
Creative uses of the timer in HAL 2000
Home Automation Applications

Abstract: This document discusses the timer function and it’s uses and limitations in
the HAL programming environment. It uses the real world example of programming a
bathroom motion detector and X10 light switch using sophisticated control logic.

Revision History:
Version 1.0 Released 10.07.2002 supports HAL Version 1.3.81 and earlier
Version 2.0 Released 04.02.2003, updated to take advantage of version 2.0.16 timer

functions to streamline and simplify the logic.

The Goal
The goal of any automation is to cause
the device or process being automated
to function very much as if a human
being were at the helm and operating
the controls, but without requiring the
attention of a human.

Timer Features
Hal incorporates a timer object into the
tool kit of programmable sensors. There
are four timer actions possible.
Set the Timer – The timer may be set to any value

between 1 second and approximately 24
hours.

Stop the Timer – The timer may be stopped at any
time. Stopping the timer avoids executing the
actions tied to the expiration.

Allow the timer to Expire – Once set, the timer counts
down until it expires. Upon expiration, it may
be used as a trigger event for any rule.

Test the Timer – The status of the timer (whether it is
running or not, but not the value) may be
used as a Secondary Condition in any rule

Timer Limitations
This timer functionality is very useful,
but there are limits to it’s functionality.
There are a couple of things we could
wish to do with a timer, but which are
not supported in the current HAL
implementation.
Read the Timer – I can think of circumstances where

one might wish to read a timer as a secondary
condition, and take action before it expires. For
example, if you have a timer designed to turn out
a bathroom light on lack of motion, it might be
nice to be able to recognize when it is a few
seconds from expiration and blink the lights
before turning them out. Creative programming
can easily overcome this limitation, although it will
require the use of multiple timers.

Force expiration of a timer – The opposite of stopping
a timer is forcing it to expire immediately, thus
triggering the action it is designed to invoke.
Ideally, we should be able to set a timer to 0, and
obtain immediate action. We can however load a
timer with 1 second, which almost accomplishes
the same thing, albeit with some very slight delay.

Minor limitations notwithstanding, the
timer is nonetheless a very useful
device, and a little creative thought will
allow one to work within it’s limits. The
purpose of this document is to provide
programming guidance in the use of
timers, with real-world programming
examples.

Why Use a Timer?
HAL has the capability of scheduling an
event at some future point. We can
easily decide to turn a light on or off five
minutes, or five hours from now. At first
thought, it may not be clear why a timer
is desirable for this application.

Consider the simple case of turning on a
light when someone enters a bathroom,
and then turning it off a few minutes
later. We could define this with a single
rule, and no flags or timers. Create a
rule structured like this.

At first glance, this seems sufficient.
The light is turned on upon entering the
room and turned off five minutes later by
a Scheduled Event.

Unfortunately, it will be turned off
regardless of the time the room actually
remains occupied. Indeed, a scheduled
turn-off event will occur five minutes
after each time the motion sensor
detects motion. The HAL schedule
would likely be flooded with many
repetitive scheduled events. This will
result in a storm of Turn-on and Turn-off
events, flooding the limited data
bandwidth of the power line. Plus, the
light will likely blink on and off a number
of times, and HAL will most likely
become too busy sending these
commands to respond to other tasks.

Obviously then, this will not work. What
we need is a solution whereby the light
is turned on, and a timer is started,
which timer is reset whenever it detects
additional motion, and which then will
expire and turn off the light once motion
stops.

Sensor Motion
IF Sensor Motion is ON (TE)
Then Turn light ON
In Five minutes Turn light OFF

Timer Example, Take One
A more satisfactory approach makes
use of three rules, and a timer.
Consider this example of a HAL
program.

On first detecting motion, we turn on the
light and treat the light status as a flag
that signifies the room is occupied. Then
we load a default interval into a timer.
Future incidences of
motion only do one
thing. As long as the
light is on, then
additional motion
simply reloads that
timer with the same
default interval of five
minutes. As long as
motion is detected at
least every five
minutes, the timer
can never expire.

