Eigenstructure approach for complete characterization of linear

phase FIR perfect reconstruction analysis length 2M filterbanks

Anamitra Makur*, Arigovindan Muthuvel’, P Viswanadha Reddy®
* Nanyang Technological University, Singapore
T Swiss Federal Institute of Technology, Lausanne, Switzerland

@ General Electric, Bangalore, India

EDICS: 2-FILB Filterbank design and theory

Abstract

The eigenstructure based characterization of M-channel FIR PR filterbanks of [1] is extended
here to the linear phase case. Some results relating to linear phase filterbanks is derived
by finding appropriate restrictions on the eigenstructure of the analysis polyphase matrix.
Consequently a complete and minimal characterization for such filterbanks with all analysis
length 2M and any synthesis length is developed. Parameterization and design examples are

also presented.

1 Introduction

In [1] we used the eigenstructure representation of the polyphase matriz to propose complete
characterizations of FIR perfect reconstruction M channel filterbanks with first order analy-
sis polyphase matrix. Linear phase FIR perfect reconstruction filterbanks (LPFB) find ap-
plication in many signal and image processing fields. In this correspondence we extend the
eigenstructure representation to obtain a complete characterization of linear phase FIR perfect
reconstruction M channel filterbanks with all analysis filter length being 2M (hence first order
analysis polyphase matrix), referred henceforth as FOLPFB. The synthesis filter length in this

characterization is not restricted to 2M as is conventionally done, but may take value upto M?2.

Characterization of a subclass of LPFB, such as orthogonal, M = 2, or M = 3 has been
reported on several occasions. Design of FOLPFB with a multi-stage structure using DCT

such that a fast implementation exists is reported in [2], where it is called the lapped biorthog-
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onal transform. Design of LPFB of any order is reported in [3], when first K filters are given
such that the part polyphase matrix has rank K for all z=! except z~! = 0, and the re-
maining filters are designed. In [4] symbolic computation is used to characterize LPFB of
any order. However, none of the above characterizations are complete. In [5] a lattice struc-
ture is used to characterize the LPFB, so that the analysis polyphase matrix of FOLPFB

1+2z"HUu (1-2"Hu U UoJd
becomes %ﬁ Elizflgv ElJrzflgV } : [ VOJ]OWQ 0_\%/2 } where U, V, Uy and Vg are non-

singular % X % matrices, and Jj is k X k counter identity matrix. It is shown to be complete

for FOLPFB with synthesis length 2M [6].

We briefly describe below the characterization of [1]. Replacing z~! by A, the Ith order
analysis polyphase matrix E(z) is seen as a matrix polynomial E;(\). Any matrix polynomial
may be characterized by the Jordan pair (or decomposable pair, or spectral data) (Y, T(\))
with Y = [Xr Xg| and T(\) = diag(IrA — Jr, JrA — In—1), where diag() represents a block
diagonal matrix with the arguments as the blocks in sequence, Iy is k X k identity matrix,
and I" is the degree of |E;j(\)|. Xp is the M x I' canonical set of Jordan chains and Jr is
the I' x I Jordan form of E;()\) (finite Jordan pair, or finite spectrum). Jr is block diagonal
with Jordan blocks of size by, ..., b, such that b; are non-increasing positive integers summing
up to I'. Each Jordan block’s diagonal elements are eigenvalues of E;()), upper off-diagonal
elements are 1, and remaining elements are 0. X and Jg are the corresponding M x (MI—T)
and (M1 —T) x (Ml —T) matrices of the reversed matrix polynomial A'E;(A~!) for the zero

eigenvalue (infinite Jordan pair, or infinite spectrum). It follows that [7]

E/(\) = A(Liy — P)T(N)S ', Q(N) (1)
where
Xp XrJTFE In
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A is M x M1 matrix such that [ST , AT])T is nonsingular, and P = diag(Ir, Jr)S; " [Tari—ar 07Si—o.

For FIR inverse to exist, E;(\) has to be a matrix polynomial with monomial determinant.

