Properties of Matrix Operations

Properties of Addition (Subtraction)
The basic properties of addition for real numbers also hold true for matrices.
Let A, B and C be m x n matrices
A+£B=(ajj*b;j) corresponding elements are added or subtracted
Addition/subtraction can be done only with matrices of the same size!
1. —A=(-1)A
A+B = B+ A commutative
A+(B+C) = (A+B)+ C associative
There is a unique m x n matrix O with A+O = A additive identity
For any m x n matrix A there is an m x n matrix D (called -A) with
A+D =0 additive inverse

Nk

Properties of Matrix Multiplication
Unlike matrix addition, the properties of multiplication of real numbers do not all generalize to
matrices. Matrices rarely commute even if AB and BA are both defined. There often is no
multiplicative inverse of a matrix, even if the matrix is a square matrix. There are a few
properties of multiplication of real numbers that generalize to matrices. We state them now.
Let A, B and C be matrices of dimensions such that the following are defined. Then
Number of columns of the first matrix has to be equal to the number of rows of the second

matrix: [mxn]-[nxp]=[mxp]. Definition: AB=Z:aikbkj
k=1

AB#BA (in general)

A(BC) = (AB)C=ABC associative

AB+C) = AB+AC distributive

(A+B)C = AC+BC distributive

There are unique matrices I, and I, with

I.A=AIL =A multiplicative identity

We will often omit the subscript and write I for the identity matrix. The identity matrix is a
square scalar matrix with 1's along the diagonal. For example

Nk =

1 0 0
f:-:}[:] L=1010
001

Properties of Scalar Multiplication
Since we can multiply a matrix by a scalar, we can investigate the properties that this
multiplication has. All of the properties of multiplication of real numbers generalize. In
particular, we have
Let r and s be real numbers and A and B be matrices. Then

rA=(ra;j) multiply each element of a matrix by r
1. rA=Ar



1(sA) = (rs)A

(rt+s)A = rA+sA
r(A+B) = rA+1B
A(@B) = r(AB) = (rA)B

A ol

Properties of the Transpose of a Matrix
Recall that the transpose of a matrix is the operation of switching rows and columns. We state
the following properties. We proved the first property in the last section.
Let r be a real number and A and B be matrices. Then
Definition: if A=(a;)) then A'=(aj))
. AH' =A
2. (AB)" = B'AT
3. (A +sB)' =rA" + sB"
a) (rA)" = rA" (s=0)
b) (A+B)' = AT+B” (r=s=1)
¢) (A-B)' = AT—BT (=1, s=-1)

Properties of Unit Matrices
| (a unit matrix) is a square matrix with all its diagonal elements equal to 1.

1. AI=IA=A

Properties of Determinants
Defined only for square matrices.

1. Iftwo rows (or columns) are interchanged then the sign of the determinant is changed.

2. If two rows (or columns) are the same then the determinant is 0.

3. Ifarow (or column) is multiplied by a constant Kk then the determinant is also multiplied
by k.

4. Adding a number p times one row (or column) to another row (or column) does not
change the value of the determinant.

5. |AB|=A] |B|
6. |AT|=A]
Properties of the Inverse Matrices
The inverse of a square matrix A with |A|#0 is the matrix defined by A™ = L

(AT)-I _ (A-I)T
(AB)'=B'A"

A~
1. AAT=]A|I=ATA (The Cofactor Theorem)
2. AAT=1=A"A
3. (A=A
4. (rA)'1=%A'1
5,
6.



