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ABSTRACT

In this work, the problem of design of M channel IIR causal
stable perfect reconstruction filter banks is addressed and
a design approach based on the minimal factorization of
the state space form of the polyphase matrix are presented
based on the concept of factorization of rational matrix func-
tions. The analysis and synthesis polyphase matrices are
constrained to be minimal. Simulation results are presented
for 3 channel and 4 channel cases.

1. INTRODUCTION

Perfect reconstruction filter banks (PRFBs) are widely used
for signal decomposition, subband coding, subband adap-
tive filtering etc. A PRFB design involves designing its
analysis and synthesis polyphase matrices, E(z) and R(z)
[1]. E(z) with minimum phase determinant leads to the de-
sign of IIR PRFBs where the analysis as well as the synthe-
sis bank is causal stable. Causal stable IIR PRFBs have both
merits in that they have good responses unlike FIR case, and
additional processing for anti-causal filtering is not neces-
sary unlike anti-causal stable IIR case. 2 Channel designs
have been proposed in [3, 4, 5, 6]. General M channel
causal stable IIR PRFB designs have been proposed in [7]
and [8]. In [7], first an analysis low pass filter is designed,
then the remaining analysis filters are designed such that
E(z) becomes unimodular, using the Quillen-Suslin theo-
rem on the completion of unimodular matrix polynomials.
The design method is complex. It is highly likely that other
analysis filters may not have good responses as they are con-
strained by the first filter. In [8] M channel causal stable
IIR PRFB is designed by assuming a diagonal structure for
E(z) with each diagonal filter being minimum phase.

The problem of interest of the present work is design
methods for M channel causal stable IIR PRFBs using state
space form. Minimal factorization of the analysis polyphase
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E(z) is used to achieve such design. The paper is organized
as follows. Preliminaries, necessary assumptions and use-
ful results regarding minimal factorization of rational matrix
functions are presented in section (2). Proposed design us-
ing minimal factorization is given in section (3). Simulation
results are given in section (4) and conclusions in section
(5).

1.1. Notations and terminology

Boldface small letters represent vectors. Boldface capital
letters represent matrices. Ir represents r × r identity ma-
trix, and subscript r is omitted when the size is evident from
the context. Calligraphic letters represent matrix functions.
N (X) and R(X) represent nullspace and range of the ma-
trix X. Vectorspaces, fields and subspaces are represented
by the letters of the type L, such as C represents the space
of complex numbers. rank(), det(), and adj() denote rank,
determinant, and adjoint of a matrix. dim(), span() denote
dimension of a space and space spanned by vector(s).

2. PRELIMINARIES AND DESIGN APPROACH

In this section we describe the preliminaries and summarize
the design approach taken in this work. If E(z) and R(z)
are the M ×M analysis and synthesis polyphase matrices,
perfect reconstruction is achieved (neglecting scaling and
delay) when

R(z) = E−1(z) =
adj(E(z))

det(E(z))
. (1)

It is obvious that E(z) must be invertible. For IIR case,
causal stable synthesis filters are obtained if det(E(z)) is
minimum phase with E(z) being causal, which is obvious
from equation (1). Constraining E(z) with minimum phase
determinant is very difficult. This problem is tackled in this
work by taking E(z) in state space form.



As it is already known [9], any rational matrix function
E(z) can be expressed in state space form,

E(z) = D+C′(zI−A)−1
B
′

where D, A, B′ and C′ are M ×M , m×m, m×M and
M×mmatrices respectively. A is called the state transition
matrix.

The explicit inverse formula for E(z) [10] can be given
if E(z) is invertible at z = ∞, i.e., D is invertible. Rewrit-
ing the above equation we have

E(z) = D(I+C(zI−A)−1
B)

= DE
′(z) (2)

The inverse of E(z) is given by

R(z) = (DE′(z))
−1
= (I−C(zI−A∗)−1

B)D−1

= R
′(z)D−1 (3)

where
A

∗ = A−BC. (4)

2.1. Minimal systems

While designing filters using state space form, minimal sys-
tems are preferred so that non-unique representations ofE(z)
are avoided, and that its implementation involves minimum
number of delays. From [9, 10], if E(z) is minimal then
following conditions are satisfied, where k is the index of
nil-potency ofA.

• The m×Mk matrix C(A,B) = [BABA2
B · · ·

A
(k−1)

B] must be of rank m; this condition is called
controllability condition.

• Them×Mk matrixO(C,A) = [CT (CA)
T
(CA2)

T

· · · (CA(k−1))
T
] must be of rank m; this condition

is called observability condition.

