Open Source
VS
Commercial
DCE
Client/Server Software
Development Technologies.

Tom Brennan.

A dissertation submitted in partial fulfilment of the requirements of the Higher
Education and Training Awards Council for the degree of Bachelor of Science
in Information Systems

Department of Information Technology
Limerick Institute of Technology March 14" 2003

i. Abstractl

Why?

e [felt that it was important to carry out the topic, as ever, the movement is growing daily
regarding free, Open Source software, and outline the benefits it has to offer. Of course not all
free software has such forward momentum or increases with popularity depending on the needs

of the individuals themselves.

What?

e The main focus of the research was into whether Open Source or free software have such viable
market penetration and in this case, Client/Server DCE Software Development technologies.

This dissertation aims to fulfil the facts as necessary as per in Chapters 3 and 5.

How?

¢ By researching the internet and downloading the Open Source or free software, and trying it out

by implementing the project which will be outlined in Chapter 6.

Conclusions.

e The conclusions outlined, are entirely my own opinion, based from a software developer's
viewpoint and also from an end-user's viewpoint. The balance between two ends of the spectrum

will be outlined in Chapter 7.

Page: ii

|ii. Acknowledgments.

Thanks Ita Kavanagh for giving me a grilling about my experience, when we first discussed about the

dissertation when I started college back in October 2002. It was the grilling that gave me inspiration!

I would like to thank John Lannon for his useful input and constructive feedback, without him, this

would never have got far. Thanks!

Thanks to Mark Carter, who gave me an insider’s perspective on Entera.

Thanks to Phillip Ionio aka finieous, Wez Furlong aka wez, Bruce Foster for answering my

inquisitive and silly questions regarding FreeDCE. finious and wez are the maintainers of FreeDCE.

Thanks to Denise Cloutier and Ray Cavanagh of Entegrity for their time in answering my queries
regarding their evaluation software, despite lacking the requirements for the evaluation which I was

unable to dig into.

Thanks to Jim Doyle for your work in porting OSF/DCE across to Linux, nonetheless an
achievement on your part, yet drove me up the walls in attempting to get the build to work which
proved futile! After those two days spent, my fingertips were well and truly worn down, known as

finger-itis, as a result of chanting half-baked magic incantations on the command line!

One other person that deserves a thanks, Mr. Linus Torvalds, for your fantastic creation of Linux.
Ever since I discovered Linux and Open Source back in 1994/5, it was a joy to play and hack around
with, only for you, the “Linux Format” magazine wouldn’t be here. ‘Hail Linux - the king of the

OS’!

Page: iii

|iii. Contents.

Title Page.

1. Abstract.

ii. Acknowledgements.

iii. Contents.

iv. List of Tables.

v. List of Illustrations.

vi. List of Glossary Terms.

Chapter 1,

1.1. Introduction to Dissertation.
1.1.1. About the Dissertation.
1.1.2. Why I chose this topic?
1.1.3. What are the benefit(s) from this Dissertation?

Chapter 2.|

2.1. Introduction to Networks and Protocols.
2.1.1. Networks.
2.1.2. Protocols.
2.1.2.1. TCPIP.
2.1.3. Layout of OSI Model.
2.1.4. Layout of IP Protocol.
2.2. Introduction to Client/Server Models.
2.2.1. Pipes.
2.2.2. Sockets.
2.2.3. Remote Procedure Calls.

Chapter 3|

3.1. Case Study.

3.1.1. A background on what the company does and what role it plays.

3.1.2. A brief outline of how American Healthcare system works.
3.2 IT infrastructure used in this Case Study.
3.3. Development lifecycle.
3.4 Problems and Solutions.
3.5 Other miscellany issues, which I feel, are relevant.

Chapter 4

4.1. Entera.

Page: iv

4.1.1. How Entera works?

4.1.2. How a main broker can be sub-brokered?
4.2. Entegrity.
4.3. Factors from Commercial aspect.

Chapter 5|

5.1. Introduction to Open Source.
5.2. Confusion between Open Source and Free Software.

5.2.1. About the founder of GNU, Free Software Foundation.

5.3. Is business ready to take on Open Source?
5.4. Introduction to Linux.
5.5. Open Source DCE.
5.5.1. OSF/DCE.
5.5.2. FreeDCE.
5.6. Factors from Open Source aspect.

Chapter 6.

6.1. Getting the sources.
6.2. Building the FreeDCE binaries.
6.3. Disappointment.
6.4. Implementation.
6.4.1. Requirements of Client/Server Application.
6.4.1.1. Client Application.
6.4.1.2. Server Application.
6.4.2. In depth analysis.

6.5. Factors governing implementation using Open Source.

Chapter 7|

7.1. Brief introduction to TCO.
7.2. Estimated cost from Case Study.
7.2.1. Hardware.
7.2.2. Software.
7.2.3. Conclusions.
7.2.3.1. Cost.
7.2.3.2. Ease of use.
7.2.3.3. Support/stability.
7.3. Commercial software — Entegrity.
7.3.1. Conclusions about Entegrity.
7.3.1.1. Ease of use and Support/stability.
7.4. Open Source software — FreeDCE.

Page: v

7.4.1. Conclusions about FreeDCE.
7.4.1.1. Cost.
7.4.1.2. Ease of use.
7.4.1.3. Support/stability.
7.5. Overall conclusions.

A ppendix.|

GPL Licence.

Source code for implementation using Sockets.

Source code for implementation using FreeDCE.
Original posting to Usenet on the birth of Linux.

An insider’s perspective of commercial DCE software.
A query posted to sourceforge regarding FreeDCE.

A query in obtaining a quotation for Entegrity.

QmmYQwp

Bibliography.

|Index.

Page: vi

liv. List of Tables.

2-1. OSI Model (Umar, 1993).

2-2. Detailed IP Packet. (Davidson, 1988).
3-1. How an infinite loop aids debugging.
4-1. How Visual Basic taps into the API.

6-1. An IDL file containing simple RPC function called AddIt.

Page: vii

|V. List of Illustrations.

3.1. Illustration of Provider Network.

4.1. IMustration of Entera.

4.3. How Entera can be sub-brokered.

5.1. Hlustration of hierarchy of Open Source development.
6.1 Software lifecycle with DCE.

Page: viii

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Vi. List of Glossary Terms.

ActiveX — A recent software technology utilising Microsoft Windows platform in
communicating with different objects commonly found in Visual Basic, such as ADO
(ActiveX Data Object) which allows communication with the database.

ADSL — Asymmetric Digital Subscriber Line — a modified variant of DSL with
capabilities of upload and download running at same bandwidth thereby maximising
potential of digital lines.

API — Applications Programming Interface — a set of system calls that programmers
can interface code with thereby maximising the power of code.

AIX — IBM’s variant of Unix, based on System Five release (SysV)

Benefits — a benefit that constitutes part of an agreed health care insurance such as
Dentistry, MHSA (see below), Maternal Care etc.

CSMA/CD - Carrier Sense Multiple Access with Collision Detection, a rule
governing how information is passed using Ethernet technology.

CORBA - An acronym for Common Object Request Broker Architecture, an object
orientated version of DCE where it’s technology comes from.

CPU - Central Processing Unit, the heart of the computer, which performs complex
operations.

DSL - Digital Subscriber Lines — a faster means of telecommunications, traditionally
was analogue, now replaced by digital technology, the bandwidth for download is
bigger than the bandwidth for upload hence always-connected is possible.

GNU - A recursive acronym, coined by the FSF, implies “GNU is Not Unix”

GPL - GNU Public Licence, a copy left licence, which allows software to be freely
modified and distributed without cost.

Grep — An acronym originally taken from g/RE/p which stands for Global Regular
Expression Parser. A Unix command utility that can search through text for a certain
sequence of characters.

FSF — Free Software Foundation, founded by Richard Stallman who promotes free
software and distribute it under the GPL.

HMO - Health Maintenance Organization — A health insurance in which members
pay a premium for services, often, members who choose to visit their non-network
provider will often don’t gain any benefits.

IDL - Interface Definition Language, a set of rules used to govern how RPC stubs are
to be generated.

In-Network — A certain mile radius where members can visit their provider, without
incurring extra charges. See Out-Of-Network.

LAN - Local Area Network, commonly a private network in an organisation.

Linux — An Open Source variant of Unix, which is by far, the most popular Open
Source project ever seen, widely portable across diverse platforms.

MAC - Media Access Control, a fixed address that is unique and identifies each
network interface.

MHSA — Mental Health, Substance Abuse, this governs psychiatric care and in
general drugs/alcohol abuse.

MIN — Managed Indemnity — this is where a visit to any doctor can be arranged. All
individuals pool their out-of-pocket resources together, which offers generous
benefits.

Network — Consists of a group of doctors, pharmacies, hospitals collaborating
together, and is demographic based.

