An AI purist would not consider what we are doing here to be Artificial Intelligence.  I suppose by some stretch it could be considered a sort of “Fuzzy Logic” and I guess thereby falls into a sorts-of ersatz AI definition.  But never mind all that.  The process and intent is to add intelligence and randomization to HAL’s decision-making processes, and it certainly does that.

Neuron is NOT a neural net, in any conventional definition of the construct.  Nor does it in any real sense “learn” from it’s experiences.  Nor is there any “training” involved, unless you consider the manual definitions of relationships made in the configuration screen to be training.  But it does operate loosely along the traditional model of how a biological neuron functions.

Consider this diagram of the biological Neuron and hopefully we can translate the elemental functioning to something our Automation software can make use of.

[image: image1.png]T >Dendrites

Myeln
sheath



The Dendrites are the neuron’s inputs.  In a terrifying fit of gross oversimplification, we will claim that the various inputs are “summed” into the Neuron’s Soma, which then decides based on these inputs whether it should pass anything along to it’s downstream neighbors.

When the Soma decides to “speak” it sends an impulse down the Axon which then results in all the end-point Terminal buttons passing the signal to the Neuron they are on speaking terms with.  This is a highly meshed interconnection, where many neurons signal many other neurons.

Seems simple enough, doesn’t it?  Well, the actual biological Neurons may not quite be so very simple, but our little program certainly is.  It is so simple that I must use a lot of obfuscation to make it precisely clear how it works.  So lend me your brain and I will explain all.

Let’s start with an example.  First we define a single Neuron and give it some inputs.  Those inputs are taken directly from HAL internal data elements, Flags and Counters that represent something about HAL’s internal state at the moment.  Then we give it some outputs.  Those outputs take the form of Flags that may be set TRUE or FALSE, counters that may be incremented or decremented, and text or WAV files to be spoken or played.

We therefore create our Neurons by defining their inputs and outputs, and give them a weighting that determines their overall likelihood of responding.  Once we have created our Neurons, we group them together in Clusters, where all Neurons that are related to a function are called at the same time.  At any given instant, only a single Neuron of a Cluster will respond.

Consider a Cluster with the following three Neurons.  

· Neuron ‘A’ has as it’s input a HAL flag named “WX Cold” which we know to be set true when the outside temperature is low.  It’s output is a TTS telling the user to put on a sweater.  

· Neuron ‘B’ is identical, except that it’s input is a flag named ‘WX Hot’ which reflects a very warm outdoors, and it’s output says “It's nice and warm out.  You shouldn't be cold”.  

· Both A and B are given internal weights of 0.  

· Neuron ‘C’ has no inputs, but has an internal weight of 1.  It’s output is the text “Silly human.  I am not cold”.

Biological neurons are asynchronous devices, that is they do their own thing all the time without regard to anything else that is going on, processing their inputs and delivering their outputs.  Our faux Neurons must be triggered for their inputs to be evaluated.

In our software, the trigger applies to a group, or Cluster of Neurons.  We will make our trigger a Voice Recognition event, where HAL recognizes the phrase “I am cold”.

When triggered, the response will be one of the three possible responses.  With an internal value of zero, A and B are unlikely unless a flag is TRUE. If either flag is true, the corresponding Neuron matches the value of C, thus developing a 50% selection probability. The actual response depends on which flag is set, or whether any are.  Most of the time, the most likely responder will be Neuron ‘C’, but when our weather station reports hot or cold weather, ‘A’ or ‘B’ will get into the act with a 50% shot at being the selected output.

If we wish to have the system “learn” from this experience, we might set a flag as an output from Neuron C, and by placing a negative symbol in front of it, cause it's’ value to be subtracted from Neuron C’s internal weight when true.  This will effectively cause C’s value to become zero once it has been used, biasing against using it again.  In this example, however, unless one of our WX flags are true, all three neurons will have a zero value, meaning none will be selected.  This would obviously be pointless.  Therefore, one should always make sure at least one Neuron in a cluster has a positive value at all times.

In our software, any individual Neuron may have an arbitrary number of inputs.  Individual flags or counters may be specified, or a list of flags, or a list of counters may be specified.  The values of these inputs are added to the Neuron’s internal weight. 

For output, the software likewise can set or clear an individual flag, or all flags on a list (but not individual flags on a list, it’s all or nothing), likewise increment or decrement a counter or list of counters.  Also, as in our example, it can provide text for the TTS engine or a WAV file to be played.  Finally, it can directly invoke an external script or program if one is defined, and thus extend the possible results to other realms.

The Neuron’s final weight determines a probability that a given Neuron may be selected.  But it is not a simple “biggest number wins” result.  Rather it is a game of probabilities.  If a Cluster of Neurons has ten Neurons, and nine of them have weights of 1 and one has a weight of 5, the one with the weight of 5 has a five in fourteen chance of being selected.  In other words, any other Neuron may still win selection, but is less likely than the one with the highest weight.  In our example case, even if the flag WX Hot or WX Cold is set, Neuron C still has a pretty fair chance of being selected.

