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Abstract

The eigenstructure based characterization of M -channel FIR PR filterbanks of [1] is extended

here to the linear phase case. Some results relating to linear phase filterbanks is derived

by finding appropriate restrictions on the eigenstructure of the analysis polyphase matrix.

Consequently a complete and minimal characterization for such filterbanks with all analysis

length 2M and any synthesis length is developed. Parameterization and design examples are

also presented.

1 Introduction

In [1] we used the eigenstructure representation of the polyphase matrix to propose complete

characterizations of FIR perfect reconstruction M channel filterbanks with first order analy-

sis polyphase matrix. Linear phase FIR perfect reconstruction filterbanks (LPFB) find ap-

plication in many signal and image processing fields. In this correspondence we extend the

eigenstructure representation to obtain a complete characterization of linear phase FIR perfect

reconstruction M channel filterbanks with all analysis filter length being 2M (hence first order

analysis polyphase matrix), referred henceforth as FOLPFB. The synthesis filter length in this

characterization is not restricted to 2M as is conventionally done, but may take value upto M2.

Characterization of a subclass of LPFB, such as orthogonal, M = 2, or M = 3 has been

reported on several occasions. Design of FOLPFB with a multi-stage structure using DCT

such that a fast implementation exists is reported in [2], where it is called the lapped biorthog-
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onal transform. Design of LPFB of any order is reported in [3], when first K filters are given

such that the part polyphase matrix has rank K for all z−1 except z−1 = 0, and the re-

maining filters are designed. In [4] symbolic computation is used to characterize LPFB of

any order. However, none of the above characterizations are complete. In [5] a lattice struc-

ture is used to characterize the LPFB, so that the analysis polyphase matrix of FOLPFB

becomes 1
2
√

2

[
(1 + z−1)U (1 − z−1)U
(1 − z−1)V (1 + z−1)V

]
·
[

U0 U0JM/2

V0JM/2 −V0

]
where U, V, U0 and V0 are non-

singular M
2 × M

2 matrices, and Jk is k × k counter identity matrix. It is shown to be complete

for FOLPFB with synthesis length 2M [6].

We briefly describe below the characterization of [1]. Replacing z−1 by λ, the lth order

analysis polyphase matrix E(z) is seen as a matrix polynomial El(λ). Any matrix polynomial

may be characterized by the Jordan pair (or decomposable pair, or spectral data) (Y,T(λ))

with Y = [XF XR] and T(λ) = diag(IΓλ − JF ,JRλ − IMl−Γ), where diag() represents a block

diagonal matrix with the arguments as the blocks in sequence, Ik is k × k identity matrix,

and Γ is the degree of |El(λ)|. XF is the M × Γ canonical set of Jordan chains and JF is

the Γ × Γ Jordan form of El(λ) (finite Jordan pair, or finite spectrum). JF is block diagonal

with Jordan blocks of size b0, ..., bn such that bi are non-increasing positive integers summing

up to Γ. Each Jordan block’s diagonal elements are eigenvalues of El(λ), upper off-diagonal

elements are 1, and remaining elements are 0.1 XR and JR are the corresponding M × (Ml−Γ)

and (Ml − Γ) × (Ml − Γ) matrices of the reversed matrix polynomial λlEl(λ−1) for the zero

eigenvalue (infinite Jordan pair, or infinite spectrum). It follows that [7]

El(λ) = A(IMl − P)T(λ)S−1
l−1Q(λ) (1)

where

Sk =




XF XRJ k
R

XFJF XRJ k−1
R

...
...

XFJ k
F XR


 , Q(λ) =




IM

λIM
...

λl−1IM


 (2)

A is M×Ml matrix such that [ST
l−2 AT ]T is nonsingular, and P = diag(IΓ,JR)S−1

l−1[IMl−M 0]T Sl−2.

For FIR inverse to exist, El(λ) has to be a matrix polynomial with monomial determinant.

This is equivalent to all eigenvalues of El(λ) being zero. Thus, JF (as also JR) should have

1For example, for Γ = 4, {bi} = {3, 1} and zero eigenvalue, JF =


 0 1 0 0

0 0 1 0
0 0 0 0
0 0 0 0



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a zero diagonal. Further, for the first order (l = 1) case (1) simplifies to the block diagonal

characterization [1]

E1(λ) = AT(λ)Y−1 (3)

where A and Y are any M × M nonsingular matrices. Note that JF , JR are nilpotent ma-

trices with indices of nilpotency nF and nR (nF = b0, size of the largest Jordan block of JF ,

etc.). Then the synthesis polyphase becomes E−1
1 (λ) = Ydiag(IΓλ−1+

∑nF
i=2 J i−1

F λ−i,−IM−Γ−∑nR−1
i=1 λiJ i

R)A−1. It follows that the maximum length of synthesis filters is (nF + nR)M , and

reconstruction delay is (nF + 1)M − 1. The characterization allows unconstrained parameter

optimization and provides control over the length of the synthesis filters and reconstruction

delay.