Page: ix

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Option — An extra component that makes up part of the benefit as whole, for instance,
Maternal Benefit, the extra option(s) are Pre-Natal Care, Post-Natal Care. Options
such as the given example usually cost extra but gives extra peace of mind.

OSI - Open Systems Interconnection, an organisation that have established standards
on protocols.

Out-Of-Network — A member who travels outside a certain mile radius of network in
order to reach a certain provider, and costs are incurred and thus comes out of their
pocket.

Package — A healthcare insurance set-up and agreed by employers and insurance
companies, this usually consists of Plans, Benefits, Options and Networks. A simple
example, for sake of comparison with Ireland’s VHI healthcare system is ‘Option
Plan B’.

Plan — This is set up by the Insurance organisation that offers healthcare incentive as
part of an employee’s salary. A plan is made up of Network(s) and is agreed by the
employer and insurance organisation in question.

PCP — Primary Care Physician — A doctor that is agreed to look after illnesses for
individuals. If such individuals need specialist opinions, the PCP will refer them to
the relevant specialist as per the network arrangement.

PPA/PPO - Preferred Provider Arrangement/Organisation — An organisation offering
worker’s compensation, transplant networks and other provider networks at flexible
costs yet can cover for pay out-of-pocket costs.

Posix — A standard that applies to Unix platforms, the more Posix compliant it is, the
more interoperable and portable the platform is.

RAM — Random Access Memory, volatile memory storage available when the power
is switched on.

RPC — Remote Procedure Call, a routine that appears to be executed locally, when in
fact it is executed remotely.

SQL — Structured Query Language, a standard for sending command strings to the
database to manipulate the data.

TCO - Total Cost Ownership, a formula to work out the cost of such product on a
yearly basis. It is not accurate enough to inform the cost, as it does not cover
unforeseen factors.

TCP/IP — Transmission Control Protocol/Internet Protocol, the protocol, which has a
series of rules governing electronic information, exchanges across networks.

Unix — An operating system that has been around for nearly three decades, invented
by Dennis Ritchie and Brian Kernighan, who also invented the language ‘C’. Today
there are variants of Unix commonly based around two central standards namely,
AT&T and Bell Lab’s System V. Also, despite having different variants, the term
*nix is represented to define a general Unix platform.

WAN — Wide Area Network, a means of linking up more than one LAN via
telecommunication lines.

Page: x

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Chapter 1.

1.1. Introduction to Dissertation.

1.1.1. About the Dissertation.

In this day and age, there is a lot negativity generated in relation to Open Source.
There are many individuals out there that have heard about Open Source, yet would

not touch it, purely out of fear because of the following factors:

e Lack of support such as “If I download this free software, who will support
it?” This is the most common question and an important one.

¢ Quality of software, there is a tendency for Open Source software to be more
stable and have very responsive turn-around time regarding fixes/patches.

e Well-known security exploits commonly found in Unix utilities such as
sendmail. That is not to say, that Unix is insecure, it is secure, but due to bad
programming practices, exploits have been well documented such as buffer
overflows. Despite that, chances are the code would be cleaned up and fixed
due to code being under scrutiny by thousands of programmers, in a short

period.

The points have illustrated above, shows that there is a perception of uncertainty. Yet
now, with big companies willing to spend money to develop Open Source and give it
back to the community, this fear will subside in the near future. The one primary drive
behind Open Source is the cost factor, which is free to use, free to modify and

distribute.

Consumers felt that it would be a waste of time in looking for fixes/patches, or even
upgrading Open Source software. That explains why they prefer to stick to
commercial solutions where there is support to back up in the case of unforeseen

problems, and thus would restrict their choices with proprietary software.

Page: 11

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

With Open Source, rapidly gaining attention and companies are sitting up taking
notice. They are beginning to realise that they do have a choice after all, i.e.

proprietary/open source software.

By looking into Open Source, consumers will be able to break away from closed and
proprietary solutions and thus have a freedom of choice and to be able to choose
which software is suitable, and furthermore, the source code is usually supplied

thereby allowing the luxury of tailoring the software to their specific needs.

There is extensive analysis of whether Open Source is a viable alternative in today's

business. (Kozinski 2002 and Drummond 2001)

Also, since there are a large number of corporations who are uncertain about whether
to migrate or maintain their existing legacy applications i.e. make it more up-to-date.
This uncertainty is there for a number of reasons such as cost, time and development.
Even then, the maintenance of such legacy applications would be awkward if it was
decided that a more modern software approach was glued on to the existing code,

such as CORBA, WebSphere, MQSeries etc.

The corporations would effectively lose out, since dependency on such legacy
applications is high and thus some might say, these are the backbone of their IT
infrastructure, as well as for their day-to-day business operations. By taking a risk to
bolt on say, CORBA for instance, the stability of legacy applications could and may

very well tumble downwards rapidly due to the original designs of these applications.

Furthermore, a lot of companies using such DCE technologies, realise that it would be
unfeasible to continue paying money for support as well as "keeping it alive". By
looking into Open Source, an alternative can be found despite having the very basic

means of DCE technology. Look at FreeDCE (2002) for more information.
The dissertation aims to narrow the gap in due reflection of this topic, by comparing

both spectrums and drawing up conclusions to assert if Open Source software is a

viable alternative where cost issues can be minimised.

Page: 12

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

While more recent developments such as CORBA, ActiveX, to name but a few have
superseded DCE technologies, DCE is considered to be the forefather of the
technologies we have today. Sadly, today, DCE is dying out as big companies pull
their weight in supporting such technologies, IBM's WebSphere & MQSeries,
Microsoft's ActiveX etc., yet have their place among legacy systems and applications

and soon will be consigned to gathering dust along with COBOL.!

The dissertation gleans in on the case study, which provided the inspiration to
investigate DCE technologies. In Chapter 3 and 4, we cover the case study, describe
how Entera works, its problem(s) and solution(s). In Chapter 5, we explore the realm
of Open Source and alternatives called OSF/DCE and FreeDCE, Chapter 6 covers the

implementation of FreeDCE, and finally in Chapter 7, the conclusions.

Also, covered in this aspect of Open Source vs. commercial technologies, is in terms
of software development regarding DCE. And conclusions and comparisons are

drawn up between the two areas of software, on the one side of the spectrum is open
source (FreeDCE) and the other side is commercial (Borland's Entera and Entegrity)

respectively.

1.1.2. Why I chose this topic?

The primary reason behind this topic is quite simple; I have worked in the software
sector for nearly five years, specifically in the Client/Server development on the Unix
platform. The knowledge and experience that I have gained are highlighted in the case
study as outlined in Chapter 3. I have and still do, always admired how much Unix
has to offer, from its wide range of software right down to the nuts and bolts software

that requires a certain level of technicality.

1.1.3. What are the benefit(s) from this topic?

¢ The main benefit, which I will get from carrying out the tasks involved in
setting up this dissertation, is gaining new knowledge - technical and general

based on my ability, in carrying out the research in this field.

Page: 13

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

e The other benefit is that individual(s), be they software development
managers, I'T managers etc., will endeavour to make a good choice in
determining which product is right. Moreover, to learn something from it. And
try to keep an open mind as honestly as they can, when it comes to the
essential process of decision making in this regard in determining the factors

and weighing up the pros and cons in this area.

I will start by introducing networks and protocols; various methods of client/server
models will be highlighted also. I will try to steer clear of technicality in order to
make this dissertation fit in with a wide audience who has absolutely no prior
experience although a general understanding of programming is advantageous but not

a pre-requisite.

Page: 14

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

2.1. Introduction to Networks and Protocols.

In this chapter, I will be looking into how networking plays a fundamental role in
DCE Client/Server Technologies and is a driving factor behind it. As far as the
advancements of networking goes, such as the new implementation of IP version 6
which is being rolled out, wireless networking. With the advent of current trends in
development such as CORBA, to name but a few, this is consigning DCE to rest.
Furthermore, due to the influx of so many packages appearing which supports
CORBA et al, this would drive management to consider that since CORBA et al, is
more popular than DCE. This in turn would force them to re-evaluate software

development as such. To re-iterate the factors are:

¢ Advancing network technologies. Would DCE or similar, be able to cope with
newer networking protocols such as IPv6, Wireless networks etc, would
recompiling the code using the more up-to-date binary code solve the
upgrading of IPv4 to IPv6 while maintaining compatibility with IPv4?

e Trends and attitudes towards software technologies, especially in management

organisations.

2.1.1. Networks.

Networks are a means of being able to connect more than one computer together, and
to share resources on it, be it files, software, printers, or any other hardware devices.
Networks come in two main flavours and topology (how it is represented
diagrammatically, such as star, ring, to name but a few). There are two types of
networks - LAN (Local Area Network), and WAN (Wide Area Network). In this
chapter, when I talk about data passed around. I refer to the smallest known quantity
of data put together in order for computers to distinguish who is the intended
recipient, the source or sender. It also contains other esoteric bits and pieces of data

that constitutes as a packet.