To keep E(z) minimal, additional constraints are imposed
in the present design. It can be seen that if m ≤ M , full
rank matrices B and C are enough to satisfy both minimal-
ity conditions discussed above, irrespective of the rank of
A. So, in the present design methods we assume m ≤ M
(the dimension of the matrix A never exceeds the number
of channels M ) and rank(B) = rank(C) = m.

2.2. Factorization of rational matrix functions

Cascade approach for the design of filter banks received
lot of attention in the filter bank design community. Fil-
ter banks based on factorization of rational lossless systems
[2] is popular in filter bank designs. The propositions dis-
cussed in this section are general, i.e., B andC need not be

full rank and size of A is unrestricted. The design problem
boils down to factorization of rational matrix functions, ex-
haustively dealt in [10]. All the propositions described in
this chapter are taken from [10]. Here the main idea is to
decompose a minimal system of degree m into a product of
minimal systems with degree one. Now a question arises
that on what conditions do a larger system, which is mini-
mal, can be decomposed into product of degree one minimal
systems. The following proposition gives the conditions un-
der which a minimal system can be factorized into product
of degree one minimal systems as shown in figure (1).

Proposition 1 Let m be the size ofA in E′(z), and let

C
m = L1 + · · ·+ Lm (5)

where the chain

L1 ⊂ L1 + L2 ⊂ · · · ⊂ L1 + L2 + · · ·+ Lm−1 (6)

consists ofA-invariant subspaces1 whereas the chain

Lm ⊂ Lm + Lm−1 ⊂ · · · ⊂ Lm + Lm−1 + · · ·+ L2 (7)

consists of A∗-invariant subspaces. Then E′(z) admits the
minimal factorization

E
′(z) = [I+Cπ1(zI−A)

−1π1B]

· · · [I+Cπm(zI−A)
−1πmB] (8)

where πj is the projector2 on Lj along L1 + · · · + Lj−1 +
Lj+1 + · · ·+ Lm.
Conversely, for every minimal factorization

E
′(z) = E′

1(z)E
′
2(z) · · ·E

′
m(z) (9)

where E′
j(z) are rational M × M matrix functions with

E
′
j(∞) = I, there exists a unique direct sum decomposition

(5) with the property that the chains (6) and (7) consist of
invariant subspaces for A and A∗, respectively, such that
for j = 1, · · · ,m

E
′
j(z) = I+Cπj(zI−A)

−1πjB.

Detailed proof of the above proposition is given in [10].
The factorization (8) implies the minimal factorization for
E
′(z)

−1 as

E
′(z)

−1
= [I−Cπm(zI−A

∗)−1πmB]

· · · [I−Cπ1(zI−A
∗)−1π1B] (10)

In the propositions discussed above, since E′(z) is as-
sumed to be a minimal system, the matrices A, B and C
must satisfy the conditions for minimality discussed earlier.

1A subspace L is A-invariant if for any x ∈ L, Ax ∈ L

2A matrix P is a projector onto a space L, if P
2 = P and R(P) = L
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Fig. 1. Factorization structure of E(z)

3. MINIMAL FACTORIZATION BASED DESIGN

3.1. Construction of invariant subspaces

In this section we discuss the design method for decompos-
ing a minimal system into degree one systems. In the pre-
vious sections it was discussed that minimal factorization
requires information regarding the chain of invariant spaces
with respect to A and A∗. In order to simplify the calcula-
tion of invariant subspaces, we propose to constrain A and
A

∗ to be triangular.

Theorem 1 IfA is an m×m upper triangular matrix and
ej is an m dimensional vector with jth element as unity and
others being zero, then there exists an A-invariant chain of
subspaces

Se1
⊂ Se1

+ Se2
⊂ · · · ⊂ Se1

+ Se2
+ · · ·+ Sem

(11)

where Sej
is the span{ej}.

Proof: Let A be an m × m upper triangular matrix of the
form

A =















λ1 k2
1 k3

1 · · · km1
0 λ2 k3

2 · · · km2
0 0 λ3 · · · km3
...

...
...

. . .
...

0 0 0 · · · λm















(12)

Here the diagonal elements, which are the eigen values,
need not be distinct. Let x ∈ Mi, where Mi is the span{e1, e2,
· · · , ei}, then

x =
i

∑

j=1

αjej

where αj ∈ C. Now the vector

Ax =
i

∑

j=1

αj{Aej} =
i

∑

j=1

αjaj

where aj , the jth column of the matrixA, can be written as

aj =
j−1
∑

m=1

kjmem + λjej .