2 Some Results for LPFB

For an M -channel LPFB with analysis filter lengths Mk0 + s, ...,MkM−1 + s for integer ki and

0 ≤ s < M , the analysis polyphase matrix E(z) satisfies [8]

E(z) = Ddiag(z−k0+1, ..., z−kM−1+1)E(z−1)diag(z−1Js,JM−s) (4)

where D is an M×M diagonal matrix with �M
2 � diagonal elements 1 (corresponds to symmetric

filters) and rest −1 (antisymmetric filters). Without loss of generality we assume the first �M
2 �

elements are 1.

Theorem 1: For a LPFB with analysis filter lengths Mk0 +s, ...,MkM−1 +s and average length

Lavg, Γ = (Lavg − M)/2.

Proof: Since Γ is the degree of |El(λ)|, equating the degree of determinant of both sides of (4),

Γ = k0 + ... + kM−1 − M − Γ + s. Putting Lavg = k0 + ... + kM−1 + s the result is obtained. �

Consider all analysis filter lengths to be M(l + 1) (ki = l + 1, s = 0). Then (4) reduces to

El(λ) = DλlEl(λ−1)JM (5)

and from theorem 1, Γ = Ml
2 .

Theorem 2: For a LPFB with analysis filter lengths M(l + 1), JR = JF and XR = JMXF .

Proof: JF and XF are Jordan form and canonical Jordan chain of El(λ) for zero eigenvalue. Fur-

ther, JR and XR are Jordan form and chain of λlEl(λ−1) for zero eigenvalue. Pre-multiplication
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by a constant nonsingular matrix does not change the Jordan form or chain [7]. Therefore, JR

and XR are Jordan form and chain of DλlEl(λ−1). Post-multiplication by a constant nonsin-

gular matrix does not change the Jordan form, but the Jordan chain is pre-multiplied by the

same matrix. Therefore, JR and JMXR are Jordan form and chain of DλlEl(λ−1)JM . But

from (5), DλlEl(λ−1)JM is El(λ). Therefore, JR = JF and JMXR = XF , or XR = JMXF . �

Lemma 1: For a LPFB with analysis filter lengths M(l + 1), A(IMl − P) is of the form[
A1 0
0 A2

] [
IMl/2 −IMl/2

IMl/2 IMl/2

]
, where A1, A2 are of size �M

2 � × Ml
2 and �M

2 � × Ml
2 respectively.

This may be shown as follows. Substituting (1) on both sides of (5),

A(IMl − P)T(λ)S−1
l−1Q(λ) = DA(IMl − P)λT(λ−1)S−1

l−1λ
l−1Q(λ−1)JM . (6)

Since JR = JF and Γ = Ml
2 , λT(λ−1) = diag(IMl/2 − JF λ,JF − IMl/2λ) = −JIT(λ)JI where

JI =
[

0 IMl/2

IMl/2 0

]
, since pre- and post-multiplication by JI swaps two blocks of the diagonal

of T(λ). Further, λl−1Q(λ−1)JM equals



λl−1IM

λl−2IM
...

IM


 JM =




λl−1JM

λl−2JM
...

JM


 = JMl




IM
...

λl−2IM

λl−1IM




which is JMlQ(λ). Therefore, (6) may be written as

A(IMl − P)T(λ)S−1
l−1Q(λ) = −DA(IMl − P)JIT(λ)JIS−1

l−1JMlQ(λ). (7)

The constant matrices on both sides before T(λ) must be equal. Therefore A(IMl − P) =

−DA(IMl −P)JI . Let A(IMl −P) =
[

A1 A5

A2 A6

]
where A1,A5 are �M

2 �× Ml
2 , and A2,A6 are

�M
2 �× Ml

2 . Since D = diag(I�M/2�,−I�M/2�), it follows that −D
[

A1 A5

A2 A6

]
JI =

[ −A5 −A1

A6 A2

]
,

or A5 = −A1 and A6 = A2, or A(IMl − P) is of the form mentioned earlier.

A comment on A(IMl − P) is in order. It is known that Sl−2 of size (Ml − M) × Ml is

full rank for a valid Jordan pair [7]. Let N be the basis for the null space of Sl−2. A may be

expressed as A7Sl−2 +A8N. Then A(IMl −P) = A7Sl−2(IMl −P)+A8N(IMl −P). The first

term A7(Sl−2 − Sl−2P) may be simplified. Since Sl−2diag(IΓ,JR) equals



XF XRJ l−2
R

XFJF XRJ l−3
R

...
...