Page: 15

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

LAN's are commonly found in small companies and is usually private - only the
employees have access to it. WAN's are a more common means of allowing LAN's in
different regions to communicate with each other, for instance, a LAN in a Limerick-
based office can access the main office in Dublin which also has a LAN via WAN.
WANSs are made possible via telephone lines, digital subscriber lines (DSL),
asymmetric digital subscriber lines (ADSL).

There are two different flavours, which I will give a brief summary of and is outlined.

1. Token Ring Network.
This form of networking requires a special communication access protocol called
token passing, (a simple classification of how data is organised, prior to be sent
through the hardware interface - NIC, an acronym for network interface card). That
data is passed around from one computer to the next is known as a token. Any
computer that wishes to send a token must wait until it is free to forward it on to
another computer via special statuses contained in the token. This is analogous to
having a traffic light system, if the status is green, the computer can then forward
the token, and likewise if the status is red, the computer must wait. As with all
token ring networks, this simply means that the token is passed on to each
computer even if the computer in question is not the destined recipient for that
token and therefore passes it along. Strictly speaking, it does not actually pass it
on, it actually duplicates the token, change the status to green, and pass it on.

(Luce, 1989)

2. Ethernet Network.
This is by far, a more popular form of networking. Ethernet uses specific
communications access protocol called CSMA/CD - Carrier Sense Multiple Access
with Collision Detection. All communication lines used in this regard have a
special signal called a carrier. The procedure works like this, if there is no carrier,
the computer is free to transmit data or packet. Using the same analogy, as above,
if there is no carrier i.e., the traffic light is green, then the computer can send a
packet. If the traffic light is red, this means, "no-go zone", so the computer must
wait for a short period before retrying to send the packet. The thing about this form
of protocol is that two computers could come along and check if the "coast is

clear" and start sending packets, what happens. A collision of packets can occur,

Page: 16

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

and when it does, the two computers must wait for a short, if not random, period
and retry again. In each of the packet that is sent, the receiving computer, even if it
is not the intended recipient, must check the packet to verify if the destination
address matches their own. If not, it forwards it on to the next computer, like

passing the parcel.

Now that we have covered the two flavours of networks, it is time to cover the
network protocols, which is "the rules" in how data is transmitted from one LAN to
another via WAN. It is worth mentioning that the rules apply in both cases of LAN's
and WAN''s.

2.1.2. Protocols.

There are a number of diverse protocols which concerns with how the data is
represented before it is broken down into its smallest quantity before being sent down
through the hardware circuitry, i.e. 1's and 0's. That is the binary makeup of how
computers work at its best. There are various protocols such as TCP/IP, UDP,

NetBios, Novell, etc, to name but a few.

The most common protocol is called TCP/IP (Transmission Control Protocol/Internet
Protocol). This is the rudimentary protocol used across all kinds of networks
including the Internet. Had TCP/IP not been invented, there would have been no

Internet!

2.1.2.1. TCP/IP.

In short, the IP (Internet Protocol) governs how packets are routed through from one
computer to the next i.e. "How do I know this packet is for me?” TCP governs how
the packets are sequenced, providing flow and transmission logic to ensure large data

transfers arrive in a particular order.

A group regulates TCP/IP or committee called the Open Systems Interconnection
(OSI for short). The committee establishes standards in how communications can be

achieved across different devices. OSI have established a model that consists of two

Page: 17

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

layers, and each of the layers, there is a sub-layer. Application Interface and Network
Interface, is the main two layers. In the Application Interface Layer, there are three
layers, four layers for the Network Interface respectively. See Table 2-1 for the OSI

model.

As of currently right now, IP is known as version four. There is a new version that has
been ratified, but not yet fully implemented, known as IP version 6. The reason
behind this is that the addressing scheme is running out of space using its current
incarnation, due to the explosion of the "Information Superhighway" in the last

decade.

IP version 6 is currently being rolled out in small steps; it does have backward
compatibility with IP version 4. With the newer version, put simply, it has more room
to allocate addresses and thus will never run out. The other major thing with this
version is security, IP version 4, and software that used its suite of this protocol, had
its fair share of problems regarding security. With the influx of so many programmers
(in some circles and often poor media exposure, they are often portrayed as
“hackers”) due to the explosion on the Internet, have exploited far too many security
problems with the current incarnation. See Table 2-2, for the detailed description of

the IP packet.

Page: 18

Open Source vs. Commercial DCE Client/Server Software Development Technologies

2.1.3. Layout of OSI Model.

Network Layer.

Application Layer.

Layer 7

Application.

User programs and
operations. e.g. File
Transfer, Terminal
Emulation, Email.

Layer 6

Presentation.

Data entry/display, interface
transformation. e.g.
Encryption, EBCDIC
conversion to ASCII.

Layer 5

definition (1SO 8327).
__|

Layer 4.

Session.

Control of data exchange,
administration. e.g. Rules
such as hand-shake
protocol, maintain
connection, X.225 protocol

Transport.

The transparent transfer of
data between sessions e.g.

X.224 (1SO 8073)

Layer 3.

Network.

The procedure to assemble
and route packets across
networks e.g. X.25 (Well
known packet layer

protocol), ISDN interfaces.

Layer 2.

Link.

The initialisation of data

flow, error recovery e.g.
IEEE 802.3, 802.4, 802.5

Layer 1.

cables, e.g. RS 232, RJ 45,

Physical.

The hardware circuitary
interfaces to the
communication media and

UTP Category 5.

Table 2-1. OSI Model (Umar, 1993).

Page: 19

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

2.1.4. Layout of IP Protocol.

Here is the actual layout of the IP packet, the figures in brackets beside each
description indicates how much bits are stored. For instance, "Version" field holds

four bits, maximum value is 15, or in binary, is 1111,=15y.

" Version (4) ["THL (4)] > T.0.S (8) * Total Length (16)
> 1d. (16) ® Flags (3) ["Frag. Ofs (13)
> TTL (8) | 7 Protocol (8) "% Checksum (16)

" Src IP Addr. (32)
2 Dst. IP Addr. (32).
> Options (8) | % Padding
3 Data.
Table 2-2. Detailed IP Packet. (Davidson, 1988)

1 Version - This indicates the version of the protocol in use, as of today, in its
current incarnation, it is usually 5 or 0100, in binary.

2 Internet Header Length indicates length of header, so the beginning of the data can
be found if options are present. If no options are available, this is normally 5 or
01103 in binary.

3 Time of Service, this holds flags and precedence or priority of the packet, e.g.
Low, high or reliability.

4 Total Length - this is measured in octets, which includes the header and the data,
since the field is 16 bits long; the maximum value is 65,535 octets.

5 Identification, integers value to identify fragments. Fragments, occurs when the
data is too big to be transmitted so it is broken down into smaller packets. This
value is unique (usually incremented) if fragmentation applies.

6 Flags - this controls the fragmentation of packets. This can contain either MF
(More Flag, i.e. There's more packets coming in that makes up a fragmented
packet) or DF (Do not Fragment, i.e., there's sufficient data that can fit within the
normal limit).

7 Fragment Offset - This is used in conjunction with fragmented packets, this field
indicates whereabouts in the packet is the actual data stored. This is measured in
octets.

8 Time To live - This field is set by the computer and is decremented as it passes

through a router. If this is set to zero, the packet is discarded. Generally speaking,

Page: 20

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

routers should never receive a packet that has this field set to zero otherwise a
network loop will occur.

9 Protocol - This indicates which transport layer to use, six is the more common
value for TCP.

10 Header Checksum - This contains a value to ensure reliability of the packet. Note
however, this excludes the data, there is a reason behind this, and the checksum
must be recalculated as it passes through the router which can slow transmission
time.

11 Source IP Address - represented as in dotted quad hexadecimal notation, e.g. AC
10 C8 FAjs, in base ten, this is represented as 172.16.200.250. In binary this would
be10101100 00001000 11001000 11111010, or simply www.google.com which is
the more familiar way of representing computers on the Internet.

12 Destination IP Address - again, it is in the same format as above. See number 11.

13 Options - this is useful for examining the packet, there are a number of options
available concerning measurement, security and debugging.

14 Padding - this is to ensure that this section of the packet is evenly 32 bits long.

15 Data - the actual data, the length is variable as long as it does not exceed the limit.

2.2. Introduction to Client/Server Models.

Client/Server is a means of allowing clients access the server to use resources. The
client, can be classified in terms of hardware, software, or both, and is usually
interactive with a user. In addition, it can reside somewhere on a LAN. The servers on
the other hand, sit somewhere, again on a LAN or even on WAN, and require little or
zero interaction with the user. The best definition of Client/Server is “a client initiates
an action with a server by sending a message, it is independent, may run on the same
machine, the hiding of information inside a message. The server enforces certain rules

on how data is arranged so that the client can interact with it", (Umar, 1993, pg 247).