When the timer finally
does expire, the room is
unoccupied and the ligh

The light is turned on wh
occupied, and remains o
minutes after the last mo
Using the status of the li
we avoid sending redun
messages. Only one X1
X10 OFF command are

This works fairly well. In
motion detector controlle
more than this. But it h

First, it assumes the occ
remain motionless more
minutes. A little practica
show that this is false. T
sometimes will not only
motionless for more than
but also occasionally ev
some motion the detecto
We could solve that prob
the interval longer than f

But that brings us to the second
drawback. The light will stay on a full
five minutes after the last detected
motion.

Usually the last detected motion is the
act of leaving the room. Hence it will
always stay on for the interval defined,
unnecessarily wasting power. Ideally,
we want to use a relatively long interval

he room is occupied, but shorten
the interval when the room is
empty. That is the trick. Or
we could simply warn the
occupant.

We can document the logic
flow, if not the exact
instruction sequence with a
small flowchart. This is a
very good exercise as it will
help later when you need to
when t
RULE Sensor Motion Detected
IF Sensor Motion is ON (TE)
AND Light is OFF (SC)
THEN Turn light ON

RULE Sensor Motion Timer
IF Sensor Motion is ON (TE)
THEN Set Timer Occupancy to 5
Minutes

RULE Timer Motion Expired
IF Timer Occupancy is Expired (TE)
THEN Turn Light OFF
 presumed
t is turned off.

en the room is
n until five
tion is detected.

ght as a filter,
dant X10
0 ON and one
actually sent.

deed, most
d lights do no

as two flaws.

upant will not
 than five
l experience will
he occupant

remain
 five minutes,

en when there is
r will miss it.
lem by making
ive minutes.

troubleshoot your work.

Motion
Bath

Light
ON?

yesno

Turn
On

Set
Timer

Timer
Expires

Turn
Off

Done

Timer Example, Take Two
One approach to improving our logic
might be to use an additional timer, so
that we can
blink the lights
before turning
them out, thus
giving the
occupant fair
warning to
wave a hand
or something.

If we could
read the timer
and act when
it is near
expiring, we
could avoid
the use of a
second timer.
But since this
is not a
supported
function we
work around this limit by adding a
second timer, set to 30 seconds shorter
interval than the first, and as a result of
this expiration we dim the light
momentarily. Our occupant, thus
forewarned that the lights are about to
go out, can then wave a hand or
otherwise trigger the motion detector to
reset the timers.

We use a Secondary Condition to filter
the expiration of the new timer,
else the timer might expire
sometime when the light is not on
and turn on the light
unintentionally.

This very nearly solves the
problem. Well, almost. The user
still must respond to the change in
light level, perhaps not practical if
one is in the shower.

There is a subtle point here that
should be pointed out. Some
actions in HAL are very resource
intensive, tying up the machine,
and other actions are relatively

benign. Various factors affect the level
of resources a given action requires.
The least demanding action is setting or

clearing a flag. If the flag in
question is one that is not
saved to the hard disk, and
logging is turned off, it uses
the least resources
possible. The price of not
logging is that if the
machine crashes, or is
restarted, the state of the
flag will not be
remembered. Think
carefully how each flag is to
be used and if there is no
need for it to be
remembered through
system shutdowns, then
don’t save it.

Sending X10 signals is very
resource intensive.
Therefore we want to send
as few X10 signals as

possible. Presumably the motion
detector is already sending X10 signals
every time it detects motion. Let’s not
add to the traffic.

This logic works pretty well. The light
will come on as soon as the occupant is
detected, remain on as long as motion is
detected at least once every five
minutes, and finally warn any occupant
before extinguishing the light.