Using this in the previous expression,

Ax =
i

∑

j=1

λiαiei +
i

∑

j=1

j−1
∑

m=1

kjmαjem

bi z−1 ci

λi

+ +-- -- - -- --
66

¾
6
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Fig. 2. Realization of E
′

i(z)
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Fig. 3. Realization of R
′

i(z)

a chain of A∗-invariant subspaces Sem
⊂ Sem

+ Sem−1 ⊂
· · · ⊂ Sem

+ Sem−1
+ · · ·+ Se2 . 2

Using propositions (1) and above choice of matrices A
and A∗, there exists projector matrices πj on the space Sej

along the space Se1+ · · ·+Sej−1
+Sej+1

+ · · ·+Sem
. Since

the spaces Sej
are defined on the standard ordered basis, the

projector matrix πj is given by

{πj}k,m = 1 if k = m = j

= 0 otherwise. (13)

From the structure of the projector matrices given in equa-
tion (13), each degree 1 factor of E′(z) from equation (8)
can be simplified as

E
′
i(z) = (I+ ci(z − λi)

−1
bi)

where ci is the ith column of C and bi is the ith row of B.
The analysis polyphase matrix is then given as

E(z) = D(I+c1(z−λ1)
−1b1) · · · (I+cm(z−λm)−1bm)

(14)
and the synthesis polyphase matrix, from equation (10), is
decomposed as

R(z) = (I−cm(z−λ′m)
−1bm) · · · (I−c1(z−λ

′
1)

−1b1)D
−1

where λ′i are the eigen values (diagonal elements) of A∗.
The factors E′

i(z) and R′
i(z) are realized as shown in the

figures (2) and (3) respectively.

3.2. Design approach

The proposed design approach is as follows. For causal sta-
ble analysis and synthesis filters, poles of E′(z) and R′(z)
must be inside unit circle. From system theory it is known
that poles ofE′(z) are same as the eigen values ofA. Simi-
larly, the poles ofR′(z) are same as the eigen values ofA∗.
Thus, eigen values of A and A∗ must be inside unit circle
for causality and stability. A and A∗ are taken as triangu-
lar matrices to simplify the choice of invariant subspaces.
As mentioned earlier, in the present design, minimality of
E
′(z) is ensured if B and C are full rank and m ≤ M .

Even if B and C are full rank (m here), the product of the
matrices (BC = A−A∗) can have a rank less than m. The
bounds on rank of a matrix, generated by the product of two
full rank matrices is discussed in the following theorem.



Theorem 2 IfB andC arem×M andM×m full rank ma-
trices, and if r is the rank of their product, then r is bounded
as max{0, 2m−M} ≤ r ≤ m.

Proof: The rank of BC is given by [11]

rank(BC) = rank(C)− dim(N (B) ∩R(C)).

Since rank(BC) = r,

dim(N (B) ∩R(C)) = m− r. (15)

From equation (15),C hasm−r linearly independent columns
forming a subspace (say N

′

(B)) of the space N (B). The
dimension of N (B) is M −m. Since N

′

(B) is a subspace
of N (B), dim(N

′

(B)) ≤ dim(N (B)) which implies

m− r ≤M −m

r ≥ 2m−M (16)

which is the lower bound on r. For some m, this lower
bound can become negative. Since rank cannot be negative,
lower bound is then modified to zero. The upper bound on
r is m which is obvious from equation (15). 2

Choosing m ≤ M , with triangular matrices A and A∗

satisfying rank bound on (∆A = A −A∗) set by theorem
(2), full rank matricesB,C are constructed fromA andA∗

using the following theorem.

Theorem 3 If ∆A is an m ×m matrix with rank r and it
is known to be the product of two full rank matrices B and
C, with sizes m×M and M ×m respectively, and if r lies
in the bounds given by theorem (2), thenB andC are given
by

B = UX

C =

[

X
†

[

Σr

0

]

N (X)Y

]

V
T

where X is any m ×M full rank matrix, Y is any (M −
m) × (m − r) full rank matrix, Σr is an r × r diagonal
matrix, X† is the pseudo inverse of X, and U and V are
some m×m unitary matrices.

Proof: Taking the SVD of ∆A we have,

∆A = UΣXV
T

where U and V are m ×m unitary matrices and ΣX is an
m×m diagonal matrix with first r diagonal entries nonzero.