How data is enforced is called marshalling/unmarshalling. This is how it works,
marshalling is about putting data together, which is what the client does, and it sends
the message containing the data to the server. The server checks if the message and
data conforms to certain rules unmarshalls the message, i.e. Breaks it up, into a certain

way for processing.

Page: 21

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Here is the outline of Client/Server's advantages and disadvantages.

Advantages.

Client/Server efficiently divides functions among diverse platforms - the server
does the majority of the hard work in processing high-volume data providing
integrity of the data, therefore, the client becomes a more effective, productive

machine without wasting

a) Valuable CPU cycles in processing

b) Database storage is virtually nil or kept to a minimum

The use of database processing and transactions empowers the client to interact
with multiple databases on multiple platforms; thus, application portability is
retained.

Servers are scalable and can be easily customised without breaking the client, i.e.
The client does not need to know what is the server's specifications, as long as
"there is a server listening to me", and is configurable. The client does not need to
be upgraded at all.

There is a huge saving in terms of cost in transaction processing. Mainframes tend
to have higher cost in this regard, e.g. price per transaction on a client/server is V2"

in comparison to 1/10™ of that on the mainframe.

Disadvantages.

Because of the specific nature of client/server systems, complexity increases in
terms of network management and operations; thus, this would require recruiting
skilled specialists to support it.

Application packages and development software is scarce and expensive. Thus,
the cost of software development is high. Different software vendors have their

own standard (which brings about the Open Software Foundation - OSF).

Page: 22

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Generally, software that uses the client/server model is custom/ vertical/specialist

software that would not fit in the category of buying it off the shelf.

There are different models of how a client/server system would work. From a
software development point of view, each of these models requires a certain level of

technicality and possibly having to retrain the knowledge from time to time.

2.2.1. Pipes.

Pipes are strictly speaking, from a Unix based point of view, is a special file, in which
can be accessed for reading/writing to. This is the simple way of communicating. A
server designates a file, opens it up for reading/writing, and waits until data is coming
through. The client opens the same file for reading/writing, writes data to the file,
once the data arrives on the server; it reads from it and does whatever is necessary.

There are advantages to this

e No special skills are required, if you know how to read/write to a file, then you are
done.

e It does not use TCP/IP protocol.

e Simpler and cheaper to use.

¢ Different flavours of Unix (such as AT&T, System V, AIX, Linux, to name but a

few) already have special facilities to create this special file using their programs.

2.2.2. Sockets.

Sockets was an extension to pipes but is more generalised to communicate across a
network, be it LAN or WAN. A socket application simply reads/writes to a socket to
communicate with a server; this is akin to performing read/writes to an ordinary file.
There are a number of well-known applications that uses sockets, telnet, and ftp to
name but a few. The socket implementation is the more natural approach for
developing multiple clients communicating with a single server. There is an already
established standard of sockets, which conforms to the Berkeley standard. Windows

platforms use this standard via Winsock, which also includes proprietary functions to

Page: 23

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

take advantage of Windows. This means, that if you write an application that uses

Berkeley style sockets, the code will be portable across the Windows platform.

Advantages.

e Portable and clean interface, and is well known due to adherence to Berkeley
standards.

e (Can accommodate TCP/IP and UDP protocols.

e Tighter control over how communication protocols work.

e Majority of systems comes with means of creating socket applications.

Disadvantages.

e Requires a level of technicality, and intimate knowledge of the network protocols.
e Developing a socket application can be complex, such as threading, handshaking,

and even arranging how data is to be transferred.

2.2.3. Remote Procedure Calls (RPC).

RPC, in a client/server model, looks like a local procedure routine. “RPC function
calls are function calls outside of you address space that look and feel like local

procedure calls”, (Bloomer, 1995).

When that routine is executed, what happens really is the underlying code or
mechanism performs communication with a server across the network. This adds a
level of transparency, to which the programmer need not be concerned with the

technical details of the network infrastructure.
The server will contain the routine that shares an identical name to the one on the

client, this is where the server will do the necessary work in processing the data, and

the results are returned back to the client.

Page: 24

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Advantages.

Information regarding the routine/function contains the network mechanism is
automatically generated by a RPC code generator - similar to that of a code
compiler.

Majority of commercial software suppliers follow the OSF/DCE standard thus it is

portable.

Disadvantages.

Extra work involved in having to specify an interface definition, which is then
passed into the RPC code generator.

The development lifecycle can get complex regarding debugging/testing the
application. “Distributed application debugging can be very challenging...It’s
extremely productive to first link the service procedures directly with the client
side of the application....debug parameter passing and overall functionality can be
exposed by side-stepping the network and RPC calls...” (Bloomer, 1995).

The software can be expensive to set up in terms of security, authentication etc.
Code can be complex especially in a security conscious environment, with

authentication hard to verify.

Page: 25

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

3.1. Introduction to Case Study

This chapter is focused on a company located in the Mid-West where I spent almost
five years working in a number of areas, specifically Client/Server development. The
objective of this chapter is to give a few factors such as training, ease of use,

problems, mindset of management that is outlined in 3.4 and 3.5 below.

e A background on what the company does and what role it plays
e A brief outline of how American Healthcare system works.

¢ IT Infrastructure where relevant.

¢ Problems if any & solutions.

e Other miscellany issues, which I feel, are relevant.

3.1.1. A background on what the company does and what role it plays.

This Irish company works in tandem with the central office based in Hartford, CT,
U.S.A, essentially an R.P.F - Remote Programming Facility, where tasks are shared in

conjunction with the U.S, working as a team.
The central office plays a big role in the insurance healthcare sector producing and
maintaining software to support the existing system. As regards to this sector, this is a

very big and complex operation.

3.1.2. A brief outline of how American Healthcare system works.

The complexity lies in how the health insurance is set up due to differing laws as
agreed by either U.S state law and or by U.S Congress/Senate. Of course, this can
change every year depending on the approval by members serving in the health sector,
such as doctors, hospitals, pharmacies etc. I will give an outline of how health

insurance works in the eyes of the United States.

Page: 26

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Typically, all employers will offer their employees some form of incentive or benefit,
in this instance, health insurance, typically under a number of different packages
depending on the company itself and the number of employees. There are many
packages such as HMO, PPA, PPO, MIN, to name but a few. Please see the list of

glossary terms for more information.

Each of these packages would have what is known as a Plan’, and each Plan’ would

have certain 'Options' (if any depending on employer/employee contribution).

A 'Plan’' is made up of and agreed by a 'Network' (nothing to do with .T!). A
'Network' consists of 'PCPs' (Primary Care Physician), Hospitals, Pharmacies,

Nursing homes etc., and is demographic based. See Figure 3.1.

E.G.

Health Package offered by Company Z, located in California, U.S.A.
Employer contribution per month - $100, Employee contribution per month - $75.
This health insurance shall be called HMO Plan with Options MHS A (Mental
Health/Substance Abuse), Neo-Natal Pre & Post Care.

It is worth mentioning that on the one end of the spectrum, there is HMO that is
considered to be the best health insurance an employee can get (depending on their
salary which would be high obviously). On the other end there is MIN (Managed
Indemnity - this is where all employees pool their contributions together) for low-paid
employees. Incidentally, under the HMO Plan, PCP's, hospitals and such often get
malpractice suits and have a bad rap. This is very much the opposite case for MIN

Plans!

Page: 27

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

X, F.
@ //[i I\ [Hosp. A.

(Pharm. K. | o ST Ty
i { PHARMACY | HOSPITAL |e—— Hosp. X
" _‘_f' —

i

o “‘-\.
\[=y D=
/
bi. B. | | . C, |
lin-Metwark

Dut-Of-Network

Fig 3.1. llustration of a Provider Network.

To further make the Insurance package more complex, an employee who
works for Company Z in California, has HMO Plan (remember it is demographics
based). And that employee's health insurance would be valid and effective within
California or in health insurance speak - within the 'Network' or 'In-Network' (cheaper
and the insurance company would cover it). But it may not be effective outside of
California, for instance, New York. Even though a HMO Plan in New York is deemed
valid, but since it is outside of the Network', such coverage in emergency (for
instance, if the employee breaks a bone or worse whilst visiting his/her relatives in
New York) is not possible. Therefore it will be more expensive and the insurance
company may not or refuse to provide such cover. Hence it will have to come out of

the employee's pocket!