RULE Sensor Motion Detected
IF Sensor Motion is ON (TE)
AND Light is OFF (SC)
THEN Turn light ON

RULE Sensor Motion Timer
IF Sensor Motion is ON (TE)
THEN Set Timer Occupancy to Five Minutes
 Set Timer Warning to 4 minutes 30 seconds

RULE Timer Motion Expired
IF Timer Occupancy is Expired (TE)
AND Light is ON (SC)
THEN Turn Light OFF
 Stop Timer Warning

RULE Timer Warning Expired
IF Timer Warning is Expired (TE)
AND Light is ON
THEN DIM Light 70%
 In 2 seconds turn light ON

Motion
Bath

Light
ON?

yesno

Turn
On

Set
Timers

Timer 1
Expires

Blink
Light

Timer 2
Expires

Turn
Off

Done

Light
ON?

yes

Light
ON?

no

yes

This is still not a
completely
satisfactory solution
though. The test for
acceptability of any
automation is
whether the result
behaves very
similarly to the way
a human manually
operating the
system would
behave.

The problem of
leaving the light on
after the room is
vacated is still with
us, requiring a fairly
short timer interval,
and the occupant
still must respond to
the warning signal
and re-trigger the
motion detector if
the occupant is
quiet longer than
four minutes and 30
seconds.

In short, the function
we have now is pretty good, but does
not quite emulate the action a human
would take if strictly manual light control
were being used.

What we need is a more reliable method
of detecting the vacancy of the room.
Then we could use a much longer
interval on the timers, perhaps even 30
minutes or longer, but reliably switch off
the light immediately when the occupant
leaves.

Timer Solutions, Case Three
There are various hardware solutions to
detecting occupancy that can reliably
determine a room is empty, but this
article is about using creative logic to
solve problems in HAL, not about home
automation technology. For the purpose
of this exercise we are assumed to be

working within the
constraints of
common inexpensive
motion detectors.

So how can we more
reliably detect the exit
of the occupant? One
solution might be to
look at other, nearby
motion detectors.
When installing home
automation systems,
we almost never
install only one
motion detector. So
let’s assume there is
another motion
detector in the
hallway outside the
bath. Let’s explore
adding another timer
and flag to our logic,
and then look at the
logic associated with
the hypothetical
second motion
detector.

Now we have three
timers, two motion

sensors one flag, and six rules
encompassing twenty-two statements.
The logic has become rather complex,
and we’ve only defined the logic for
controlling one light. But the function is
now fairly complete. The occupancy
timer defaults to 20 minutes, an interval
far better suited to weathering “quiet
time” without expiring prematurely. The
upper limit to this timer really is how
long we are willing to leave the light on if
the exit signal is missed.
Each time motion is detected we test the
hypothesis that this was the motion of
the occupant exiting the room, and look
for motion immediately thereafter in the
hallway outside. If we see hallway
motion within a 15-second interval, we
conclude the room has been vacated
and shorten the timer to three minutes.

RULE Sensor Motion Detected
IF Sensor Motion is ON (TE)
AND Light is OFF (SC)
THEN Turn light ON
Set flag Possible_Exit to TRUE

RULE Sensor Motion Timer
IF Sensor Motion is ON (TE)
THEN Set Timer Occupancy to 20 Minutes
 Set Timer Warning to 19 minutes 30 seconds

Set Timer Possible_Exit to 15 sec.

RULE Timer Motion Expired
IF Timer Occupancy is Expired (TE)
AND Light is ON (SC)
THEN Turn Light OFF
 Stop Timer Warning

RULE Timer Warning Expired
IF Timer Warning is Expired (TE)
AND Light is ON
THEN DIM Light 70%
 In 2 seconds turn light ON

RULE Timer Possible_Exit Expired
IF Timer Possible_Exit is Expired (TE)
THEN Set Flag Possible_Exit to FALSE

RULE Sensor Motion Hallway
IF Sensor Motion_Hallway is ON (TE)
AND flag Possible_Exit is TRUE (SC)
THEN Set Timer Occupancy to 3 Minutes
 Set Timer Warning to 2.5 minutes

It Works, But Can we
Simplify It?
Actually it is possible
to eliminate a flag and
a rule and retain the
completeness of the
logic.

The Flag Possible_Exit
is redundant because
we can actually test for
the operation of the
timer itself as a
Secondary Condition
(SC).

By doing this, we also
eliminate the need to
have a rule to clear the
flag on expiration.

This reduces us to
only five rules, no
flags, and 19
statements.
Shortening the timer
instead of shutting the
light off immediately allows for the
possibility that another person has
tripped the hallway detector. In this
hopefully rare case, the occupant still
has a two and a half minute interval to
again trip the motion detector, and worst
case sees the dim/bright signal, and can
respond.