PROPERTIES OF MATRICES
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BASIC OPERATIONS - addition, subtraction, multiplication

For example purposes, let A = & bu and ¢e To and C gy
U & . =a . =&
& dy & hi &t
then A +B éa bu ée fu éaxe bxfy
m + :é ,ié = A e
& di & hg &+g dhg
4 AB éa boge fu_éetbg af +bhy AC é@ bygiu éi+bu
an - x X i =A B.0=&. U
& dffo hli &e+dg of +anf & diEil &i+dg
ascaar times amatri s3éa bu g 3bu
I iX i
& dd" & aal
CRAMER'S RULE for solving simultaneous equations
Given the equations: We express them in matrix form: Where matrix A is and vector y is
2%+ X, + %5 =3 € 1 1uéxu € € 1 1u &0
~ s A ~ A _e u u
X +3%, - X, =7 %3 -Ug U= Azl 3 -1 &
& ue-u &u g 1 19 élg
X X X =1 gl 1 lgexy &l
According to Cramer’ srule:
31 1 2 31 21
7 3 - 17 - 1 3 7
xl—lll 82 X_111_4_1 X3_111-82
= S = l=—= == = - =
A4 A4 A4
Tofind x; we replace the first Tofind x, we replace the second Tofind X3 we replace the third
column of A with vector y and column of A with vector y and column of A with vector y and
divide the determinant of thisnew | divide the determinant of this new divide the determinant of this new
matrix by the determinant of A. matrix by the determinant of A. matrix by the determinant of A.
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THE DETERMINANT
The determinant of amatrix is a scalar value that is used in many matrix operations. The matrix must be
square (equa number of columns and rows) to have a determinant. The notation for absolute value is used
to indicate "the determinant of", e.g. |A| means "the determinant of matrix A" and [2 P

c d

determinant of the enclosed matrix. Methods for finding the determinant vary depending on the size of the
matrix.

‘ means to take the

The determinant of a 2x2 matrix issmply: b

d

%\

ab

where A = a : detA=|A|=C d‘zad-bc

[ ey en?

The determinant of a 3x3 matrix can be calculated by repeating the a, a, a,|a, a,
first two columns as shown in the figure at right. Then add the N 7

. a21 a22 a23 aZl a22
products of each of three diagona rows and subtract the products of /X N
the three crossing diagonals as shown. % % % | % %

Q,85,85; T 8,88y + 3,383, / / +\+\+
T Q585,85 - ;8585 - 81,8585 ) ) )

This method used for 3x3 matrices does not work for larger matrices.

The determinant of a 4x4 matrix can be calculated by finding the determinants él ou
of agroup of submatrices. Given the matrix D we select any row or column. (:e4 1@
Selecting row 1 of this matrix will smplify the process because it contains a D=¢ u
zero. Thefirst element of row oneis occupied by the number 1 which belongs to €2 3u
row 1, column 1. g-g 53

Mentally blocking out this row and column, we take the determinant of the

remaining 3x3 matrix d;. Using the method above, we find the determinant of d; d. = 30
to be 14. 1 a
56

Proceeding to the second element of row 1, we find the value 3 occupying row 1, g
column 2. Mentally blocking out row 1 and column 2, we form a 3x3 matrix 1@
with the remaining elements d,. The determinant of this matrix is 6. d,= u
u

Similarly we find the submatrices associated with the third and fourth elements of 54
row 1. Thedeterminant of d; is-34. It won't be necessary to find the .
determinant of d.. 13
Now we aternately add and subtract the products of the row elements and their ds = 31:1
cofactors (determinants of the submatrices we found), beginning with adding the S

first row element multiplied by the determinant d, like this:
detD=(1' detdl)- (3' detd2)+(2' detds)- (O' detd4) d,=

WO N WO PR R PRPRRPLPPPFPPEPENDN
w

poogy BRPR WRR MRER BRPR w o & w

=14- 18+(- 68)- 0=-72 1§
The products formed from row or column elements will be added or subtracted Adding or o
depending on the position of the elementsin the matrix. The upper-left dement g piract- ﬂ
will aways be added with added/subtracted elements occupying the matrix in a ing matrix o a
checkerboard pattern from there. Asyou can see, wedidn't needto caculated,  elements: -t

because it got multiplied by the zero in row 1, column 4.
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AUGMENTED MATRIX

_ |
A set of equations sharing the same variables may be y+3z=5 013 | S
written as an augmented matrix as shown at right. 2Xx+2y+z=11 2 2 1,11
|
X+y+2z=13 131 2,13
REDUCED ROW ECHELON FORM (rref)

Reducing a matrix to reduced row echelon form or rref isameans of solving r | m

the equations. In this process, three types of row operations my be performed. 013 | S

1) Each element of arow may be multiplied or divided by a number, 2) Two 2 21 | 11

rows may exchange positions, 3) a multiple of one row may be added/subtracted 131 2,13

to another.

