) higher order
harmonics (n = 0, �1, �2, �3, �4, �5; m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11), taking excitation typically in TE , TE and TE modes with disc
parameters r =r = 0:5, L=r = 0:5.

such periodic intervals for lower order harmonics [Fig. 5(a)].
The identicalness of the diagram is exhibited only by including
higher order harmonics [Fig. 5(b)].

The dispersion characteristics obtained by the present anal-
ysis considering higher order harmonics, typically 0, 1,

2, 3 and 1, 2, 3, 4, 5, 6, 7, would be different from
and, in fact, more accurate than those obtained by ignoring them,
for instance, by taking and in our analysis, the
latter being identical with those obtainable by Choe and Uhm
[5] (Fig. 6).

The cutoff frequency of the waveguide, that is the lower-edge
frequency of the passband, increases while the upper-edge fre-
quency of the band remains unchanged, with the decrease of
the disc-hole radius relative to waveguide-wall radius
[Fig. 6(a)]. However, the lower- and the upper-edge frequencies
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Fig. 6. Dispersion characteristics of a cylindrical waveguide loaded with
annular discs typically excited in TE mode using approach 1 (n = 0, �1,
�2,�3; m = 1, 2, 3, 4, 5, 6, 7) taking as parameters (a) the relative inner edge
radius of the annular disc r =r , typically with L=r = 0:4, and (b) the
relative disc periodicity L=r , typically with r =r = 0:5, each compared
with those ignoring higher order harmonics taking n = 0, m = 1 [5], shown
by broken curves. The line with crosses in (b) is the locus of the upper-edge
frequencies of the passband for different values of L=r that coincides with
the dispersion characteristics of the corresponding smooth-wall cylindrical
waveguide.

each increase with the decrease of the disc periodicity relative
to waveguide-wall radius [Fig. 6(a)].

It is also of interest to bring out an interesting observation
with the lower limiting and the upper limiting cases of disc-hole
radius and periodicity. The lower limiting case of disc-hole ra-
dius, , will correspond to the case of a series of
uncoupled cavities between the original positions of discs. In
a similar situation for the disc-loaded cylindrical waveguide,
though for TM modes, it is given in Watkins [1] that the -
dispersion plot would be a straight line parallel to the abscissa
( -axis) at the common lower-edge frequency of the passband
for all the values of . In the present case, too, for TE
modes, the same has been observed however now at the common

upper-edge frequency of the passband [Fig. 6(a)]. The upper
limiting case, , will correspond to a smooth-wall
cylindrical waveguide [Fig. 6(a)]. The observation may also be
extended to the lower limiting case of disc periodicity,

, [Fig. 6(b)]. For such a case, which in
turn reduces each of the dispersion relations (15) (approach 1),
(19) (approach 2) and (22) (approach 3) to .
The latter may be identified with the TE mode dispersion rela-
tion of a smooth-wall cylindrical waveguide of radius (in-
stead of ). This is expected of the case of densely popu-
lated discs that may be considered as a cylindrical
sheath of infinite and zero conductivities along the azimuthal
and axial directions, respectively, which would shield the az-
imuthal electric field intensity at , and be trans-
parent to the axial electric field intensity which however is ab-
sent in the present case in view of the TE mode excitation con-
sidered. In other words, for the special case of closely spaced
discs, one may model the structure by replacing the discs at
their tips by an azimuthally conducting cylindrical
sheath [Fig. 6(b)]. The upper limiting case of disc periodicity

on the other hand, would correspond to the dis-
persion plot being a straight line (not shown here) parallel to
the abscissa ( -axis) at the cutoff frequency of the discs-free
or smooth-wall waveguide [Fig. 6(b)]. It is also of interest to
note that the upper-edge frequencies of the passband for dif-
ferent axial periodicity values relative to the waveguide wall
radius will all lie on the dispersion curve (hyperbola) of the
smooth-wall cylindrical waveguide [Fig. 6(b)].

The shape of the dispersion characteristics depends on both
the disc-hole radius and periodicity, being more sensitive to the
latter (Fig. 6). In order to widen the bandwidth of a gyro-TWT
one has to widen the frequency range of the straight-line portion
of - dispersion characteristics of the structure and ensure its
grazing intersection or coalescence with the beam-mode disper-
sion line of the device [8], [13], [14], [19]. One has to optimize
the disc parameters for widening the coalescence bandwidth
preferably near the waveguide cutoff in order to minimize the
effect of beam velocity spread in the device. Thus, the disc-hole
radius may be decreased [Fig. 6(a)] and the disc periodicity in-
creased [Fig. 6(b)] for widening the device bandwidth. How-
ever, such broadbanding of coalescence is accompanied by the
reduction of the bandwidth of the passband of the structure itself
Fig. 6. It is however felt that in order to fully explore the poten-
tial of the present cold (beam-absent) analysis of a disc-loaded
cylindrical waveguide and study the effect of the disc param-
eters on the bandwidth of a gyro-TWT, one has to substitute,
as we have done in the past with reference to dielectric loaded
and metal vane loaded gyro-TWTs [8], [13], [19], the propa-
gation constant predicted by the present cold analysis into the
beam-present dispersion relation of a gyro-TWT and interpret
the latter for the gain-frequency characteristics of the device and
the dependence thereof on the structure parameters. We have,
however, kept such study outside the scope of the present paper.

In this paper, an all-metal structure, namely, a cylindrical
waveguide loaded with annular discs has been analyzed in
the fast-wave regime in view of the potential application of
the structure in widening the bandwidth of a gyro-TWT. The
dispersion relation, as special cases, has passed on to that of
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a smooth-wall cylindrical waveguide and to that predicted for
closely spaced discs by a model that replaces the discs at their
tips by an azimuthally conducting cylindrical sheath. More-
over, care has been taken to validate the results of the present
analysis against those reported in the literature using other
different analytical approaches. Out of the three approaches to
the analysis considered here, the one that enjoys most the rigor
and flexibility of including higher order of harmonics has been
used to study the effect of the disc parameters on the dispersion
characteristics of the structure. It is hoped that the study would
be use to the developers of wide-band gyro-TWTs.
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