In the opposite
case, if the exit
signal is missed,
the light will still
stay on the full
twenty-minute
interval. We could
probably add more
logic to handle this
case, but we have
probably reached
the point of
diminishing returns
in that we could
add more logic
complexity, but get
very little
improvement in
function. We have
changed from a
near certainty that
the light would stay
on five minutes to a
rare possibility that
the light MIGHT
stay on 20 minutes.

We can of course fine-tune the timer
values to optimize the performance. In
a quiet home with minimal motion, this
should be extremely reliable, but in a
very busy home, it might leave the lights
on for the 20 minutes occasionally.
This logic now more nearly imitates the
process a human might follow, including
perhaps even the occasional

RULE Sensor Motion Detected
IF Sensor Motion is ON (TE)
AND Light is OFF (SC)
THEN Turn light ON

RULE Sensor Motion Timer
IF Sensor Motion is ON (TE)
THEN Set Timer Occupancy to 20 Minutes
 Set Timer Warning to 19 minutes 30 seconds
 Set Timer Possible_Exit to 15 sec.

RULE Timer Motion Expired
IF Timer Occupancy is Expired (TE)
AND Light is ON (SC)
THEN Turn Light OFF
 Stop Timer Warning

RULE Timer Warning Expired
IF Timer Warning is Expired (TE)
AND Light is ON
THEN DIM Light 70%
 In 2 seconds turn light ON

RULE Sensor Motion Hallway
IF Sensor Motion_Hallway is ON (TE)
AND Possible_Exit Timer is Running (SC)
THEN Set Timer Occupancy to 3 Minutes
 Set Timer Warning to 2.5 minutes

Motion
Hall

Poss.
Exit?

yesno

Short
Timer

Done

Motion
Bath

Light
ON?

yesno

Turn
On

Reset
Timers

Timer 1
Expires

Blink
Light

Timer 2
Expires

Turn
Off

Done

Light
ON?

yes

Light
ON?

no

yes

forgetfulness in turning the light off. The
difference is that the system will still turn
the light off eventually.

Are We Done Yet?
In any engineering exercise, one must
spend time not only looking at how a
process works, but how it fails. Quality
design is reflected as much in the failure
modes as in the functions the design
delivers.
We are using the X10 protocol for
sending the ON and OFF commands.
X10 is notorious for being unreliable. It
is unreliable both in that sometimes
phantoms turn-on things unintentionally
and in that sometimes real commands
are missed.
In the case of the phantom turn-on,
there is usually not much we can do
except wait for a human to notice and
turn the light off. This is a problem if no
human is present. In the case of a
missed turn-on signal, the occupant is
right there and can turn it on manually,
but in the case of a missed turn-off
signal, presumably the occupant has left
and not noticed it. So once again there
is a problem.
The power line has a very limited
bandwidth for data, and we do not want
to be sending redundant or repetitive
signals to devices unnecessarily.
However, we do need to take some
steps to enforce a “safe” failure mode to
our lights. We must ensure that no
matter what happens, our lights are
eventually turned off, so we must
balance the use of the limited resource
(the power line bandwidth) against the
need to ensure a fail-safe operation.
Since failures are, hopefully, rare, we
can make an intelligent decision about
what sort of acceptable time period a
light may be allowed to be erroneously
on. Since one of the purposes of using
home automation is to save energy, this
process possibly should be related to
the power consumed by the light.

Perhaps a 50 watt light might be left on
up to four hours, and a 200 watt light up
to one hour. Also, we need to set a
practical minimum as to how soon a
light should be turned off. So we need
yet another timer to periodically ensure
a light that’s supposed to be is really off.

