
Using the ADI Ocelot CMAX programming
capabilities in HAL 2000 Home Automation

Applications

Abstract: This document discusses the ADI Ocelot capabilities and how they might
augment the HAL Home Automation Application It uses real world examples to illustrate
the power and process of using this powerful adjunct to HAL.

[Draft Version]

The Goal
Many HAL installations use the ADI Ocelot as an
interface to the external world, via X10, IR and
add-on interfaces. Ocelot can be much more
than an I/O interface. In this document we
illustrate how to employ the powers of the Ocelot
far beyond the mundane I/O interface .

Overview
Ocelot is a small but powerful computer in it’s
own right. It is a class of computer known as an
embedded system. The basic Ocelot is an IR
interface for HAL.
With the addition of a TW523 X10 transceiver,
Ocelot also becomes the X10 interface for HAL.
Other modules can be connected to Ocelot to
support relay closures and contact closures,
measure temperature and other tasks.
Normally, HAL only knows how to use the
various interfaces on the Ocelot, but does not
support any programming in the Ocelot itself.
However, it is quite practical to use the Ocelot to
offload many tasks from HAL. I like to think of
this model as loosely comparable to the left-
brain, right-brain physiological model of human
intellect.

Benefits
There are two significant benefits to
incorporating Ocelot programming in your Home
Automation Project. They are speed and
reliability.
Logic executes on the Ocelot much faster than
on HAL. While it is possible to put HAL on ever
faster computers, nonetheless complex rules
and macros on HAL can slow down the system,
and more importantly, cause HAL’s speech
recognition to be slow or even non-responsive.
Offloading tasks to Ocelot allows HAL to
concentrate on speech recognition and high
level decision making processes.
HAL runs on a full function, general purpose
computer, which must be on at all times. Power
failures, and plain old computer crashes will
incapacitate the system. Ocelot is an embedded
system that can easily run on any 12V power
source. Crashes are far less common than
Windows crashes, and a simple battery system
can weather power outages. Even without
battery backup, Ocelot will recover from a power
failure and resume it’s activity reliably.
Configuring HAL to do so reliably is difficult,
especially with an ATX style PC.

Drawbacks
There are some difficulties with this however.
First, there is no mechanism within HAL to
define logic to be incorporated into the Ocelot.
This forces the programmer to work in the ADI
CMAX programming environment. Second,
there is no mechanism for HAL and Ocelot to
communicate, so we must use creative means
to allow each processor to be aware of what the
other is doing.

Task Types
There are four categories of tasks that can be
incorporated into the Ocelot.
Ocelot ! HAL – Ocelot programs that have no interaction

whatever in HAL
HAL = Ocelot – HAL and Ocelot independently execute

similar logic without any dependencies between them.
HAL > Ocelot – HAL makes a decision that triggers action

by the Ocelot.
Ocelot > HAL – Ocelot makes a decision that triggers action

by HAL

H>O tasks require a mechanism for passing a
trigger, or flag, to the Ocelot from HAL.
Unfortunately, there is no convenient
mechanism to pass information to Ocelot from
HAL.

However, Ocelot monitors X10 device status
and can react to an X10 device or message.
This can be used to trigger events and states.

H=O tasks execute in parallel and unaware of
each other. However the logic of the two tasks
need not be identical, and HAL may leave actual
I/O operations to Ocelot.

For example, pressing a button on a bedside
console might generate a command to turn on a
light. Ocelot might send the actual X10
command to turn on the light, while HAL would
react to the same event by setting a flag to note
that the light is on and starting a timer to turn the
light off at some future time. HAL need not send
a redundant X10 command to turn on the light.

O>H tasks occur when the Ocelot makes a
decision and needs to trigger an action on the
part of HAL. Like the H>O task, there are
difficulties with communications, but here there
is a convenient mechanism that can be
employed to send messages without resorting to
using X10 devices.

O ! H Tasks are Ocelot programs that run only in
the Ocelot, and which have no parts whatever in
HAL. Of course there are HAL rules and macros

that have no involvement with CMAX code, but
that is the norm and is unremarkable.

