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Abstract- The field matching technique was used 
for the modal analysis of a circular waveguide, 
which is corrugated to form discs between 
corrugations. The dispersion relation of the 
structure has been derived considering all the 
harmonics of the traveling waves in the 
corrugation-free region and the stationary waves 
in the region of corrugation. The results have 
been validated against that reported earlier and 
also using HFSS, for azimuthally symmetric 
modes, with particular reference to the modes 
TE01, TE02, and TE03. The mode TE01 and the 
axial periodicity of discs proved to be the most 
effective in controlling the dispersion 
characteristics of the structure for wideband 
performance of a gyro-TWT millimeter-wave 
amplifier.   
 
Index Terms- Axially periodic circular 
waveguide, field matching technique, gyro-
traveling-wave tube, broadband millimeter-wave 
amplifier. 
 
 

I. INTRODUCTION 
 
High-resolution and long range imaging radars 
and high-speed and high-information density 
communication systems need high-power 
broadband millimeter-wave amplifiers such as 
a gyro-traveling-wave tube (gyro-TWT). 
However, the gyro-TWT has a limited 
bandwidth due to the dispersion of the 
waveguide interaction structure of the device 
that is operated near the waveguide cutoff. This 
demands the techniques to reduce the structure 
dispersion for widening the gyro-TWT 
bandwidth. Two such techniques are dielectric 
loading [1] and corrugating the waveguide wall 
[2]. However, one should prefer corrugating the 
waveguide wall to loading it by a dielectric, as 
the latter poses the problem of dielectric 
charging and heating due to dielectric loss.  
 

A circular waveguide radially corrugated with a 
regular axial periodicity, also referred to as a 
disc-loaded waveguide (Fig. 1), has proved its 
potential as the RF interaction structure of 
traveling-wave tube (TWT) amplifiers [3]-[5], 
backward-wave oscillators [6]-[8] and linear 
accelerators [4], [8]. It also found applications 
as electromagnetic filters [8]-[11], phase 
shifters [2], [10], [11], corrugated antennas [2], 
[10], antenna feeds [2], [9], etc. The disc-
loaded waveguide has been analyzed by the 
simple surface impedance model [2], which is, 
however, valid for closely spaced corrugation 
or by an involved coupled integration technique 
[10] for Floquet’s modes.  The structure has 
also been analyzed by the field matching 
technique, for instance by Choe and Uhm [12] 
and Kesari et al. [13], considering traveling 
waves in the corrugation-free (or disc-free) 
region and stationary waves in the region of 
corrugation (or discs). In the analysis of Choe 
and Uhm [12], only the lowest order, stationary 
wave mode in the corrugation region and only 
the fundamental, traveling wave mode in the 
corrugation-free region, were considered, 
while, in the analysis of Kesari et al. [13], 
higher order harmonics were considered in both 
the corrugation-free and corrugation regions. 
However, for the sake of simplicity, both Choe 
and Uhm [12] and Kesari et al. [13] ignored the 
effect of the finite thickness of discs formed by 
corrugation. Further, they presented their 
results only for the lowest order azimuthally 
symmetric mode TE01. In the present paper, the 
analysis of Kesari et al. [13], taking higher 
order harmonics in both the corrugation-free 
and corrugation regions, is generalized by 
considering all the axial dimensions of the 
corrugated structure to be finite (Fig. 1). This 
amounts to taking into account in the analysis 
the effect of finite disc thickness of a disc-
loaded waveguide ignored by Choe and Uhm 
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[12] and Kesari et al. [13], and presenting the 
results not only for the lowest order TE01 mode 
but also for higher order azimuthally symmetric 
modes ignored by them.  The dispersion 
relation of the corrugated circular waveguide 
(Section II) is used to study the effects of the 
corrugation parameters on the dispersion 
characteristics of the structure for the various 
modes (typically, TE01, TE02, and TE03) 
(Section III). 
 