This is equivalent to all eigenvalues of E;(\) being zero. Thus, Jr (as also Jgr) should have
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'For example, for T' = 4, {b;} = {3, 1} and zero eigenvalue, Jr =

oo oo
o OO
[N el
oo oo




a zero diagonal. Further, for the first order (I = 1) case (1) simplifies to the block diagonal
characterization [1]

Ei(\) = AT(\)Y ™ 3)
where A and Y are any M x M nonsingular matrices. Note that Jr, Jr are nilpotent ma-
trices with indices of nilpotency nr and ngr (np = by, size of the largest Jordan block of Jr,
etc.). Then the synthesis polyphase becomes E7'()\) = Ydiag(IpA~! +>0E ‘7}71)\*“, —Iy_r—
Z?:Rl_l NTH AL Tt follows that the maximum length of synthesis filters is (ng +ng)M, and
reconstruction delay is (np 4+ 1)M — 1. The characterization allows unconstrained parameter
optimization and provides control over the length of the synthesis filters and reconstruction

delay.

2 Some Results for LPFB

For an M-channel LPFB with analysis filter lengths Mkq + s, ..., Mkyr—1 + s for integer k; and

0 < s < M, the analysis polyphase matrix E(z) satisfies [8]
E(z) = Ddiag(z %t . ;7 Fv— IO E( 7 diag(z 71, Tar—s) (4)

where D is an M x M diagonal matrix with [£] diagonal elements 1 (corresponds to symmetric
filters) and rest —1 (antisymmetric filters). Without loss of generality we assume the first [2]

elements are 1.

Theorem 1: For a LPFB with analysis filter lengths M kg +s, ..., Mkp—1 + s and average length
L(wga I'= (Lavg - M)/2
Proof: Since T is the degree of |E;(\)|, equating the degree of determinant of both sides of (4),

'=ko+..+kyo1—M—T+s. Putting Lyyg = ko + ... + kpr—1 + s the result is obtained. O

Consider all analysis filter lengths to be M (I + 1) (k; =1+ 1,5 =0). Then (4) reduces to

E;(\) = DXE,(A YTy, (5)

Ml
1L

and from theorem 1, I' =
Theorem 2: For a LPFB with analysis filter lengths M (I 4+ 1), Jr = Jr and Xg = Iy Xp.

Proof: Jr and X are Jordan form and canonical Jordan chain of E;(\) for zero eigenvalue. Fur-

ther, Jr and X are Jordan form and chain of N'E;(A~1) for zero eigenvalue. Pre-multiplication



by a constant nonsingular matrix does not change the Jordan form or chain [7]. Therefore, Jr
and Xg are Jordan form and chain of DA'E;(A~!). Post-multiplication by a constant nonsin-
gular matrix does not change the Jordan form, but the Jordan chain is pre-multiplied by the
same matrix. Therefore, Jr and Jy X are Jordan form and chain of DANE;(A~1)J,,. But

from (5), D)\lEl()\_l)J]V[ is El()\) Therefore, jR == jF and JMXR = XF, or XR = J]V[XF. a

Lemma 1: For a LPFB with analysis filter lengths M(l + 1), A(Ip; — P) is of the form
[ %1 :2 } { Laijo - —Taiys ], where Ay, Ay are of size [%] x 2! and |4 | x 2! respectively.

Inrije Ianige 2

This may be shown as follows. Substituting (1) on both sides of (5),
ATy, —P)T(NS; L, Q(\) = DALy — P)AT(A DS AN TQA )T s (6)

Since Jp = Jr and I' = MTZ, AT(A71) = diag(Ipsi/2 — TrA, T — Inpie) = —J1r'T(A)J 1 where
J; = { 0 IMOZ/ 2 }, since pre- and post-multiplication by J; swaps two blocks of the diagonal

Inriy2

of T(\). Further, A'"1Q(A™1)J s equals

)\l_llM )\Z_IJM Iy
)\leIM ; )\172JM J .
: S e R P I
I, Ju )\lillM

which is J3;;Q(A). Therefore, (6) may be written as
ALy —P)T(M)S;4Q(N) = —DA(Lyy — P)I T(N)JI S 30uQ(N). (7)

The constant matrices on both sides before T(A) must be equal. Therefore A(Iy; — P) =
—DA(Iy; —P)J;. Let ATy —P) = [ 2; 22 } where A1, Ay are [%] X %, and Ao, Ag are

. . . A A —As -A
L%J X MTZ Since D = diag(Ips/91, —I|ar/2)), it follows that —D[ A; Az }JI = { A65 A; ],

or A5 = —A; and Ag = Ay, or A(Ip;; — P) is of the form mentioned earlier.