As you can imagine, 'PCPs', Hospitals, Pharmacies would have to negotiate
with the insurance company to provide 'Network' coverage and agree on fees etc.
Furthermore, employees who have HMO Plan as in the above example must visit their
'PCP' while In-Network'. Moreover, the individual must attend a certain hospital per

se etc., in order not to pay - i.e. insurance company will look after the bills.

Page: 28

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Yes, 'Out-Of-Network' coverage is also available but will be charged slightly
more. For instance, an employee who is within three miles of 'In-Network' coverage
will pay nothing, in case of emergency and is twenty miles outside of In-Network' i.e.

'Out-Of-Network', the necessary fees will have to come out of their own pocket.

That is the brief coverage of what the company is the background of its role within the
[.T/HealthCare sector. Now we will look at its IT infrastructure pertaining to the area

of Client/Server technologies, it is problems and other issues.

3.2. L.T Infrastructure used in this Case Study.

The platform is IBM's RS/6000, running AIX 4.3 and DB2 Universal Database, the
backbone of the LAN/WAN is fibre optic via Ethernet hub/switch with T1 link (Tie
line which has huge bandwidth). This enables connection between the Irish Office and
Connecticut, U.S.A. The RS/6000, now have been renamed to the pSeries which was
part of IBM's marketing move, mainframes such as IBM S390/AS400 are now called

the zSeries. For a sample of such system, it can be found at IBM's website."

There were two RS/6000 boxes, which is located off-site for security reasons. The
production box serves as the access point for different offices located in Colorado,
Texas, Minneapolis, California, South Carolina, and New York. It has a thirty-two-
way processor running in tandem, with twenty-four gigabyte of RAM and storage ran

into a couple of terabytes (i.e. a very big number).

As you can imagine the sheer processing power, required to handle requests from
different states within demographic regions are massive, in particularly, there's a very
high database transaction processing, which explains why it has a very high

specification.

The specification of the development box is slightly lower than that of the production

box, and there is a reason why, for performance issues mainly, i.e. if the system can

! Entry level RS/6000, available on internet, last accessed 13/11/2002, http://www-
132.ibm.com/content/home/store_IBMPublicUSA/en_USA/eServer/pSeries/entry/pSeries_entry/610
6E1

Page: 29

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

work under this specification. It can be deduced that it will perform better on the high
end. It has sixteen processors with sixteen-gigabyte RAM and storage space was
about the same. IBM has on-site support ensuring both boxes have minimum

downtime per year and upgrading them where applicable.

The development box is where all the change control procedures take place that
involves modifying, testing, and debugging the applications. Borland's Entera for AIX
runs on both boxes, all server code is written using 'C', database access uses SQL and
the server code, and database access resides on the one box (both in production and in
development). The client is based on Powerbuilder 6 running on Windows NT
platform, which is albeit a very complex application (as I have mentioned above in
describing how the health system works, the complexity of the user interface is
enormous). However, it works nicely; the user interface takes a bit of getting used to
nonetheless. Entera is used to communicate between the client and server, which will

be part of this discussion for this dissertation.

3.3. Development lifecycle.

This will provide an insight into how the development lifecycle works, in relation to
using the commercial DCE software. Entera encapsulates the network specific
routines via client/server stubs that are generated at compile time. In this case, the
developer is more focussed in getting the logic coded thus freeing up any
worries/headaches about networking details. This was all down to the way the

compile process was done.

A brief explanation in how this was achieved. All RPC functions were known as a
business functions (which was written in 'C"), this in turn call other routines to
manipulate the data passed in from the client side, i.e. Powerbuilder and the database.
The business functions were added into an interface definition language file (IDL),
and a code generator, creating client and server stubs, processes this file. Also
generated was the Powerbuilder import file, which is transferred across to the PC

platform for inclusion during the build process of the Powerbuilder front end.

Page: 30

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Once, the server stub is compiled into an object code and linked in with other
libraries, a server executable is created. The server executable listens in on a specified
port number running in the background, blocking or waiting for a connection from the
client side. Therefore, the client side must be told which port number to use on the
host platform on the network. This in turn, this will execute the business function on

the server side depending on a certain event in the front end.

Entera already has a graphical user interface debugger specifically for debugging RPC
functions known as rpcdebug. Of course, the debugger must be told which port to
listen in on, and the developer loads up the executable into the ordinary debugger that
comes supplied with Unix. By setting a particular breakpoint and running the server in
tandem with rpcdebug. The developers can specify which RPC function to execute
(the IDL file must be specified as well so it will know which functions are relevant to
the particular server). And supplying parameters and simply click on the Execute’
button, the normal debugger intercepts the RPC function in question and from there,
debugging is relatively easy, single stepping into the code (white box testing) and
function stepping (black box testing).

There is another way to debug a server without using rpcdebug, this can cause the
client side to lock up completely and hang which would result in the need to kill the
process. This stage is usually carried out, once the developer is satisfied that the code
executes using test data. The business function would have to be altered slightly,

simply by including an infinite loop like as shown in Table 3.1:

..... Certain start-up house keeping functions....
while (i); /* Breakpoint set here in debugger */
..... further code....

..... and certain shutdown housekeeping functions....

Table 3-1. How an infinite loop aids debugging.

Go through the stages of compiling/linking to rebuild the server. Load the server
executable under the debugger and setting a breakpoint on the line that contains the

infinite loop (while loop) and let it run in the background. On the client side, create

Page: 31

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

the event that will cause the business function to be executed on the server side. The
debugger will break at the specified breakpoint, and by setting the value of i to zero,

one can resume debugging in the normal fashion, checking the parameters etc.

This is the reason why there is an infinite loop, business functions gets executed very
quickly and thereby guaranteed that the code can be stepped through once the value of
i is set to zero. This explains why the client side can be locked up completely and

hangs as if the client has crashed!

3.4. Problems and Solutions.

Entera 3.2 was used at the time, and Inprise (now known as Borland) dropped the
support for this version. Furthermore, project managers perceived a risk in upgrading
Entera 3.2 to Entera 4. This was considered unjustifiable. At the time, it was not
justifiable in investing money, as it was too expensive to continue using the software

that would get no support and was seen as a major risk.

For instance, what would have happened, if a broker/cell went down due a software
malfunction that was seen for the first time and occurred at random thereafter in
which support has been dropped? This is something that management perceived, and

yet would not be willing to lose money in terms of services impacted by ‘down-time’.

Open Source was never heard of at the time and thus was not seen as alternative. The
solution at the time was to ditch Entera, and use Java/Javabeans/HTML. It was
considered a huge investment, as many people in the project had to switch over to
new grounds. Thus, the development team started to get smaller, and receive cross-
training classes on Java and to migrate many of the core routines over to Java via code
wrappers. Short term, it was expensive (cost of training, team brainstorming
discussions such as how to minimise re-inventing the wheel with ‘C’ and Java etc).

Long term, it was seen as a good alternative and was decided to go down that route.

Page: 32

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

3.5. Other miscellany issues, which I feel, are relevant.

Training was minimal due to complex information hiding regarding DCE, as to what
was involved was learning how to use their make-files, understanding command line

parameters when starting up/shutting down servers.

Overall, the development lifecycle was easy to do. There was no complexity involved
as the system administrators off-site were maintaining the broker/cells. As well as one
or two privileged members of the development team who shared a subset of

responsibility in the event that the system administrator was absent.

The compilation of code was minimized due to intelligent macros in make-files,
which were set up. The developers were not worried about losing productivity; in fact,
there was no productivity lost due to the intelligence of the software and the ease of
use. Developers (including myself) did not see the lower-level RPC routines, as this

was all hidden away inside the stubs, which were generated at ease.

Testing and debugging the code was easy in general; again, developers need not
worry about the underlying mechanisms regarding Entera. It would be fair to say that
the edit-compile-link-test-debug cycle was smooth and no extra knowledge is required
in how the underlying principle works. Ok, there was a few commands that has to be
remembered in setting up a sub-broker (See next chapter for in-depth explanation),

and is the same across for all types of servers.

Page: 33

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

This chapter will focus on the different commercial products; I will give details how
the underlying architecture works based on my work experience. For now, I will give
a brief outline of Entera and Entegrity by gleaning in on the reference manuals (in
Acrobat's PDF format). Which I downloaded during my research and then I will go
into more depth about Entera. I will focus on two products, one for the commercial

Unix such as AIX and the other for the Open Source known as Linux.

Some of the factors will be highlighted here at the end of this chapter, for commercial

DCE software such as:

o (Cost Issues
e FEase of Use

e Support/Stability
4.1. Entera

What is Entera?

Entera is a middleware product that developers use to create three tier client/server
applications. Entera conforms to the Open Group's DCE standards, which makes it a
portable and interoperable product. In other words, code developed using Entera
should work with any other Open Group compliant DCE standard. Strictly speaking,
in this case I mean the source code can be built under a different DCE architecture
provided it conforms to Open Group standards. Its tools insulate the developers from
having to know the underlying network protocols and infrastructure; hence, Entera

applications are independent of the network infrastructure. (Borland, 2002).