 
Fig.1.  Schematic of the radially corrugated 

circular waveguide. 
 

II. ANALYSIS 
 

The corrugated circular waveguide (Fig. 1) 
is divided into two regions ⎯ the 
corrugation-free (or disc-free) region: 

 and , labeled as region ar <≤0 lz <<0 I , 
and the corrugation (or disc) region: 

 and )( dara +<≤ wz <<0 , labeled as 
region  II , where a, w, and d are 
respectively the inner edge radius, width 
and depth of corrugation, which may also 
be interpreted as the disc-hole radius, the 
axial gap between consecutive discs, and 
the radial disc thickness, respectively (Fig. 
1). 
 
The RF fields, for non-azimuthally varying 
( 0=∂∂ θ ) TE modes , which are 
extensively used in a gyro-TWT amplifier, 
enjoying a significant growth rate at the 
operating frequency near the waveguide cutoff 
of a gyro-TWT amplifier [14], may be 
expressed in the cylindrical system of 
coordinates (

)0( =zE

zr ,,θ ), as [12], [13]: 
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The superscripts I  and II  refer to the regions 
I  and  II , respectively.  and  are the 
zero

0J 0Y
th order Bessel functions of the first and 

second kinds, respectively, and the prime with 
these functions indicates their derivatives with 
respect to argument. Here, referring 
respectively to the two regions I  and II , (i) 

 and  are the field constants; (ii) nA mA

))(( 2122
nn k βγ −=  and ))(( 2122

mm k βγ −=  are 
the radial propagation constants; and (iii) nβ  

)/2( 0 lnπβ +=  (traveling-wave) and mβ  
)/( wmπ=  (stationary-wave) [13] are the axial 

phase propagation constants, k  being the free-
space propagation constant, and  n

....),2,1,0( ±±=  and m  
representing the space and modal harmonic 
numbers, respectively. The absence of Bessel 
function of the second kind (

....),3,2,1(=

}{0Y rmγ ) in (1) as 
well as its derivative thereof ( }{0 rY mγ′ ) in (2) 
conforms to the requirement that the fields do 
not reach to infinity at the structure axis (in 
view of the functions and  each }{0 xY }{0 xY ′

∞→  as ). 0→x
 
The relevant boundary conditions referring to 
the continuity of the tangential magnetic (axial) 
and electric (azimuthal) field intensities at the 
interface between the regions I  and II  (at 

ar = ) (Fig. 1) are respectively: 
          
                    (5) wzHH II

z
I
z <<= 0
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The field expressions (1)-(4) are substituted 
into the boundary conditions (5) and (6), each 
of which is then multiplied by )sin( zmβ . Next, 
the resulting equation from (5) is integrated 
between  to w and that from (6) between 

 to l (Fig. 1). This would yield, using the 
orthogonal properties of trigonometric 
functions, two different series expressions in 

 each for .  Equating the right hand sides 
of these two series expressions, one obtains a 
series equation in  corresponding to a value 
of m. Thus, assigning different values of m, and 
following the method outlined in Keasri et al. 
[13], one may form m number of such series 
equations in , the condition for non-trivial 
solution of which yields the dispersion relation 
of the structure as:  

0=z
0=z
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III. RESULTS AND DISCUSSION 
 

 The dispersion relation (7) of the corrugated 
circular waveguide (Fig. 1) involves a 
determinant of infinite order and is not 
amenable to easy solution. However, for 
practical structure geometries, it is fair enough 
to take n = -2, -1, 0, 1, 2 and m = 1, 2, 3, 4, 5, 
or in other words truncate the determinant in 
(7) to 5×5 [13], for the desired converging 
solutions using numerical methods, in 
MATLAB. Hence the corrugated circular 
waveguide is studied for the effect of the 
corrugation parameters on the dispersion 
characteristics, with reference to the typical 
modes TE01, TE02, and TE03, although the 
dispersion relation (7) is valid in general for all 
the azimuthally symmetric modes TE0n 
( ) (Figs. 2 and 3).  ∞<≤ n1