XFJ l−2
F XR




[
IΓ 0
0 JR

]
=




XF XRJ l−1
R

XFJF XRJ l−2
R

...
...

XFJ l−2
F XRJR



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which is Sl−1 from (2) except the last row, it is equal to [IMl−M 0]Sl−1. It follows that Sl−2P =

Sl−2diag(IΓ,JR)S−1
l−1[IMl−M 0]T Sl−2 = [IMl−M 0]Sl−1S−1

l−1[IMl−M 0]TSl−2 = [IMl−M 0][IMl−M 0]TSl−2

= Sl−2. Therefore the first term of A(IMl − P) is zero, or A(IMl − P) = A8N(IMl − P) for

some M × M nonsingular matrix A8. It is known that P projects a Ml dimension vector to

the range space of Sl−2 [7].

Further, constant matrices on both sides of (7) between T(λ) and Q(λ) must also be equal.

This leads to S−1
l−1 = JIS−1

l−1JMl or Sl−1 = JMlSl−1JI . Now JMlSl−1JI may be expressed as

JMl




XF XRJ l−1
R

XFJF XRJ l−2
R

...
...

XFJ l−1
F XR


 JI =




JMXR JMXFJ l−1
F

JMXRJR JMXFJ l−2
F

...
...

JMXRJ l−1
R JMXF




which should equal to Sl−1 of (2). This is automatically satisfied since JR = JF and XR =

JMXF . (Alternately, this may be used along with JR = JF to show that indeed XR = JMXF .)

3 Characterization of FOLPFB

The difficulty in finding a structure (leading to characterization) for LPFB of any order from

(1), theorems 1, 2 and lemma 1 is in finding a general structure for S−1
l−1 for any choice of JF .

It is, however, possible to find such a structure for a given JF . For example, if order l = 2

and JF = 0 (i.e., b0 = 1), then S1 = diag(XF ,JMXF ) whose inverse diag(X−1
F ,X−1

F JM ) may

easily be characterized. Thus, any order LPFB restricted to certain class (a given JF ) may

be designed and implemented from (1). Note that, even without a structure, design of LPFB

of any order may be achieved using explicit inversion of Sl−1 at every stage of the numerical

optimization.

For FOLPFB, however, the structure of S−1
l−1 is independent of the choice of JF as seen from

(3). This leads to the following complete characterization. It is known that such FOLPFB exists

only when M is even.

Theorem 3: E1(λ) of a FOLPFB can always be expressed as

E1(λ) = diag(A1,A2)
[

IM/2 −IM/2

IM/2 IM/2

]
diag(IM/2λ − JF ,JF λ − IM/2) ·[

IM/2 IM/2

IM/2 −IM/2

]
diag(A3,A4)

[
IM/2 JM/2

IM/2 −JM/2

]
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where Ai for i = 1 to 4 are M
2 × M

2 nonsingular matrices and JF is M
2 × M

2 Jordan form with

zero eigenvalue.

Proof: The proof follows from the proof of lemma 1. In case of FOLPFB, it is seen from

(3) that A(IMl − P) becomes a nonsingular M × M matrix A. Thus A1,A2 becomes square

submatrices. Since
[

IM/2 −IM/2

IM/2 IM/2

]
is nonsingular, nonsingularity requirement leads to A1,A2

to be nonsingular. Further, it is also seen from (3) that S−1
l−1Q(λ) becomes S−1

l−1 = Y−1 =

[XF JMXF ]−1. Express the inverse as [XF JMXF ]−1 =
[

A9 A10

A11 A12

]
where each submatrix

is M
2 × M

2 . Then XF [A9 A10] + JMXF [A11 A12] = I. Pre- and post-multiplying both sides

by JM , and using [A9 A10]JM = [A10JM/2 A9JM/2], we obtain XF [A12JM/2 A11JM/2] +

JMXF [A10JM/2 A9JM/2] = I, or
[

A12JM/2 A11JM/2

A10JM/2 A9JM/2

]
is also the inverse. It follows that A11 =

A10JM/2 and A12 = A9JM/2, or [XF JMXF ]−1 =
[

A9 A10

A10JM/2 A9JM/2

]
. Letting A9 = A3 + A4

and A10 = (A3−A4)JM/2, the inverse can be written as
[

IM/2 IM/2

IM/2 −IM/2

]
diag(A3,A4)

[
IM/2 JM/2

IM/2 −JM/2

]
.

Nonsingularity demands A3, A4 to be nonsingular since the other two matrices are nonsingular.