Getting Started with CMAX
The programming environment for the Ocelot is
called CMAX. ADI ships CMAX free on CD with
the purchase of the Ocelot, and it’s available for
download on their web site, as
http://www.appdig.com/cmax.html. The current
version is 2.00d, but V 1.70j. is probably more
common at this time. The information in this
paper is generic and applies to all versions.
The opening screen of CMAX is called the
control wizard, a point-and-click line editor that
allows you to create programs purely with the
mouse.
Once the program is created, you then select
the COMMS menu and Attach to the CPUXA
(Historical note: CPUXA is
an early product name for
the Ocelot). This
transforms the
programming environment
to the CPUXA Access
environment where from
the Program File menu you
download your program to
the CPUXA.
You will notice that the
CPUXA Access
environment shows
blinking TX/RX lights. This
is an indication of working
communications between
CMAX and the Ocelot.
This communications is a
continuous process.
When HAL is running, HAL maintains a similar
communications activity with Ocelot,
communicating X10 and other messages both
ways. This mechanism allows HAL to treat
interfaces on the Ocelot as if they were attached
directly to HAL, but does not interfere with
Ocelot using the interfaces itself.
CMAX programs run independently of this
communications process, allowing CMAX
programs to run without interfering with the I/O
process. Thus CMAX programs run on Ocelot
without impacting HAL.
Programming in CMAX is not greatly unlike
programming in HAL. Similar data structures,
timers, flags (variables) and IF/THEN
statements exist in both environments. However
there are differences. The variables are not

simple Boolean flags like in HAL, but are
integers. This does not inhibit setting them to 1
and 0 to use as flags.
Perhaps the biggest differences are in the
timers, which count up instead of down, and
may be read and trigger events based on their
value.
Similar programs can be easily created for both
environments, as we will see in the following
examples.

http://www.appdig.com/cmax.html

The Bedside Button, an H=O example
Let’s consider an example of automating
bedside lights using a single X10 button
conveniently located next to the bed.
The desired action is a
the right side light
turns on. Press on
again, and the left
side light turns on.
Press Off and the
right light turns off,
press off again and
the left light turns
off.
The example shows
the logic for the on
process. The off
process is similar, a
mirror image of the
on process.
The timer started for
each light also has
logic to turn off the ligh
the user falls asleep an

The HAL only version w
However, there is room
by offloading the
actual on and off
steps (flagged in
red) to Ocelot.
This increases
reliability because
the on and off
steps still work
even if HAL
crashes, letting
HAL skip the laborious

First step is to create th
shown and download it
running in the Ocelot, y
remove the lines in red
function still works corr

There are a few points
HAL versions and the C
do not need to test and
the status of the light.
variables that can be u
is not necessary becau
the status of the light b
X10 commands have b
This feature is very imp
program because this i

indeed possibly the only way to pass status and
commands from HAL to the Ocelot.
The second major difference between the two
versions of the program is that in the Ocelot we

to turn the lights off after a
period of time.
We omit this because we
want HAL to be able to
reset the timer based on
motion detectors, or other
signs of activity, keeping
the lights on as long as
the occupant is active.
Since there is no practical
way to tell Ocelot to reset
the timer, we don’t have
the Ocelot perform this
part of the program.
This example is an H=O
program, because both
programs operate
s follows. Press on once, do not use a timer
RULE Master Bedroom Right Light On
IF:
 Bedside Console 4 Sensor ON
 AND Master Bedroom Right Light Flag is FALSE
 AND Master Bedroom Left Light Flag is FALSE
THEN:
 Turn on Master Bed Room Right Light
 Set Timer Master Bedroom Right Light to 3600 seconds
 Set Flag Master Bedroom Right Light to TRUE

RULE Master Bedroom Left Light On
IF:
 Bedside Console 4 Sensor ON
 AND Master Bedroom Right Light Flag is TRUE
 AND Master Bedroom Left Light Flag is FALSE
THEN:
 Turn on Master Bedroom Left Light
 Set Timer Master Bed Room Left Light to 3600 seconds
 Set Flag Master Bedroom Left Light to TRUE
ts when it expires, in case
d forgets the lights.

orks quite well.