A comment on A(Iy; — P) is in order. It is known that S;_5 of size (M1 — M) x MI is
full rank for a valid Jordan pair [7]. Let N be the basis for the null space of S;_3. A may be
expressed as A7S;_ o+ AgN. Then A(Iy; —P) = A7S;_o(Iny — P)+ AgN(Ip — P). The first

term A7(S;—2 — S;—2P) may be simplified. Since S;_odiag(Ir, Jr) equals

Xp XrTL? Xp XpThE
Xedr XrJp2 |10 0 XpJp  XpJp>
: : L)&]_ : :
XeJE? Xg XTI 2 XrJr



which is S;_; from (2) except the last row, it is equal to [Ip;—ps 0]S;—1. It follows that S;_oP =
Si—2diag(Ir, Jr)S; " Tari—ns 017S1—2 = [Tari— s 01Si—1S; Y [Tasr—ar 0]7Si—2 = Tasi— s O] Tasi— s 0)7S;—2
= S;_o. Therefore the first term of A(Iy; — P) is zero, or A(Ip;; — P) = AgN(Ip — P) for
some M x M nonsingular matrix Ag. It is known that P projects a M1 dimension vector to

the range space of S;_o [7].

Further, constant matrices on both sides of (7) between T(A) and Q(A) must also be equal.

This leads to S;_ll = JIS;_llJMl or S;_1 =JuuS;_1J7. Now JS;_1J7 may be expressed as

Xp XrTE™ JuXr IuXp TRt
XeJp  XrJ} > IuXrIr  IuXpJdy?

Ml 1=

XpJh! Xr IuXrTp JuXr
which should equal to S;_; of (2). This is automatically satisfied since Jgr = Jr and Xp =

JarXp. (Alternately, this may be used along with Jg = JF to show that indeed X = Iy XF.)

3 Characterization of FOLPFB

The difficulty in finding a structure (leading to characterization) for LPFB of any order from
(1), theorems 1, 2 and lemma 1 is in finding a general structure for Slill for any choice of Jr.
It is, however, possible to find such a structure for a given Jr. For example, if order [ = 2
and Jp = 0 (i.e., by = 1), then S; = diag(Xr, JyrXr) whose inverse diag(XEl,XEIJM) may
easily be characterized. Thus, any order LPFB restricted to certain class (a given Jr) may
be designed and implemented from (1). Note that, even without a structure, design of LPFB
of any order may be achieved using explicit inversion of S;_1 at every stage of the numerical

optimization.

For FOLPFB, however, the structure of Sl__l1 is independent of the choice of Jr as seen from
(3). This leads to the following complete characterization. It is known that such FOLPFB exists

only when M is even.

Theorem 3: Ei(\) of a FOLPFB can always be expressed as

El()\) = diag(Al, A2)|: Laje Tz }dlag(IM/Q)\ —JIr, JFA — IM/Q) ’

Ing/z Ingye

[ Inejz Iy }diag(Ag,A4)[ Inejz JInag2 }

Ingjz —Inye Ingjz —Jnmye



where A; for i = 1 to 4 are % X % nonsingular matrices and Jr is % X % Jordan form with

zero eigenvalue.
Proof: The proof follows from the proof of lemma 1. In case of FOLPFB, it is seen from

(3) that A(Ip;; — P) becomes a nonsingular M x M matrix A. Thus A, Az becomes square

Ingjz —Inye

submatrices. Since [
Ing/z Ingye

} is nonsingular, nonsingularity requirement leads to A1, Ao

to be nonsingular. Further, it is also seen from (3) that S;}Q()\) becomes S; !, = Y~ =

Ay  Ajp

[Xp JMXF]*l. Express the inverse as [Xp JM?(FT1 = [ A A

} where each submatrix
is % X % Then Xr[Ag Ajg] + Iy Xr[A11 Aq2] = I. Pre- and post-multiplying both sides
by Jar, and using [Ag AiglJy = [A1odars2 AgJarse], we obtain Xp[Aiadare Arndage] +

Iy Xp[A10T a2 AgJagya] =1, or [ xijﬁg 1191;]\];4//22 } is also the inverse. It follows that A, =

Ay Ajp

A1 prp2 and Agp = AgJ g, or [Xp Iy Xp] ™! = [ Avodrrs Asd

}. Letting Ag = A3+ Ay
. . I I . I J
and Ajg = (A3—A4)J /2, the inverse can be written as { Iﬁg _ﬁ;; }dlag(Ag, Ay) [ Iﬁ;z _}ng } )

Nonsingularity demands Ajs, A4 to be nonsingular since the other two matrices are nonsingular.

a

The causal inverse may be readily obtained from earlier E7'(\) result:

R(\) = )\nF/8{ Inie Iy }diag(Agl,AZI)[ Inie Inge } )