Page: 34

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Entera & Databases.

Entera can interact with many different databases such as Oracle, DB2, Interbase, to
name but a few. Thanks to its data access servers, it can access Open Database

Connectivity (ODBC) compliant databases as well.

Entera provides support for:
e Automated transaction handling.
e Stored procedures support.

e Automatic SQL statement caching to improve performance.

Entera supports different languages.

Entera enables developers to develop and deploy three tier scalable applications under
many such diverse languages such as:

e C, C++ (Borland C++ Builder).

e Java.

¢ Visual Basic.

e Powerbuilder.

The language support is due to its dynamic link libraries (DLL's) and Add-ons.

Entera is scalable and secure.

Entera provides for DCE Delegation support, which allows security credentials is
propagated across security servers enabling services such as single sign-on security. It
offers flexibility, and scalable, supports asynchronous RPC's which frees up the

application to process something else while the RPC is executing in the background.

Page: 35

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

4.1.1. How Entera works.

In Figure 4.1, the illustration is shown how Entera can interact with the client. On the
left of the illustration, is an IBM RS/6000 box running AIX with the main broker(s) or
cell(s). In this example as shown, the main broker is running off TCP port 9876.
Inside the main broker, there can be one or more servers — up to n servers written in
‘C’ with Entera server stubs. All of the servers provide a means of interaction
depending on what event was triggered on the client. For example, clicking on a drop
down box, this in turn invokes a certain routine on the server designed for handling

drop down boxes.

On the right, is an Intel x86 running Windows NT 4 WorkStation, with the client
running. The client is written using PowerBuilder with Entera client stubs and is
specified to use port 9876 via an information file, similar to a common file that is

found under Windows platform called win.ini.

The client stubs were generated on the server and exported across to the x86 platform.
This ‘client stub’ is not technically a stub in case you are wondering how it is
achieved! It is more of an ASCII flat file with routines to hook up with the Entera

DLL residing on the client.

Server 1 sy i b, r !

n : 1 4 : ' | PowerBuilder UI
erver n : : . : (Client).
= g

Broker / Cell xB6 (Windows NT 4 Wk5in)
{ Client is specified to use Poxt 9876 }

RS/6000 (ALX)
{ Listening on Port 9876 }

Fig. 4.1. Illustration of Entera.

A very good example of this will be shown in a different language, the principle is
similar. Let us look at Microsoft Visual Basic, to give you an idea how this is done.
Here is a brief introduction about programming in VB with API. You want to use a
certain API (Applications Programming Interface); to change the behaviour of a

certain event. Alternatively, to use a certain feature not found in VB, one could code it

Page: 36

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

in this way. Notice in Figure 4.2, how the library user3?2 is referenced which meant,

declare a function called “FindwWwindowa” which can be found in “user32.d11”.

When an Entera client stub is generated, it uses the similar principle; it just contains
references to the Entera DLL, along with the RPC/business function names. The stub
is then imported within PowerBuilder. Obviously, the references to the Entera DLL
would remain the same, and thus would be built into a separate library and hence

would be discarded.

Declare Function FindWindow Lib "user32" Alias "FindWindowA" _

(ByVal 1lpClassName As String, ByVal lpWindowName As String) As Long

Table 4-1. How Visual Basic taps into the APIL.

4.1.2. How a main broker can be sub-brokered.

In this scenario as shown in Figure 4.3, a programmer wishes to modify server 1.
He/she then sub-broker it to run off port 8765. The assumption with this scenario is
that there is no change made to the RPC/business function. Just the underlying logic is
modified. The client (since no changes are made) is specified to use the programmer’s

port 8765.

This is where things get clever. Suppose that a user on the client triggers a certain
event i.e. calls a RPC/business function that is not running off port 8765. The
RPC/business function is found in “Server 2”. Entera then re-routes the request for the
RPC/business function to port 9876, the code residing in “Server 27, are executed,
returns the results back to the sub-broker running off port 8765. The client is not
aware of this and thinks that “all” servers are running off port 8765 whereas in fact

only one server is running! Furthermore, other clients can still use port 9876.

Page: 37

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Server 1 FE RS 7 r :

= 5 i 4 : i | PowerBuilder U
erver n : | . : (Client).
T i Y Tk

Broker / Cell xB6 (Windows NT 4 Whk5in)
{ Client is specified to use Port 9876)

RS/6000 (AL
{ Listening on Port 9876 }

:f -‘. :f PowerBuilder U1

- - - (Client).
! : b
Broker / Cell Haters Eniera o6 (Windows NT 4 WkSin)
RS/6000 (ALX) { Client is specified to use Port 8765

{ Listening on Port 8765 }

Fig 4.3. How Entera can be sub-brokered.

4.2. Entegrity.”

Entegrity is by far, the only commercial DCE product available for the Linux
platform. The crucial difference is that, it is client development toolkit minus the
server features, i.e. there is no means to set up a cell or broker, (Entegrity, 2002). In
other words, you can develop DCE client enabled applications, and integrate it with
an existing DCE software system in place. As of now in 2003, I have been told that

there will be a server version available.

Entegrity is actually based on the OSF/DCE version 1.2.2 source code (OSF/DCE,
2002), in which FreeDCE is a descendant of (FreeDCE, 2002). The binaries for this
software is available for a number of operating systems and Linux distributions, such

as Windows, SuSE Linux 7.3, RedHat 7.2 to name but a few.

There is an evaluation kit available for download on Entegrity’s web site; the

evaluation only consists of a number of header files for inclusion with software

? Linux DCE Client, available on internet, http://www.entegrity.com

Page: 38

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

developed in ‘C’, and an interface generator. The kit expires after thirty days after

downloading.

When I downloaded the software, I was expecting much more, since the software
requires an existing DCE cell, there was no way I could use it to build a simple
client/server application. Once the server version is available, I will endeavour to try

it out.

This product has yet to reach its potential. In my opinion, once it has a server
development kit included, then this could open a new market, in an area of
maintaining client/server applications under legacy systems. Thereby bringing it
across to Linux to give it a new lease of life, there is room for growth here, which has

yet to be seen.

I will highlight briefly the factors I feel is relevant and pertaining to the case study
and to this chapter.

Factors:

o (Cost Issues:
For a software development team that comprises of fifty developers, the cost
will increase as regards to the number of licences. Licences are varied
concerning Entera, such as how many servers will be running (this does not
apply to Entegrity yet). How many clients are using the DCE middleware (In
the case of the case study as highlighted in the previous chapter, we’re talking
about a number that cannot be determined so I’ll call this variable as

NoClients).

Licence cost for developers = 50 x Single_Developers_Cost_Of_Licence (4)

Licence cost for end-users = NoClients x Singe_Client_Cost_Of_Licence (B)

Also, the cost of support must be considered here, as in the case study, on-site
support offered by IBM Global Services excluding the cost of supporting the
boxes alone, and on top of that, yearly support by Borland, which can be

Page: 39

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

perceived as a huge investment. The TCO (Total Cost Ownership) applies but
is not effective enough to warrant the measure of overall cost. This will be

explained more in Chapter 7.

On-site support of Boxes = Z x Cost per Year (Z)
On-site software support =Y x Cost per Year (¥)
Technical Support by Borland = S x Cost Per Year (S)

Total: (A) + (B) +(2) + (Y) +(S)

Note: A and B would be considered to be once-off, as usually, Borland would
offer a discount for support for say three/five years (depending on how long

they would support the software for)

Any additional licences such as expansion of development team is not taken
into consideration here, but as you can see in the simple maths above, this can
work out to be quite expensive on a yearly basis!

e FEase of Use:
The biggest factor would be the role of the System Administrator responsible
for setting up the software, including DCE administration. While they make
things easy for the development team, the extra level of work involved would
be removed.

e Support/Stability:
Again, the role of system administrator would come into play here,
maintaining DCE software, applying patches as well. Inherently, it would be
cheaper to hire a dedicated Systems Administrator long-term, rather than

getting on-site support which can prove costly, based on a per-yearly basis.

I will go into more detail in covering the factors that will make up the overall

conclusions that will be in Chapter 7.

Page: 40

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

This chapter shall focus on the Open Source movement, who founded it and give an
introduction into a very well known, if not, famous project that currently exists today.
In Chapter 3, I have looked at the commercial software Entera and Entegrity, now I
will give also give an outline of the Open Source alternative projects in relation to

Client/Server Development technologies.