So, ΣX can be written as
[

Σr 0
0 0

]

, where Σr is the

nonzero block of ΣX. If X is any m ×M full rank matrix
and N (X)M×(M−m) is the null space of X, then the prod-
uctXN (X)Y is zero for any full rank matrixY(M−m)×(m−r)

(this fact is used below). Now ∆A is written as

∆A = U

[

Σr 0
0 0

]

V
T

= U

[

XX
†

(

Σr

0

)

0m×(m−r)

]

V
T

= U

[

XX
†

(

Σr

0

)

XN (X)Y

]

V
T

= UX

[

X
†

(

Σr

0

)

N (X)Y

]

V
T (17)

It is obvious that B = UX is full rank. Let us consider the
rank of C. Since XX† = Im, using the rank of product
concept,

rank(XX†) = rank(Im)

rank(X†)− dim(N (X) ∪R(X†)) = m

dim(N (X) ∪R(X†)) = 0 (18)

or the space spanned by the columns of X† and N (X) are

independent. So the block matrix
[

X
†

(

Σr

0

)

N (X)Y

]

is full rank if
(

Σr

0

)

and Y are full rank. Thus C =
[

X
†

(

Σr

0

)

N (X)Y

]

V
T is also full rank. 2

Free variables: In all examples in this work, a matrix of
certain rank is parameterized by the rotation angles and the
diagonal elements after its SVD decomposition. Thus, a
full rank m1 ×m2 matrix, where m1 −m2 = r ≥ 0, has
m1(m1−1)

2 +m2+
m2(m2−1)

2 = m1m2+
r2−r

2 parameters,
which becomes m1m2 parameters since in all examples r
is 0 or 1. For this method, for the invertible matrix D in
E(z), M × M free variables are required. mM parame-
ters are required for X, (M − m) × (m − r) parameters
are required for Y. Since A and A∗ are upper and lower
triangular matrices, depending upon the design a maximum
of m(m+1)/2 parameters are required for each. The diag-
onal elements ofA andA∗ are constrained to be inside unit
circle for causality and stability.

4. SIMULATION RESULTS

In this section the simulation results are presented. The cost
function used in the optimization is based on passband and
stopband shaping. Matlab constrained optimization routine
fmincon is used to constrain the eigen values of A and A∗

inside unit circle. In order to reduce the effect of initializa-
tion, optimization is started with only the passband error as
the cost function (very small weight for stop band). There-
after, the cost function is slowly changed by increasing the
relative weight for stop band at every step, until equal pass
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Fig. 4. 3 channel design with M = 3, m = 3
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Fig. 5. 4 channel design with M = 4, m = 3

band and stop band weight is arrived at. The upper triangu-
lar A and lower triangular A∗ are to be selected such that
rank(A−A∗) lies within the bounds given by theorem (2).
There exist some pairs of {A,A∗} which satisfy the above
condition, but there is no easy way to characterize all such
pairs. In the present design, one possible case is assumed

for m = 3: A of the form





λ1 α1 0
0 λ2 α2

0 0 λ3



 and A∗ of

the form





λ4 0 0
β1 λ5 0
0 β2 λ3



. Choosing α2 6= 0, β2 6= 0 and

λ1 6= λ4 ensures rank(A −A∗) = 3, which satisfies both
rank bounds of the examples below. For stability of analy-
sis and synthesis sections, 0 < |λi| < 1, ∀i = 1, · · · , 5 is
chosen.

Simulations are done for 3 channel and 4 channel cases.
First, 3 channel case is assumed with M = 3,m = 3,
which implies a rank bound of 3 from theorem (2). Fig-
ure (4) shows the magnitude responses of analysis filters.
The analysis and synthesis filters are of order (11/9). Next,
4 channel case with M = 4,m = 3 is assumed, for which
the rank bound is [2,3]. Figure (5) shows the magnitude re-
sponses of analysis filters. The analysis and synthesis filters
are of order (15/12).

5. CONCLUSION

An approach for the design of M channel causal stable IIR
PRFB are presented. The state transition matrix A of the
analysis polyphase E′(z) is assumed to be minimal, and is
factorized into degree one systems. This is possible if A-

invariant and A∗-invariant chain of subspaces of proposi-
tion (1) exist. By choosingA to be upper triangular andA∗

to be lower triangular satisfying rank condition given by the-
orem (2), such existance is guaranteed. Full rank matrices
B and C are constructed using theorem (3). Characteriza-
tion of the pairs {A,A∗} satisfying rank bound given by
theorem (2) can give a broader class of filter banks.
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