completely autonomously,
and do not actually communicate a status in
either direction. One event, the X10 Console
ON command, triggers two programs on two
different computers without any co-ordination

between the two.
Simply removing a few
X10 commands from
HAL and moving them
to the Ocelot may not
seem like much. But,
there are some key
points that I’d like to
stress.
 to optimize this process
CMAX Version
IF X10 J/4 On Command Bedside Console #4
 AND X10 B/9 is Off BR Lite #1 is off
 AND X10 B/16 is Off BR Lite #2 is off
THEN Turn X10 B/9 ON Turn on BR Right

IF X10 J/4 On Command Bedside Console #4
 AND X10 B/9 is On BR Lite #1 is ON
 AND X10 B/16 is Off BR Lite #2 is OFF
THEN Turn X10 B/16 ON Turn on BR Left
 send X10 command.

e CMAX program as
 to the Ocelot. Once it is
ou then restart HAL and
, and you will see that the
ectly.

of difference between the
MAX version. First, we

 set flags to remember
CMAX certainly has
sed for this purpose, but it
se Ocelot directly tracks
ecause it knows which
een sent.
ortant in the H>O type of
s the simplest way,

First, sending X10 is a
very laborious process for HAL, and the speech
recognition process is often not available while it
is doing so. At about a half second per event,
this is worth removing. Offloading X10 transmit
events to the Ocelot can have a profound impact
on HAL’s overall responsiveness.
Secondly, and more importantly, I do not like the
prospect that a crash of the HAL computer
during the night might leave me unable to turn
on the lights by my bed. I want that button to
WORK.
By implementing it this way, I pretty much
guarantee that if power is on, the button will
work. Perhaps not 100%, as Ocelot presumably
could still crash (although I have never seen this
happen), but reliability is tremendously improved
over the original version.

ALL OFF, an H>O Example
Here is an example of a function that causes
HAL to send a lot of X10 signals. As a result,

Second, other devices can invoke the process
by simply sending the same M/16 OFF

CMAX Code Portion
IF X10 M/16 Off Command Bogus All Off Device
THEN Transmit X10 A/17 Send X10 Command

+
 +
THEN Transmit X10 P/17 Send X10 Command
HAL Only Version

Macro ALL OFF {Turn Everything Off}
Send X10 Command All Units OFF to House Code A
 +
 +
Send X10 Command All Units OFF to House Code P
HAL is “Busy” for several seconds, and
unresponsive to other functions.
Although the simple example shown merely
sends X10 commands to each house code, in
real life it is more complex than that. A number
of house codes contain devices that we don’t
want to turn off even though the command is
named ALL OFF. The macro actually contains a
large number of discrete X10 Off Commands as
well.
Since discrete commands are actually two
commands (address command pair) these take
twice as long to send. Then end result is a
simple macro that ties up HAL for several
seconds to execute.
As mentioned earlier, there is no mechanism for
HAL to send a message to the Ocelot.
However, the Ocelot does monitor the X10
traffic. We can create a bogus device in HAL
and have HAL send commands to that device.
Using the Ocelot IF/THEN logic, we can initiate
action based on receipt of commands to that
bogus device.
We first create in HAL a device named ALL OFF
Light, at any convenient address, M16 in this
example. Now our macro of many X10
commands is reduced to a single command, turn
off the All Off Light.
In CMAX we then create an IF/THEN statement
which looks for a M/16 OFF Command pair, and
transmits the long list of X10 commands upon

see
This
com
labo
bog
A c
an X
func
HAL

command pair. This exposes opportunities for
convenience as well as a security risk.
For convenience, you can place an X10
transmitter conveniently by a door, etc. to easily
turn everything off on leaving.

A Word about Security
The security risk with X10 is simply that anyone
could walk up to the house, plug an X10
transmitter into an outside outlet (or even
perhaps a neighbors) and execute the
command.
The more power given to a single command, the
greater the risk.
While risks are minor in the example given, it
pays to keep these risks in mind as you develop
your automation macros. Attention to a few
rules can reduce risks.
(1) Never use a house code for which there is a

wireless receiver active, as this exposes the
macro to wireless activation from someone
with a wireless key-fob. Also, since wireless
devices are susceptible to RF collisions and
resulting bogus commands, they should be
avoided.