Inye —Juye Inez —Iny2
ng ngp—1 I I
. —1 1y —i i i . 1 A1
dlag(IM/g)\ —|—ng A Z’—IM/Q— Z )\1‘7})[ _ﬁ;; Iﬁjz }d1ag(A1 JAS )
=2 1=1

Since both the Jordan forms are same in a FOLPFB, np = ng. So the maximum length
of the synthesis filters is 2npM. Note that the characterization of [5] may be shown to be
identical (upto scaling, permutation of filters, and flipping of impulse responses) to the proposed
characterization for Jr = 0 (synthesis length 2M). A FOLPFB may be designed in a similar

fashion to [1]. All possible Jr (that is, all possible non-increasing positive integers by, ..., by

summing up to %) have to be considered. If the synthesis length not more than L,,q; is

desirable, then by should be chosen such that by < % Alternately, a restriction on the
reconstruction delay may be enforced in a similar fashion. For each choice of Jr, the matrices

A; to A, are optimized, and the best optimized filterbank is chosen. These matrices are

parameterized as in [1] using QL factorization: A; = Q;L; for i = 1,2, where Q; is a % X %
M(M=2)
8

Givens rotations as parameters) and L; is a 2 x 2 lower triangular

orthogonal matrix ( 2 X3

(M(M+2)
3

matrix elements as parameters, diagonal elements should be non-zero). Resulting

structure of Ej(A) is shown in Figure 1, where T; are the diagonal blocks of T(\). From
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Figure 1: Structure of E1(\) (butterflies of Q; are 2 x 2 rotations, filled box indicates delay,
each dotted line in T; is present or absent depending on Jr)

theorem 2 of [1], the McMillan degree of a first order analysis polyphase is I' + Rr where Rp
is the rank of Jr. A structure is minimal if its number of delays equals the McMillan degree.
Noting that T; requires % = I delays, and Ty requires Rp (= number of 1’s in the upper

off-diagonal of Jr = >,;(b; — 1)) delays, the proposed structure is minimal.
4 Design Examples

In the first example, M = 6 channel analysis length 12 LPFB and M = 4 channel analysis
length 8 LPFB is designed. The filters are optimized for maximum subband coding gain,
Gue = 02/ TIN5 o] "™ | where a; = [ Suale#)| Hi(e)2du/m, b = [ |Fi(e?*) Pduo/.
S.z(e7) and o2 are the one-sided psd and the variance of the source respectively, and H;(z)
and F;(z) are analysis and synthesis filters. An AR(1) source with p = 0.95 is considered.
Table 1 compares the coding gain obtained for all choices of Jp. For example, if M = 6 then
I' = 3, and possible by, ..., b, sets, as shown in Table 1, are {1,1,1}, {2,1} and {3} (first case has
anticausal inverse, remaining cases have non-anticausal inverse [1]). Maximum synthesis length
is also given in the table. If synthesis length is restricted to L., = 24, say, then only first two

of these cases are permissible.

Table 1 shows that longer synthesis filters perform better than synthesis length 2M (i.e.,
bp = 1) filters for this source. Case {2,1} for M = 6 and case {2} for M = 4 gives maximum
coding gain. Number of iterations taken in each case is also tabulated, where a single iteration
takes roughly 2.2 x 10° flops for M = 6 and 8.5 x 10* flops for M = 4 in Matlab. Figure 2

shows the analysis and synthesis responses for M = 4 channel for {2} case.

In the second example, M = 10 channel analysis length 20 LPFB with b; set {1,1,1,1,1}

(synthesis length 20) is designed. The filters are optimized for ideal passband and stopband



M {b;} | max. syn. len. | Ggp. | #iter.
6 |{1,1,1} 12 6.93 | 1535
(2,1} 24 8.30 | 2242
{3} 36 7.40 | 4747
1] {11} 8 5.65 | 367
(2} 16 5.99 | 465

Table 1: Coding gains of design examples
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Figure 2: Filter bank responses for first example, M =4

shape in the Chebyshev sense (passband weight 10 times stopband weight). Figure 3 shows the

analysis responses.

In conclusion, the approach of [1] is extended to develop a complete and minimal character-
ization for M-channel linear phase FIR PR filterbank with analysis length 2M but unrestricted
synthesis length. Design examples illustrate the effectiveness of this characterization. It is
possible to restrict the synthesis filter length or reconstruction delay. The results derived here

may be used towards designing higher order filterbanks for a given Jordan form. A structure

for the higher order case for any choice of Jordan form is still open.
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