Some of the factors will be highlighted here at the end of this chapter, section 5.6, for

Open Source DCE software such as:

o (Cost Issues
e FEase of Use

e Support/Stability

5.1. Introduction to Open Source.

Open Source software is a loosely based term used to refer to Free Software. Free in
the sense that end-users can make multiple copies of the software, free to copy it and
distribute it, to have the freedom to choose which software without getting tied in or
locked into proprietary software. The majority of the Free Software today comes with
a copy left licence, more commonly known as GPL. (GPL, 1991) GPL is an acronym
for GNU General Public Licence, which was published in 1991, GNU is an acronym
coined by a well-known founder of the Free Software Foundation (FSF, 2002) -

Richard Stallman - See below for further information.
GNU is pronounced as "Guh-nooh", it started as a humorous means in relation to a

technique in programming called recursion. It is only that computer literate people

could understand. A recursive acronym simply states GNU is Not Unix. (FSF, 2002)

Page: 41

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

5.2. Confusion between Open Source and Free Software.

Currently, there is still widespread confusion over Free Software and Open Source;
individuals are still debating whether they mean the same thing from time to time thus
creating a massive argument, especially in mailing lists and Internet chat rooms.
Although they may look similar, and it would be safe to use both meanings

interchangeably provided if the software:

o s free.
e Comes with source code as provided

e Can be modified and distributed without any restrictions.

From now on, I will use the term Open Source to denote software that is free and code

is available bundled with the software.

Here I'll outline the major crucial difference between Open Source and Free Software,
Open Source software comes with source code for individuals to see, but may come
with a license that forbids to distribute it or modify it. Whereas Free Software comes
with source code, but also comes with GPL which states "having the freedom to use,
modify the software, distribute the software at a profit including source code" (See
Appendix A for GPL in its entirety). I do admit it can be a quite complex area and
avoid getting into a discussion about it with others, as individuals will have their own

meaning and interpretation of Open Source and Free Software.

The licence themselves enclosed along with software (whether commercial or
free/open source), can only be read and understood by Lawyers and not generally
members of the public. To quote from the GNU Bulletin, “The Free Software
Foundation is dedicated to eliminating restrictions on people’s right to use, copy,

modify and redistribute computer programs”. (FSF, 2002)
The majority of free software that comes with it’s source code will have a licence

similar to GPL, with an exception, if a software company wants to release source code

for their proprietary software i.e. Open Source it; there will be restrictions or

Page: 42

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

exclusions from the GPL such as not having the right to redistribute it. There can be
variants of the licence such as the one supplied with FreeBSD? (another Unix clone
complete with source code, similar to Linux and comes with Berkeley licence), but
not affiliated with FSF. As it is a very grey area, a lot of individuals would rather
choose software that follows the spirit of FSF. I have enclosed a copy of the GPL that
can be found in the Appendix section, for perusal and interest. It is worth mentioning,
that the code I have used as part of the implementation for this Dissertation is under
the GPL and is free to modify, share, copy, distribute, the only onus is that my name

gets a mention!

Software that is Open Source tends to be better built, robust and with fewer bugs. I

will quote a fact or two as per on the paper found on the Internet. (Mockus, 2002).

e Open Source projects tend to have a core team, which is based on three-tier
layer, the bottom layer consisting of ten to fifteen coders producing almost all
of the code. The next layer above that is a set of developers submitting new
features or bugs fixes. The last layer is a set of advanced users submitting bug
reports and testing the software. (See Figure 5-1, An upside down triangle)

e Open Source projects tends to have a lower rate of bugs than that found in
commercial software due to code being open to public scrutiny, "Given
enough eyes, all bugs are shallow" (Di-Bona, 1999, Cubranic, 2002).

¢ Open Source projects are generally quicker to respond to user requests,

applying bug fixes.

Advanced users testing &
submitting bug repors,

Developers submitting
new featres bugfixes.

Core team of
developers

Fig. 5-1. Illustration of hierarchy of Open Source development.

? FreeBSD can be found at hrtp://www.freebsd.org

Page: 43

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

5.2.1. About the founder of GNU, Free Software Foundation.

Richard Stallman, is the founder of the GNU /Free Software Foundation (FSF for
short), and it started as a project in 1984. He was a very creative but politically
motivated individual who was considered a gifted programmer at his time. GNU, FSF
was established after Richard Stallman resigned from the Artificial Intelligence
department in Massachusetts Institute of Technology (M.L.T) for twelve/thirteen
years, maintaining an unknown operating system at the time called ITS (Incompatible

Time-Sharing System). (Stallman, 2002).

Shortly after FSF was set-up, he wrote a series of GNU software specifically, which
was the first of its kind to come out, the portable, extensive compiler collection that
consisted of optimising compiler, a debugger, and an editor. (The GNU C compiler

known as gcc, the GNU debugger known as gdb, and GNU Emacs respectively).

Today, the gcc software can produce code for a host of diverse architectures and
different programming languages, currently, thirty architectures and seven
programming languages so far*! In addition, gcc is the primary must-have software
when it comes to developing a wide range of software, such as Linux. Without gcc,

Linux or any Open Source Software would not have got very far let alone be heard of.

5.3. Is Business ready to take on Open Source?

At present, there are individuals that are very knowledgeable in the fields of technical
and business nature, recognise that Open Source is gaining immense popularity due to
a number of factors. Greater range of software, that is of better quality than their
commercial counterpart. It has lower costs, in terms of licences and immediate
responses to bugs, which create better and robust software unlike in comparison to
proprietary, closed software companies. Proprietary companies are known for delays
in acknowledging that there are bugs in their software. Issuing fixes leaving things a
bit too late, while the end-users simply workaround the bug(s) which can have

detrimental effects in terms of productivity and frustration. (Kozinski, 2002)

* http://www.fsf.org/software/gcc/gee. html

Page: 44

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

The primary drive behind the decisions to take on Open Source in some companies is
the cost factor. For instance, there are many software packages that are considered
robust and perform better to the commercial flavour. Look at Linux, which we will be
looking at shortly, is an operating system that has no licence costs. And it can be
rolled out on to hundreds if not thousands of computers without living in fear that
BSA will be knocking on the door demanding to know if such software are legitimate

and have valid licences. Linux can be copied without fear of persecution.

Look at Apache’, which is free web server software, many people tends to forget that
Apache account for nearly 80% of web servers on the internet. Alternatively, what
about GIMP® that is an image-editing software. In terms of features, it is a rival to
Adobe PhotoShop. On the other hand, even, not to mention Open Office’ that is an
open source version of Sun's Star Office suite that is commercial. Open Office, is also
a rival to Microsoft's Office suite, (and even better, it can load/save many different
file formats). Think of the potential savings, reaped in terms of cost of licences, which
will be outlined in Chapter 6, e.g. Microsoft's Office Professional Edition costs 850
Euro. Now, suppose that there are 200 computers running Windows 2000 and Office
needs to be rolled out, that's 170,000 Euro for licences alone and for keeping BSA
happy! With Open Office, no licence costs, but the trade-off in terms of training

would have to be considered - not bad!

As for quality & robustness of such Open Source software, one can be very forgiving
at the pace of releasing bug fixes in such short space of time. Thanks to the nature of
the Open Source model and from a software development viewpoint. Many
programmers will certainly hold the source code to such software under scrutiny and
thus bugs would be eliminated resulting in stable, robust software. Furthermore, the
code is highly unlikely to be a virus, (that at once stage was a myth back three/four
years ago!). Hence, the code itself is guaranteed to be free of sneaky, devious code

that shares similar qualities of viruses.

> Apache's web site, http://www.apache.org
% The GIMP's web site, http://www.gimp.org
7 Open Office's web site, http://www.openoffice.org

Page: 45

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Business needs to be aware of two things that can result in disaster if they try to
integrate Open Source software into the business. Failure to take into account of them
can result in disaster. The first is to ensure that the continuity of the business
operation is not affected. For instance, having to schedule downtime, which can be
costly and the second thing is to ensure that there is a training program in place,

usually in parallel to the integration of the software.

Of course, businesses would have to be aware that there might be resistance to
change. For instance, integrating Open Office, a commonly held view is; "I am very
fond of Microsoft Office and fear of losing productivity if I switch over to this Open
Office thing". This will have to be dealt with via education. Start in small steps taking
one step at a time to ensure success, continually educating everyone in the process,
getting everyone involved in the integration of such software. In that way, success can
be guaranteed in the end where costs will gradually diminish in terms of licence costs.
Furthermore, with such success in time, grievances concerning piracy issues will be
outdated, and even for smaller companies who cannot afford the licence costs usually

end up resorting to using illegally copied software. (Drummond, 2002)

5.4. Introduction to Linux.

This has to be the most famous known project today. It is part of the GNU, Free
Software heritage. Linux started in 1991, when a Finnish student by the name of
Linus Torvalds was studying computers in Helsinki. He was playing about with a
variant of Unix called Minix (written by Andrew Tanenbaum, to teach how operating

systems are written) that was designed for the PC.