�

The causal inverse may be readily obtained from earlier E−1
1 (λ) result:

R(λ) = λnF /8
[

IM/2 IM/2

JM/2 −JM/2

]
diag(A−1

3 ,A−1
4 )

[
IM/2 IM/2

IM/2 −IM/2

]
·

diag(IM/2λ
−1 +

nF∑
i=2

J i−1
F λ−i,−IM/2 −

nF−1∑
i=1

λiJ i
F )

[
IM/2 IM/2

−IM/2 IM/2

]
diag(A−1

1 ,A−1
2 )

Since both the Jordan forms are same in a FOLPFB, nF = nR. So the maximum length

of the synthesis filters is 2nF M . Note that the characterization of [5] may be shown to be

identical (upto scaling, permutation of filters, and flipping of impulse responses) to the proposed

characterization for JF = 0 (synthesis length 2M). A FOLPFB may be designed in a similar

fashion to [1]. All possible JF (that is, all possible non-increasing positive integers b0, ..., bn

summing up to M
2 ) have to be considered. If the synthesis length not more than Lmax is

desirable, then b0 should be chosen such that b0 ≤ Lmax
2M . Alternately, a restriction on the

reconstruction delay may be enforced in a similar fashion. For each choice of JF , the matrices

A1 to A4 are optimized, and the best optimized filterbank is chosen. These matrices are

parameterized as in [1] using QL factorization: Ai = QiLi for i = 1, 2, where Qi is a M
2 × M

2

orthogonal matrix (M(M−2)
8 Givens rotations as parameters) and Li is a M

2 × M
2 lower triangular

matrix (M(M+2)
8 elements as parameters, diagonal elements should be non-zero). Resulting

structure of E1(λ) is shown in Figure 1, where Ti are the diagonal blocks of T(λ). From
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E1(λ) Qi Li T1 T2

Figure 1: Structure of E1(λ) (butterflies of Qi are 2 × 2 rotations, filled box indicates delay,
each dotted line in Ti is present or absent depending on JF )

theorem 2 of [1], the McMillan degree of a first order analysis polyphase is Γ + RF where RF

is the rank of JF . A structure is minimal if its number of delays equals the McMillan degree.

Noting that T1 requires M
2 = Γ delays, and T2 requires RF (= number of 1’s in the upper

off-diagonal of JF =
∑

i(bi − 1)) delays, the proposed structure is minimal.

4 Design Examples

In the first example, M = 6 channel analysis length 12 LPFB and M = 4 channel analysis

length 8 LPFB is designed. The filters are optimized for maximum subband coding gain,

Gsbc = σ2
x/

∏M−1
i=0 [aibi]

1/M , where ai =
∫ π
0 Sxx(ejω)|Hi(ejω)|2dω/π, bi =

∫ π
0 |Fi(ejω)|2dω/π,

Sxx(ejω) and σ2
x are the one-sided psd and the variance of the source respectively, and Hi(z)

and Fi(z) are analysis and synthesis filters. An AR(1) source with ρ = 0.95 is considered.

Table 1 compares the coding gain obtained for all choices of JF . For example, if M = 6 then

Γ = 3, and possible b0, ..., bn sets, as shown in Table 1, are {1,1,1}, {2,1} and {3} (first case has

anticausal inverse, remaining cases have non-anticausal inverse [1]). Maximum synthesis length

is also given in the table. If synthesis length is restricted to Lmax = 24, say, then only first two

of these cases are permissible.

Table 1 shows that longer synthesis filters perform better than synthesis length 2M (i.e.,

b0 = 1) filters for this source. Case {2,1} for M = 6 and case {2} for M = 4 gives maximum

coding gain. Number of iterations taken in each case is also tabulated, where a single iteration

takes roughly 2.2 × 105 flops for M = 6 and 8.5 × 104 flops for M = 4 in Matlab. Figure 2

shows the analysis and synthesis responses for M = 4 channel for {2} case.

In the second example, M = 10 channel analysis length 20 LPFB with bi set {1,1,1,1,1}
(synthesis length 20) is designed. The filters are optimized for ideal passband and stopband
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M {bi} max. syn. len. Gsbc #iter.
6 {1,1,1} 12 6.93 1535

{2,1} 24 8.30 2242
{3} 36 7.40 4747

4 {1,1} 8 5.65 367
{2} 16 5.99 465

Table 1: Coding gains of design examples
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Figure 2: Filter bank responses for first example, M = 4

shape in the Chebyshev sense (passband weight 10 times stopband weight). Figure 3 shows the

analysis responses.

In conclusion, the approach of [1] is extended to develop a complete and minimal character-

ization for M -channel linear phase FIR PR filterbank with analysis length 2M but unrestricted

synthesis length. Design examples illustrate the effectiveness of this characterization. It is

possible to restrict the synthesis filter length or reconstruction delay. The results derived here

may be used towards designing higher order filterbanks for a given Jordan form. A structure

for the higher order case for any choice of Jordan form is still open.
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