Only Neurons with a weight of zero are completely excluded.  As a Neuron’s weight increases, it becomes ever more likely to be chosen, but as long as there are other Neurons in the group with a non-zero value, it is not certain.

The more inputs a given Neuron has the “fuzzier” the logic may become.  In our original example we used a single flag.  Suppose we also have flags that indicate the season.  In addition to WX Cold, we give Neuron ‘A’ SEASON WINTER, and Neuron ‘B’ SEASON SUMMER.  Now “I Am Cold” and SEASON WINTER can combine to give Neuron ‘A” twice as much chance as Neuron ‘C’.  Add a flag to indicate night or day, and the probabilities shift yet again.

Programming Notes:

Here are some general notes and guidelines for setting up your own fuzzy logic.

· There is provision for one flag or flag list and one counter or counter list on input.  Multiple names separated by commas in a field will be treated as a list.  Thus you may enter a list, AND a single flag, or even multiple lists.

· There is provision for only one output flag or counter.  But like the input side multiple entries may be made, and any entry may be either a flag or a counter.

· Each Neuron has an internal or base weight.  That may be zero to any arbitrary number, but is best kept small.  Usually 1 or 2 is adequate, and setting it to 10 or higher is not useful.

· Neurons are grouped in Clusters.  A single Cluster may have 2 or 3 to a couple dozen or more Neurons.  They all share a single trigger event and have a “winner take all” output event, where one Neuron is selected and it’s output is used.  Non-winning Neurons have no effect, provide no outputs.

· Flags all share a single weight or value. Like the base value, it is best kept small.  For example, if the flag weight is 2 and three flags are true, the total weight will be 6 plus the base value.

· Plus sign ‘+’, minus sign ‘-‘ and Divide-10 ‘/10’ are ‘Modifiers’ which can modify the meaning of a Flag or counter.

· Preceding an input flag with a minus sign subtracts the weighting if the flag is true.

· Preceding an input counter with a minus sign subtracts the counter value if non-zero.  But the weight will not go negative.  If the amount subtracted is greater than the total weight, it will become zero.

· Input counters may have a maximum value of 10.  If the counter is > 10 the value will be rounded to 10.  Appending a /10 to the counter name will divide the counter value by ten prior to calculating the weight.  It will be rounded down to the next lower whole number.  E.g. if a counter is 99, and the /10 is appended, it will be rounded down to 9.  If it is 999, it will be rounded down to 10.

· These same conventions hold true for lists of flags or counters.  Individual counters in the list may have the minus or /10 modifiers in the list.

· Should a modifier be applied to the list name itself, it will over-ride the individual modifier in the list.  E.g. if a list named Flaglist1 has flags ‘WX Hot’ ‘-WX Cold’ and ‘SEASON WINTER’, WX HOT will add value if true, WX COLD will subtract, and SEASON WINTER will add if true.  But if the entire list is preceded with a minus sign then all will be treated as if they had a minus sign.  Contrawise, if the list name is preceded with a plus sign, the minus on WX Cold will be over-ridden.

· Output counters preceded with a minus sign will decrement, whereas no sign, or a plus sign will increment.  A plus sign on a list of counters will force all to increment.

There is no explicit learning process, and no training, except for the specialized conditions one may manually define.  If the Neurons make a decision deemed incorrect one time, it is likely to do so again.  But it is always a game of probabilities.  Any non-zero probability may be chosen no matter how unlikely.

Nonetheless, a primitive sort of “learning” may be made to occur.  If you define a number of flags and/or counters that serve no other purpose but to provide fodder for the decision engine, and list those items as outputs in many loosely related Neurons and as inputs in many of similar ones, it is very possible to engineer a sort of hackified back-propagation learning process.  For example, suppose we define a counter named “AI Cold” and set it up so it is incremented on activation of any Neuron associated with the cold.  That way, every time the user says “I am Cold” this counter would increment.  Further, set it so as to be decremented whenever any Neuron associated with warm is activated.  So if the user says “I am Hot”, the counter would decrement.

Next, define our counter as one input on any Neuron that deals with temperature in any way, including things that might only very loosely be linked with temperature, such as a ceiling fan.  Over time we will see convergence happen as the machine responds to the occupant’s perception of temperature.  As the AI Cold counter increments higher, Neurons with it as an input are more likely to trigger, and when it decrements, they are less likely.

There’s no magic bullet here, the machine is not suddenly going to become sentient.  But with sufficient attention to setting up the Neurons, it might gradually adapt to make slightly more sensible decisions about the temperature.  Of course one counter and a few simulated Neurons is not going to accomplish much.  After all, the human brain has billions of neurons, and we can still be pretty stupid.

WX Cold





WX Hot





You shouldn’t be cold





Put on a Sweater





Silly Human!





A





B





C





I am  cold





1





1





1





0





0