1) Webeginby [2 2 1111 2) Thendivide [2 2 1)11| .2 [1 1 5!55]
swappingrows |0 1 3, 5 row 1 by 2. 0 13,5 =|013,5
1and 2. 131 2,13 13 1 2, 13] 13 1 2,13

3) Thensubtract [1 1 5!55|-  4)Andsubtract [1 0-25 5] 1 0-25 5|
row 2 from 01 3,5 3timesrowl |0 1 3, 5 =|/0 13,5
row 1. 13 1 2,13 from row 3. 3 1 2,13|-3(1) |0 195115

5) Thensubtract |1 0-25 5 6) And divide 1 0-25 5| (1 0-25 5|
row 2 from 0135 row3by65 |0 1 3.5 =|0 13,5
row 3. |0 195115 - |0 065/65]/,65 |0 0 1, 1 |

7) Add 2.5x 1 0-25 5 |+25111) 8)Andsubtract |1 0 0! 3 1 0 0! 3]
row 3 to 0 13,5 3x row 3 01 3,5|-311) =|010,; 2
row 1. 001,1 fromrow2. [0 0 1.1 [0 0 1, 1]

The matrix is now in reduced row echelon form and if we rewrite x =3 |

the equations with these new values we have the solutions. A matrix _ s 100 : 3

isin rref when the first nonzero e ement of arow is 1, al other y= 010 : 2

elements of a column containing aleading 1 are zero, and rows are z=1 0O 0 1,1

RANK

ordered progressively with the top row having the leftmost leading 1.

When amatrix isin reduced row echelon form, it is possible to tell how may solutions there are to the
system of equations. The possibilities are 1) no solutions - the last element in arow is non-zero and the
remaining elements are zero; this effectively saysthat zero is equal to a non-zero value, an impossibility, 2)
infinite solutions - a non-zero value other than the leading 1 occursin arow, and 3) one solution - the only
remaining option, such as in the example above.

If an invertible matrix A has been reduced to rref form then its determinant can be found by
det(A) = (- D°kk, »k , where sisthe number of row swaps performed and ki, ko, - - - k- arethe
scalars by which rows have been divided.

The number of leading 1'sisthe rank of the matrix. Rank is aso defined as the dimension of the largest
square submatrix having a nonzero determinant. The rank is aso the number of vectors required to form a
basis of the span of a matrix.
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THE IDENTITY MATRIX

Inthiscase, therref of A istheidentity matrix, denoted |, characterized by the é 0 Ou
diagonal row of 1's surrounded by zerosin asquare matrix. When avector is rref(A) = go 1 OH
multiplied by an identity matrix of the same dimension, the product is the vector 0 0 1f
itsdlf, I,v=v.
LINEAR TRANSFORMATION
This system of equations can be represented in the form Ax = b. & 1 30 éxu é5u
Thisis also known as alinear transformation from x to b A= 2 1 x=gyy b= gy
because the matrix A transforms the vector x into the vector b. 8 1 2¢ &zf 813
ADJOINT
For a2x2 matrix, the adjoint is: éa by éd -by
where A = a g adA=a q
& dg &C ay
For a 3x3 and higher matrix, éa b cu
the adjoint is the transpose of _é u
the matrix after al elements where B = (:ed € f o
have been replaced by their gg h iy
cofactors (t.he determinants of sle f d fl ld do éle f b d b clu
the submatrices formed when é - 0 é - , G
the row and column of a el i1 fg i Jg hg glh i hil le Ty
particular element are . b ¢ |a c a bu €1d f| |a c a clU
adjB=6& ) ) - u=é ) ) - ]
excluded). Notethe pattern g h i g i g hg elg i g i d flg
of s_lgns'beglnnlng with g b ¢ a ¢ la b H g d a bl lab H
positive in the upper-left = g 5l g I W Ho g y
corner of the matrix. gle H Eld 9 H