This “fail-safe” logic requires two more
rules, encompassing five statements
and another timer. We also add another
statement to our original logic. The
result is that a few minutes after the “exit
signal” turns off the light, the fail-safe
sends another turn-off command unless
reset by another occupant entering the
room and turning the light on again.
Thereafter at three hour intervals, as
long as the light is supposed to be off,
redundant X10 OFF commands are sent
to ensure the light is indeed off.
Notice there is a “race condition” the first
time the motion detector is activated.
The Sensor Motion Timer Rule sets it to
30 minutes, but the action of turning the
light on simultaneously sets it to 3
hours. This shouldn’t cause problems
however as the next motion detection
event will again set it to 30 minutes.
We thus ensure that if the light is turned
on by a phantom, it will stay on a
maximum of 3 hours. If the turn off
signal is missed, it will be turned off
again in about 20 minutes or so.
This makes for very reliable operation of
the X10 motion controlled light.

RULE Timer Light Set
IF Light is ON (TE)
THEN set Timer Light_Watchdog to 3 hours

RULE Timer Light Expired
IF Timer Light_Watchdog is EXPIRED (TE)
THEN Turn Light OFF
 set Timer Light_Watchdog to 3 hours

RULE Sensor Motion Timer
IF Sensor Motion is ON (TE)
THEN Set Timer Occupancy to 20 Minutes
 Set Timer Warning to 19 minutes 30 seconds
 Set Timer Possible_Exit to 15 sec.
 Set Timer Light_WatchDog to 30 minutes

A Final Word
That word is Documentation.
Documentation takes at least three
forms.
At minimum, a text listing of the rules
and macros in the program should be
created, along with some explanatory
comments. It’s a shame that HAL does
not allow at least minimal comment
fields in the rules and macros.
Detailed documentation of the logic flow,
complete with assumptions and a listing
of flags and other variables used is the
next step. This allows capture of not
only the basic logic, but also the thinking
behind that logic.
Creating a flowchart of the logic flow is
extremely valuable although it is
considerably more time consuming.
Flowcharting is a useful tool to examine
the relationships between our rules.
Flowcharting is a tedious and time-
consuming process, and should be used
judiciously. It’s not usually worthwhile to
take the time to diagram every logic
step.
Documentation serves at least three
purposes.
First, as an aid to the thought process
for design and troubleshooting, it can be
extremely useful. Every hour spent
diagramming complex logic flow will pay

back at least two hours in
troubleshooting work saved at the end
of the programming exercise by forcing
the programmer to think more carefully
about what we are asking the computer
to do. Sometimes the work of
flowcharting and documenting the logic
is an essential part of the design
process itself.
A second reason to consider doing at
least a partial or high level flow chart of
your logic is after the fact support.
Sooner or later you will have to revisit
your programming gem. Perhaps you
need to tweak it, enhance it, or copy it
for another room. Maybe Automated
Living will release a new version of HAL
that changes some of your basic
assumptions. In any case, carefully
documenting your work, both with text
and flowcharts, will make that effort
much easier.
Finally, If you decide your logical
construction is something you want to
share with others, the effort of
documentation and flowcharting pays off
yet again. Having done the up front
work of careful design, flowcharting and
documentation means those valuable
thoughts are now all on paper. Turning
them into a proper document that others
can study and learn from becomes
almost trivial.

Poss.
Exit?

yesno

Short
Timer

Done

Light
ON?

yesno

Set
Timers

Blink
Light

Turn
Off

Done

Light
ON?

yes

Light
ON?

no

yes

Turn
Off

Done

Set
Timer

Motion
Bath

Timer 1
Expires

Timer 2
Expires

Motion
Hall

Watchdog
Expires

Turn
On

	Revision History:
	Version 1.0 Released 10.07.2002 supports HAL Version 1.3.81 and earlier
	The Goal
	Timer Features
	Timer Limitations
	Force expiration of a timer – The opposite of stopping a timer is forcing it to expire immediately, thus triggering the action it is designed to invoke. Ideally, we should be able to set a timer to 0, and obtain immediate action. We can however load a
	Why Use a Timer?
	Timer Example, Take One
	We can document the logic flow, if not the exact instruction sequence with a small flowchart. This is a very good exercise as it will help later when you need to troubleshoot your work.�Timer Example, Take Two
	Timer Solutions, Case Three
	It Works, But Can we Simplify It?
	Are We Done Yet?
	A Final Word