 

 
    (a) 

 
      (b) 

Fig.2. Dispersion characteristics of the corrugated 
circular waveguide obtained by the present 
analysis validated (a) against the simulation 
software ⎯ HFSS considering the axial 
structure dimensions to be finite and (b) 
against those of Kesaei et al. [13] 
considering discs of infinitesimally thin axial 
dimension. [The ordinate and abscissa are 
suitably adjusted for the sake of comparison 
with [13] in (b)]. 

 
It can be easily verified with the help of the 
dispersion relation (7) that the product of the 
wave number, corresponding to , and 
the inner edge radius a of corrugation, for the 
depth parameter 

00 =Iβ

0/ =ad  and the same product 
for the width parameter , with 
reference to the typical modes TE

0/ =aw
01, TE02, and 

TE03 considered, would become each identical 
with the corresponding product values for a 
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smooth-wall circular waveguide for these 
modes. Furthermore, the dispersion 
characteristics obtained by the present analysis 
are within 0.1% and 1.5% of HFSS for the 
lowest order mode (TE01) and higher order 
modes (TE02 and TE03), respectively [Fig. 2(a)]. 
For the special case of  (zero corrugation 
depth or radial disc thickness), as expected, the 
dispersion relation (7) passes on to that of a 
smooth-wall circular waveguide excited in the 
TE

0→d

0n mode. Also, the dispersion relation (7) 
becomes identical with that obtained by Choe 
and Uhm [12] for a circular waveguide loaded 
with thin discs for the special case of , 
ignoring higher order harmonics, that is, 
considering only the lowest order space and 
modal harmonics in the disc-free and disc-
occupied regions, respectively. Furthermore, 
for infinitesimally thin discs ( ), but 
considering higher order harmonics in these 
two regions, the dispersion characteristics 
obtained with the help of (7) agree with those 
of Kesari et al. [13] [Fig. 2(b)]. 

lw →

lw→

 
The circular waveguide, which is inherently a 
high-pass filter with a cutoff, if corrugated 
periodically, will exhibit a bandpass 
characteristics with alternate stop and pass 
bands on the frequency scale  with their 
respective cutoffs, and a periodicity of 

lk
π2  on 

the propagation constant scale l0β  (Figs. 2 and 
3). This periodic nature of the dispersion plots 
is the result of frequency band splitting due to 
interaction of the waves travelling in the 
forward and backward directions that results 
into coupling of modes [3], [4], [8]. The lower 
and upper cutoff frequencies of a passband are 
the consequences of smooth-wall waveguide 
and axial periodicity of the structure, 
respectively. This is demonstrated for the 
typical structure parameters with reference to 
the three lowest order modes TE01, TE02 and 
TE03. In general, the structure being periodic in 
nature,  exhibit positive, zero and negative 
slopes of the  verses  lk l0β  dispersion plots 
corresponding to positive, zero and negative 
group velocities, respectively, which can be 
adjusted by varying the structure parameters, 
namely, depth, width and periodicity 
parameters. This reveals that the group velocity 
can be easily adjusted by varying the structure 
parameters of a corrugated waveguide.  

     (a) 
 

       (b) 
 

    (c) 
 