INVERTIBLE MATRICES
A matrix isinvertibleif it is a square matrix with a determinant not equal to 0. The reduced row echelon
form of an invertible matrix is the identity matrix rref(A) = I,,. The determinant of an inverse matrix is
equal to the inverse of the determinant of the original matrix: det(A™) = 1/det(A). If A isaninvertible
n x nmatrix then rank(A) =n, im(A) =R", ker(A) ={0}, thevectorsof A arelinearly independent, 0
isnot an eigenvalue of A, thelinear system Ax =b hasaunique solution x, foral b inR".

THE INVERSE TRANSFORMATION

If A isaninvertible matrix, the inverse matrix could be € 1 3u 6023 -008 0380
used to transform b into x, Ax=b, Ab =x. Aninvertible A=g2 2 13 A'l@go.os 0.69 -0.463
linear transform such asthisis called an isomor phism. 8 1 2§ £031 -023 015§
A matrix multiplied by its inverse yields the identity matrix. él 1 10é10 -6 10 €é 0 Oou
-1 ue u_e u
BB =1, : 3 2@@'2 1 ogzéo 1 o@
88 8 27 5 -1 0 0 1f
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FINDING THE INVERSE MATRIX — Method 1

To caculate theinverse él 1 10 1) Rewrite the matrix, é 1 11 0 ou
.matri>_<,b;:onsider th<=T B = gz 3 23 addi ng theri]derjtirt]y 22 3 20 1 03
invertible 3x3 matrix B. 8 8 2§ matrix to the right. & 8 20 0 14
2) Perform row operations on the 3x6 matrix to put B inrref form. Three é 0 010 -6 1U
types of row operations are: 1) Each element of arow may be multiplied or go 10-2 1 oY
ol .. ) a
divided by a number, 2) Two rows may exchange positions, 3) a multiple of go 0 1-7 5 -10
one row may be added/subtracted to another. L
3) Theinverseof B isnow gl0 -6 1y
inthe3x3matrixtothe g1=€, 1 (U
right < u
' &7 5 -1y

If amatrix is orthogonal, its inverse can be found ssimply by taking the transpose.

FINDING THE INVERSE MATRIX — Method 2
To calculate the 1) First we must find the adjoint of A

T

_ , él3 2 2 2 2 3u
inverse matrix, matrix B. The adjoint of B isthe é 8 ZJ - ‘3 ZJ ‘3 8 u
consider theinvertible transpose of matrix B after all e u
3x3 matrix B. dlements have been replaced by their . =g_ 11y 11 g ﬂ
, . cofactors. (The method of finding the a8 2 13 2 3 80
él 1 1u .. L Y p
a 0 adjoint of a2x2 matrix is different; e u
B=%2 3 27 : alt 1 |11 14y
€ u seepage 4.) The || notation means als o Tl d b 3
8 8 2y "the determinant of". 8 H
2) Cdculating the &10 2 70 3) And then taking the &10 6 -1
determinants we get. adj B :g 6 -1 - 53 transposeweget. o4 B =g 2 -1 0 3
g-1 0 -1§ g7 -5 -1
4) Now we need the él 1 10
determinant of B. deté 3 23:3 2+2 3+2 83 3-2°8-2 2=-1
88 2
The formulafor the 5) Filling in the vaues, é&10 6 -1
inverse matrix is we have the solution. é U
e2 1 % g0 6 1
" © " - u
B_l:—adJB B—l_67 -5 -1H_é_2 1 Ol:l
det B = 1 ~é ¥
g7 5 1y
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SYMMETRIC MATRICES