(2) Make sure you have a good blocking
coupler in your breaker panel to prevent
potential triggering from neighbors devices.

(3) Be careful what functions you expose in this
manner. For example, it might not be a
good idea to allow HAL to raise the garage
door from such a macro.
H>O Version, HAL portion
Macro ALL OFF {Turn Everything Off}
Turn off All Off Light
ing this command.
 is simple, clean, easy to implement, and
pletely frees the HAL environment from the
rious X10 transmission, except for that first,
us, X10 command.
ouple of points about this logic. First, it burns

10 address for no improvement in either
tionality or reliability, albeit it does improve
’s performance.

IR Control, O>H Examples
Fellow Home Automation enthusiast and
HAL user James Lipsit has written an
excellent article on his web site
(http://www.james.lipsit.com/ocelot_to_hal.h
tm) describing how to implement a
communications mechanism for Ocelot to
pass a message to HAL. I won’t duplicate
his article here, but I will use his information
and describe an example of how I am using
it.
The mechanism involves creating a fake
sensor for the Ocelot, and then having this
nonexistent sensor send a status message
to HAL. This can ONLY be done if you
have at least one set of real sensors,
otherwise HAL won’t recognize the
existence of your bogus sensor. Jim gives
the gory details in his article.

IR vs. Voice Control
Ocelot provides an IR interface for HAL. In
a home theater installation HAL can control
the system using Voice Recognition.
However, VR is not practical for all
functions.
Generally, once the sound cranks up, HAL
must turn off the attention word to prevent
false activation from the movie dialog.
Once the movie is underway, the IR remote
becomes the tool of choice for controlling
the system.
It is highly desirable that HAL should
recognize the IR commands issued from the
remote, so as to be able to track the status
of the system. Unfortunately, HAL has no
ability to receive and respond to IR
commands. HAL treats IR as output only,
except in the limited case of training new
commands.
The Ocelot however, is fully capable of
recognizing and responding to IR
commands. By using the mechanism
described by Jim, it is a simple matter to
program the Ocelot to recognize that a
given IR command has been received, and
having Ocelot then send a sensor message
to HAL reflecting that message. HAL can
then act upon the IR message, whether it is
something that requires a specific response,

or whether it merely requires tracking the
state.
On beginning an evening’s entertainment, I
tell HAL, “Let’s watch the Satellite System”
and HAL will then turn on the TV, set the AV
Receiver to the satellite system, and turn on
the Satellite Receiver.
When I wish to change to a DVD or watch
something on my Tivo, I can tell HAL to
make the change, but that requires muting
the audio, waking up HAL, getting his
attention and then giving the appropriate
command. Or I can hit the buttons on the
IR remote.
The control example I am currently
implementing involves having HAL
recognize which entertainment source is in
use, following any IR commands used to
change the functional state. At the end of
the evening, a single voice command can
shut down the entire system, and HAL will
know exactly which IR commands to send
to effect the proper shutdown.
I do not have complete example code to
display at this writing. However, by looking
at Jim’s article, the process of actual
implementation should be self-evident.
Hopefully at some future point I will be able
to revise this article to include my functional
code.

http://www.james.lipsit.com/ocelot_to_hal.htm
http://www.james.lipsit.com/ocelot_to_hal.htm

	The Goal
	Overview
	Benefits
	Drawbacks
	Task Types
	Ocelot > HAL – Ocelot makes a decision that triggers action by HAL
	Getting Started with CMAX
	The Bedside Button, an H=O example
	This feature is very important in the H>O type of program because this is the simplest way, indeed possibly the only way to pass status and commands from HAL to the Ocelot.
	The second major difference between the two versions of the program is that in the Ocelot we do not use a timer to turn the lights off after a period of time.
	We omit this because we want HAL to be able to reset the timer based on motion detectors, or other signs of activity, keeping the lights on as long as the occupant is active. Since there is no practical way to tell Ocelot to reset the timer, we don’t ha
	ALL OFF, an H>O Example
	
	A Word about Security

	Be careful what functions you expose in this manner. For example, it might not be a good idea to allow HAL to raise the garage door from such a macro.
	IR Control, O>H Examples
	IR vs. Voice Control

