Tangent Lines

Equation of a line:

y=mx+b, m is the slope and b is the y-intercept (slope-intercept form)

 $y-y_1=m(x-x_1)$, m is the slope, y and x are variables, and y_1 and x_1 is a point on the line (x_1,y_1) (point-slope form)

Find the equation of a line tangent to the function f(x) at x_0 :

- 1. Find the slope: $f'(x_0) = m$
- 2. Find the corresponding y-value: $f(x_0) = y_0$
- 3. Plug numbers into the point-slope form and solve for *y*:

$$y - y_0 = m(x - x_0)$$
 \Rightarrow $y = mx - mx_0 + y_0$

Example:

Find the equation of a line tangent to the function $f(x) = x^3 + 2x - 6$ at x=1:

1.
$$f'(x) = 3x^2 + 2$$
 $f'(1) = 3(1)^2 + 2 = 5$

2.
$$f(1) = 1^3 + 2 \cdot 1 - 6 = -3$$

2.
$$f(1) = 1^3 + 2 \cdot 1 - 6 = -3$$

3. $y - (-3) = 5(x - 1) \implies y = 5x - 8$

Parallel lines have the same slope: $m_1 = m_2$

Find the equation of a line tangent to the function f(x) and parallel to the line $y=m_1x+a$:

- 1. Find the first derivative and set it equal to m_1 to find x_0 : $f'(x_0) = m_1$
- 2. Find the corresponding y-value: $f(x_0) = y_0$
- 3. Plug numbers into the point-slope form and solve for y:

$$y - y_0 = m_1(x - x_0)$$
 \Rightarrow $y = m_1x - m_1x_0 + y_0$

Example:

Find the equation of a line tangent to the function $f(x) = x^3 + 2x - 6$ and parallel to the line y = 5x + 1

1.
$$f'(x) = 3x^2 + 2 = 5 \implies x = \pm 1$$

2.
$$f(1) = 1^3 + 2 \cdot 1 - 6 = -3$$
 $f(-1) = (-1)^3 + 2 \cdot (-1) - 6 = -9$

3.
$$y - (-3) = 5(x - 1)$$
 \Rightarrow $y = 5x - 8$
 $y - (-9) = 5(x - 1)$ \Rightarrow $y = 5x - 14$

Perpendicular lines have slopes $m_1 \cdot m_2 = -1$ or $m_1 = -\frac{1}{m_2}$

Find the equation of a line tangent to the function f(x) and perpendicular to the line $y=m_2x+a$:

- 1. Find the slope $m_1 = -\frac{1}{m_2}$
- 2. Find the first derivative and set it equal to m_1 to find x_0 : $f'(x_0) = m_1$
- 3. Find the corresponding y-value: $f(x_0) = y_0$
- 4. Plug numbers into the point-slope form and solve for y:

$$y - y_0 = m_1(x - x_0)$$
 \Rightarrow $y = m_1x - m_1x_0 + y_0$

Example

Find the equation of a line tangent to the function $f(x) = x^3 + 2x - 6$ and perpendicular to the

line
$$y = -\frac{1}{5}x + 1$$
:

1.
$$m_1 = -\frac{1}{-\frac{1}{5}} = 5$$

2.
$$f'(x) = 3x^2 + 2 = 5$$
 \Rightarrow $x = \pm 1$

3.
$$f(1) = 1^3 + 2 \cdot 1 - 6 = -3$$
 $f(-1) = (-1)^3 + 2 \cdot (-1) - 6 = -9$

3.
$$f(1) = 1^3 + 2 \cdot 1 - 6 = -3$$
 $f(-3) = 5(x - 1)$ $f(-3) = 5(x - 1)$