A symmetric matrix is a square matrix that can be flipped across the diagonal without élL 4 50
changing the elements, i.e. A = AT. All eigenvalues of a symmetric matrix are redl. ‘?4 ) 6@
Eigenvectors corresponding to distinct eigenvalues are mutually perpendicular. ggs 6 35
A skew-symmetric matrix has off-diagonal elements mirrored by their negatives across the g 1 a bg
diagona. AT =-A. ga 2 ¢,
gb -c 3f
MISCELLANEOUS MATRICES

The transpose of a R él 9 A diagonal matrixiscomposed é 0 Ou
matrix Aiswriten AT Ao-& 2 30+ _& L0 of zeros except for the diagonal &, , oY
andisthen x mmatrix & 7 50 € oo and is commutative with another ~ § 7
y : &3 54 , o _ & 0 34

whoseijth entry isthe diagonal matrix, i.e. AB = BA.

jith entry of A.

A diagonal matrix of & 0 Oy A lower triangular matrix has above the €1 0 ou
equal elements A=% 2 ol diagonal. Similarly an upper triangular matrix 212 1 0@
commutes with any S u has O's below. a U
€ 0 2y &5 7 1f

matrix, i.e. AB = BA.

IMAGE OF A TRANSFORMATION

Theimage of atransformation isits possible values.
The image of amatrix is the span of its columns.
Animage has dimensions. For exampleif the
matrix has three rows the image is one of the
following:

1) 3-dimensiona space, det(A)* O, rank = 3

2) 2-dimensiona plane, det(A) =0, rank =2

3) 1-dimensionad line, det(A) =0, rank =1

4) 0O-dimensional point at origin, A =0

3u

1
Giventhe matrix:A=% 2 13 of the transforma-

812

tion Ax, the image consists of all combinations of

its (linearly independent) column vectors.

SPAN OF A MATRIX
The span of amatrix isal of the linear combinations of its
column vectors. Only those column vectors which are

linearly independent are required to define the span.

KERNAL OF A TRANSFORMATION
The kernal of atransformation isthe set of vectors that

are mapped by amatrix to zero. The kernal of an

invertible matrix is zero. The dimension of akerna is

the number of vectors required to form the kernal.

LINEAR INDEPENDENCE

Qu o &u
8 &l ex
© 1 30 Qi ey e
— a _ a a, . é&u
A= 2 1y Sn=a gyt toel,
8 1 24 & €ld e
4 1 10 ¢1u
T(x)=Cx=4 2 SHSXZH:O kernal x:g- ZH
& 3 SHEGH g1

A collection of vectorsis linearly independent if none of them are a multiple of ancther, and none of them
can be formed by summing multiples of othersin the collection.
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BASIS
A basis of the span of amatrix isagroup of linearly independent vectors which span the matrix. These
vectors are not unique. The number of vectors required to form abasisis equal to the rank of the matrix.
A basis of the span can usually be formed by incorporating those column vectors of a matrix corresponding
to the position of leading 1'sin the rref matrix; these are called pivot columns. The empty set g isabasis
of the space {0}. Thereisalso basis of the kernal, basis of the image, eigenbasis, orthonormal bass, etc.
In genera terms, basis infers a minimum sample needed to define something.

TRACE
A traceisthe sum of the diagonal elements of a square matrix and is written tr(A).

ORTHONORMAL VECTORS
Vectors are orthonormal if they are al unit vectors (length =1) and are orthogonal (perpendicular) to one
another. Orthonormal vectors are linearly independent. Their dot product of orthogonal vectorsis zero.