Fig.3. Dispersion characteristics of the corrugated 

circular waveguide taking the corrugation 
parameters, namely (a) depth (radial 
thickness of the disc), (b) width (axial gap 
between two consecutive discs), and (c) 
periodicity, all relative to the inner edge 
radius of corrugation, as the parameters, 
typically for the three modes TE01, TE02, and 
TE03. 
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Further, since the propagation constant of two 
space harmonics corresponding to positive and 
negative values of  correspond to same 
frequency according to the Floquet’s theorem, 
it follows the symmetric nature of dispersion 
characteristics (Figs. 2 and 3) around a phase 
shift of zero (

n

00 =lβ ) and π  radian 
( πβ =l0 ) of electromagnetic wave [3], [4], [8]. 
The existence of upper cutoff at πβ =l0  (Figs. 
2 and 3), typically for the lowest order mode, is 
due to the diverging nature of the sum of the 
harmonics of reflected waves. At this state, 
there will be a strong reflected wave and in the 
final state the equipartition of energy between 
the waves travelling in the forward and 
backward directions to setup a pure standing 
wave pattern with zero group velocity 
corresponding to zero slope of the  verses  lk

l0β  dispersion plots that represents no power 
flow in the structure (Fig. 1). Also, the estimate 
of upper cutoff frequency can be correlated 
with the resonance frequency of the hollow 
annular cavity [3], [4], [8]. 
 
The effects of the corrugation parameters on 
the dispersion control in general depends upon 
whether or not the frequencies are near the 
upper or lower edge frequencies of the 
passband (Fig. 3).  The depth [Fig. 3(a)] as well 
as width [Fig. 3(b)] parameter has a better 
control on the structure dispersion at the upper 
edge frequency for the TE02 mode and at the 
lower edge frequency for the TE03 mode. The 
upper edge frequency for the TE02 mode 
increases with the depth parameter while it 
decreases with the width parameter. These 
parameters have somewhat a uniform but less 
control on the dispersion characteristics over 
the entire passband for the TE01 mode [Figs. 
3(a) and 3(b)]. 
 
The shape of the dispersion characteristics of 
the structure is most sensitive to the periodicity 
parameter over the entire pass band, however 
the effect is more pronounced at the upper edge 
frequencies for the TE02 and at the lower edge 
frequencies for the TE01 and TE03 modes [Fig. 
3(c)]. While the depth and width parameters are 
effective in controlling the width of the 
passband, the periodicity parameter is effective 
in shifting the passband on the frequency scale 
(Fig. 3). Also, out of the three corrugation 

parameters, the periodicity is the most effective 
parameter in controlling shape of the dispersion 
characteristics of the structure. Furthermore, 
the straight-line portion of the dispersion 
characteristics over which the beam-mode 
dispersion line could be coalesced, for 
wideband gyro-TWT performance [13], is 
obtained at lower values of the axial phase 
propagation constant 0β  for the TE01 mode 
than for the higher order modes (TE02 and 
TE03) suggesting the preference of the TE01 
mode over higher order modes from the 
standpoint of the reduced effect of beam 
velocity spread ( 0β  close to zero) on the device 
performance (Fig. 3). 
 

 
IV. CONCLUSION 

 
Considering space harmonic effects due to the 
axial periodicity of the structure and taking into 
account the finiteness of axial structure 
dimensions as well as higher order waveguide 
modes have added practical relevance to the 
analysis of a corrugated circular waveguide for 
its potential use as a wideband interaction 
structure of a gyro-TWT amplifier. The shape 
of the dispersion characteristics of the 
corrugated circular waveguide has relevance to 
widening the bandwidth of coalescence 
between the beam-mode and waveguide-mode 
dispersion characteristics of a gyro-TWT and 
hence the bandwidth of the device. Clearly, out 
of the typical three modes (TE01, TE02 and 
TE03) considered, the lowest order mode TE01 is 
the most effective and, out of the three 
corrugation parameters, namely the depth, 
width and periodicity, the latter is the most 
effective in controlling, and more precisely, 
straightening the dispersion characteristics of 
the structure for the desired coalescence 
bandwidth and consequent wideband gyro-
TWT performance. It is hoped that the present 
analysis of a corrugated circular waveguide in 
the absence of an electron beam (cold analysis) 
would be a useful feedback to the study of 
beam-wave interaction of a gyro-TWT 
millimeter-wave amplifier and its design for 
wideband performance. 
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