ORTHOGONAL MATRIX
An orthogonal matrix is composed only of orthonormal vectors; it has a determinant of either 1 or -1. An
orthogonal matrix of determinant 1 isarotation matrix. Itsusein alinear transformation is called a
rotation because it rotates the coordinate system. Matrix A isorthogonal iff ATA = 1,, or equivalently A
t=AT

ORTHOGONAL PROJECTION
Visan n x mmatrix. vi, Vs, ... Vy are an orthonormal basis of V. For any vector x in A" there isaunique

vector winV such that x * w. The vector w is ORTHOGONAL PROJECTION OF x ONTO V
called the orthogonal projection of x onto V. W = projvx = (Vl ><X)V1 +..+ (v, X))V
see also Gram-Schmidt. pdf " "

EIGENVECTORS AND EIGENVALUES
Given a square matrix A, an eigenvector isany vector v such that Av isascalar multiple of A. The
eigenvalue would be the scalar for which thisistrue. Av =| v. To determine the eigenvalues, solve the
characteristic polynomial det(l I, - A) =0 for valuesof | . Then convert to rref form and solve for the
coefficients as though it was a matrix of simultaneous equations. This forms a column vector which isan
eigenvector. Where there are 0's, you can let the coefficient equal 1.

EIGENSPACE
The eigenspace associated with an eigenvalue | of an n x n matrix isthe kernal of the matrix A -1 1, and
isdenoted by E,;. E, consistsof al solutionsv of the equation Av =1 v. In other words, E; consists of al
eigenvectors with eigenvalue | , together with the zero vector.

EIGENBASIS
An eigenbasis of an n x n matrix A isabasis of R" consisting of unit eigenvectors of A. To convert a
vector to a unit vector, sum the squares of its elements and take the inverse square root. Multiply the
vector by thisvalue.

GEOMETRIC MULTIPLICITY
The geometric multiplicity for agiven eigenvalue | isthe dimension of the eigenspace E; ; in other words,
the number of eigenvectors of E,. The geometric multiplicity for agiven| isequa to the number of
leading zerosin the top row of rref(A -1 1,)..

ALGEBRAIC MULTIPLICITY
The algebraic multiplicity for agiven eigenvalue | isthe number of times the eigenvalue is repeated. For
example if the characteristic polynomial is (I -1)%(1 -2)° then for | = 1 the algebraic multiplicity is 2 and for
| =2theagebraic multiplicity is3. The algebraic multiplicity is greater than or equal to the geometric
multiplicity.
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LAPLACE EXPANSION BY MINORS
Thisisamethod for finding the determinant of larger matrices. The processis smplified if some of the
elements are zeros. 1) Select the row or column with the most zeros. 2) Beginning with the first element of
this selected vector, consider a submatrix of al elements that do not belong to either the row or column that
thisfirst element occupies. Thisiseasier to visualize by drawing a horizontal and a vertical line through
the selected element, eliminating those elements which do not belong to the submatrix. 3) Multiply the
determinant of the submatrix by the value of the element. 4) Repeat the process for each element in the
selected vector. 5) Sum the results according to the rule of signs, that is reverse the sign of values
represented by elements whose subscriptsi & j sum to an odd number.

DIAGONALIZABLE
If an n x n matrix has n distinct eigenvalues, then it is diagonalizable.

NULLITY
The nullity of amatrix isthe number of columnsin the result of the matlab command nul | (A) .

SINGULAR MATRIX
A singular matrix isnot invertible.

SIMILARITY
Matrix A is similar to matrix B if S'AS=B. Similar matrices have the same eigenval ues with the same
geometric and algebraic multiplicities. Their determinants, traces, and rank are all equal

REFLECTION
Giventhat L isalinein A", visavectorin A"and u
isaunit vector along L in A" thereflection of vin L
is

DOT PRODUCT

ref v =2(proj,v)- v=2(uxv)u- v

The dot product of two matricesis equal to élu é2u 6210
the transpose of the first matrix multipliedby | Ax8=ATB | Example: 223>§2 Hz[l 2 3]22 g=3
the second matrix. &34 & 1§ & 1

ORTHOGONAL DIAGONALIZATION
A matrix A is diagonaizable if and only if A issymmetric. D=S'AS where D isadiagona matrix
whose diagonal is composed of the eigenvalues of A with the remainder of the elements equal to zero, Sis
an orthogonal matrix whose column vectors form the eigenbasis of A. To find D we need only find the
eigenvaluesof A. Tofind Swefind the eigenvectorsof A. If A has distinct eigenvalues, the unit
eigenvectorsform S, otherwise we have more work to do.

For example if we have a3 x 3 matrix with eigenvalues 9, 0, 0, we first find alinearly independent
eigenvector for each eigenvalue. The eigenvector for | =9 (well call it y) will be unique and will become a
vector in matrix S. We must choose eigenvectorsfor | = 0 so that one of them is orthogonal (we'll call it x)
to the eigenvector y from | =9, by keeping in mind that the dot product of two orthogonal vectorsis zero.
The remaining non-orthogona eigenvector from | =9 wewill call v. Now from the eigenspace x, v we
must find an orthogonal vector to replace v. Using the formula for orthogonal projection

w = proj,x = (v xx)v, we pluginour valuesfor x and v and obtain vector w, orthogonal to x. Now matrix

=[w x y]. We can check our work by performing the calculation S'AS to see if we get matrix D.
PRINCIPLE SUBMATRICES

& 24 él 2 3y

[1]’ & s’ Ole4 5 6“
u

& 8 9§ @789g

: . él 2 30 - ,
Give amatrix: & 63, the principle submatrices are:
: .
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COORDINATE VECTOR

If we have abasis B consisting of vectorsb,; by, - - - by, then
any vector x in R" can be written as: x=c¢b, +c,b,+---+c.b,
ec, U

é. u
The vector - &2 (1 isthe coor dinate vector of x and:

('P%(D> M

oOC\C

n

Determining the Coordinate Vector

Given B and x, wefind ¢ by forming an augmented matrix from B and X, taking it to rref form and
reading ¢ from the right-hand column.

QUADRATIC FORM

A function such as g(x) = q(x,, x,) = 6%” - 7x,x, +8x,” iscaled

aquadratic form and may be written in the form g(x) = x xAx . Example: , ,
Notice in the example at right how the -7xx, termissplitin half | 90 = A(X, X;) =6X," - 7X,x, +8X,
and used to form the "symmetric" part of the symmetric matrix. q(x) =x xAX

éxll] é6X1_ %Xz U

POSITIVE DEFINITE: Matrix A is positive definiteif all g(x) = & er 1y +8x U
2U e 2™ 2U

eigenvaues are greater than O, in which case q(x) is positive for al

nonzero x, and the determinants of &l principle submatrices will _éxuéb - Juéxu
be greater than 0. &0 1 8081
NEGATIVE DEFINITE: Matrix A is negative definiteif all A=80 - U

eigenvalues are less than 0, in which case q(x) is negative for all &1 sl

nonzero X.

INDEFINITE: Matrix A isindefiniteif there are negative and
positive eigenvalues in which case q(x) may also have negative and
positive values.

What about eigenvalues which include 0? The definition here
varies among authors.

DISTANCE OF TWO ELEMENTS OF AN INNER PRODUCT

dist(,0) =] f - o] =/l (- gt

INNER PRODUCT
Aninner product in alinear space Visarule that assigns a
area scalar (denoted by <f, g> to any pair f, g of elements b

of V, such that the following properties hold for al f, g, hin
V,and al cin R. A linear space endowed with an inner c
product is called an inner product space. d.

Two elements f, g of an inner product space are orthogonal if: <f, g> =0
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NORM

The norm of avector isits length: ||v||—\/v2 V2 ety 2
- 1 2

n

Thenorm of anelement f of an inner product spaceis: ”f”: /<f, f> = /C;fzdt
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