Apparently, and this will lead to certain amount of debate, Linus was not too happy
with Minix's scheduler. He modified the code heavily and Linux was born. There are
variants of this story of how it all got started. Linus claimed that he wrote the system
from scratch in order to learn about the architecture that was Intel 386 at the time;

however this debate would not distract me.

The first kernel was devised around April 1991 as a hobby initially. After a short

period after making it work, version 0.01 was available and functioning around

Page: 46

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

September 1991, despite lack of features that would make it resemble Unix. It was
until circa January 1992, after coding, debugging, that kernel 0.12 was released and
had a lot of Unix-ness to it. Then finally after a lot of fixing/patching up code, kernel
version 0.96 was released circa April 1992 when Linus posted an email to a
newsgroup. The code was released under GPL, it received so much attention that
developers all over the world clambered on board to help out and shortly after that, it
hasn't been the same ever since. The timeline is not entirely accurate; please see the
Appendix D for more detailed information from early newsgroup postings announcing

Linux.

As of today, there are approximately 18 million users of Linux, and the most current
kernel release is 2.5.30 (this is state of the art/bleeding edge). Stable wise, kernel
release 2.4.19 is by far the popular release. And yet as ever, there are more individuals
joining the ranks of developers around the world, in helping to maintain the kernel so

Linux will be around for a very long time.

GNU/Linux or Linux, in short, is an operating system that aims to comply with
POSIX standards and shares many features that look and feel like Unix. The source
code is freely available so that technical minded individuals would enjoy and learn
from it in how it works. It comes with many features such as different file systems
support, integrated network protocols, wide range of assorted hardware support,

which would be very extensive and beyond the scope of this dissertation.

Linux also runs on various platforms, namely Intel x86 family processors, Motorola,
Advanced Risc machines, Apple, IBM S/390, not to mention it can also run on
Microsoft's latest console box - Xbox with a bit hacking! It would be fairer to say that
Linux in itself is the kernel. The utilities and programs that come with it are what
makes up an operating system is called a distribution. Hence, when individuals talk
about security exploits in Linux, they are actually referring to the utilities (which do
have security problems - commonly buffer overflows), not the kernel itself. There are

many distributions available such as SuSE, RedHat, Slackware, to name but a few.

When individuals discuss about Linux, a reference is made to either a distribution or

the kernel depending on their topic of discussion. The kernel is the essential core of

Page: 47

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

the operating system or the heart of controlling the computer. There are two types of
hearts in a computer. One is hardware called the microprocessor. The other one is the
software - the kernel that has a responsibility in communicating with other hardware
devices, keeping applications running, as such. Linux is used in many different areas,
such as network servers, embedded systems, software developments, and database
and application servers. Linux is also used for designing vertical solutions such as

hotels, hospitals, and governments, ISPs etc.

In keeping with the traditional spirit of Open Source, Linux is the base platform of

choice for implementing a client/server project and for writing this dissertation.

5.5. Open Source DCE.

There are two variants of DCE software technologies, OSF/DCE, and FreeDCE. The
major difference between the two is in terms of licensing; OSF/DCE is used only for
academic and research only, whereas FreeDCE is under GPL. The source code is
available in both versions. However, take notice of the inner details of OSF/DCE’s
licence — note academic and research only! I will mention general aspects of the two

of them in this regard.

3.5.1. OSF/DCE.

OSF is a non-profit organisation and is made up of a consortium of Unix vendors such
as IBM, DEC, and Hewlett-Packard. Its primary goal was to come up with a means of
standards for Unix; it was realised standardising Unix was not enough to standardise
distributed applications. I felt it was important to mention about this, since the base

code of OSF/DCE is shared between Entegrity and sourceforge’s FreeDCE.

OSF changed tactics and instead, focussed on interoperability between multiple
products from multiple vendors. As such, different vendors have their own standards
that would make software development a nightmare. In terms of porting code across
from one platform to another in the sense of having to change code to reflect the
vendor's own set of standards. “Middle-ware like DCE lets users get away from the

multiple vendor, multi-product approach to distributed system integration. As more

Page: 48

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

vendors build DCE into products, integration and distributed, system development

becomes a non-issue. ‘No doubt, it’s good technology’”. (Ricciuti, 1994, Pg 54).

OSF standards allow the user to decouple the application from underlying computing
systems and networks so that changes made to the hardware or network does not
necessitate modifications of applications. It is a vendor transparent standard, that user
can mix and match hardware, software from different vendors without conflicts.

(OSF, 2002)

Gary Nutt came up with this definition for Open Systems "An Open System software
must exhibit three properties, Interoperability, Portability, Integration and
Operability". (Cashin, John, Pg 247, 2002). Each of these properties will be

explained below.

¢ Interoperability, that refers to network protocols such as TCP/IP, Berkeley
sockets.

e Portability refers to the capability of bringing across an application to a
different platform and recompiling without modifying source code.

¢ Integration and Operability refers to ease of use, deployment, performance,

and reliability of applications.

Now that we have the broad picture of OSF's role, let us look at its DCE software a bit
more closely. OSF/DCE is industry standard, vendor neutral set of distributed
computing technologies. It provides remote procedure call API (application
programming interface) for ease of development, security services to protect and
control access to data, it is scalable for organising widely scattered users and
networks. OSF/DCE runs on diverse Unix-based platforms such as AIX, HP-UX,

Sun's Solaris, to name but a few.

5.5.2. FreeDCE.

FreeDCE is a port of OSF/DCE for Linux-based platforms. When OSF decided to

release the code for DCE, the Open Source movement was underway. This was when

Page: 49

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

around in 1998 when Jim Doyle of Boston University, rewrote major portions of the
DCE code to make it work under Linux, specifically DCE's threads were rewritten
and with OSF's permission to release the code under GPL. It was until around 2000,
that the code base, which included Jim Doyle's work, was tidied up, with a lot of
extensive renovations in terms of building the code and was available from

sourceforge.net. (Doyle, 2002)

Now, FreeDCE resides at http://sourceforge.net/projects/freedce. Unfortunately, it
looks like the project has come to a standstill and it is not therefore classified as an

active project. However, the software can still be downloaded.

It should be noted that I made an attempt to follow Jim Doyle's instructions on
rebuilding DCE; needless to say, the whole experience wasn't satisfactory due to the
number of missing but crucial bits of information required building DCE. Personally,
the instructions were very poorly written, and it required a fair amount of head-
scratching/hit-and-miss to get the build scripts working - which just compiles the
code. But did not get very far as I realised I spent too much time trying to figure out

how to get it to compile let alone to get it to work!

So I used the version available from sourceforge and the compile was painless and
was easy to set-up, this surprised me! This version will be used in the implementation

of the project as outlined in the next chapter.

5.6. Factors:

o (Cost Issues:
Since Open Source software generally has no cost in regards to licensing.
This issue does not apply.

e Ease of Use:
As I have mentioned, sourceforge’s FreeDCE was easy to set-up, this can
make certain individuals wary about this, and it all more or less depends on
how experienced the individual is, again, technical mindset is mandatory and

not for the faint-of-heart. Despite being easy to set-up, it is not a complete

Page: 50

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

version of DCE, as there are many things missing from it. Jim Doyle’s port of
OSF/DCE for Linux was certainly not easy, very poorly written that caused
confusion.

® Support/Stability:
Since Jim Doyle has stopped supporting his version of FreeDCE, and the
FreeDCE project residing at sourceforge has come to a standstill, the question

mark will be hovering over the software.

Page: 51

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

This chapter shall focus on the implementation of FreeDCE, not Jim Doyle's version,
but the one from http://sourceforge.net/projects/freedce. 1 will outline the steps
involved to get this version working; admittedly not very much is required. Then the
implementation will be outlined and will give an overview of what was involved from
the programmer's perspective in getting a Client/Server application running. The

factors will be highlighted below in 6.5 covering:

e FEase of use
e Support/Stability

e Any other issues I feel are relevant.

6.1. Getting the sources.

There are two files necessary to download which constitutes the DCE package. Alas, I
was in for a major disappointment after I discovered what was left after the
compilation job was done, this will be mentioned here and in the next chapter as part

of my conclusions. Anyway, the files required were:

® freedce-1.1.0.7.tar.bz2
® dcethreads-2.0.2.tar.gz

6.2. Building the FreeDCE package.

I will go through systematically to show what was done; the two files are located in
my home directory. Commands highlighted in bold indicate what was typed at the

command line.

1. Create a directory called tmp in my home directory

tommieb@tbwizards:~> mkdir tmp J

tommiebltbwizards:~> cd tmp J

Page: 52

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

tommieb@tbwizards:~/tmp>

2. Unzip the files.

tommieb@tbwizards:~/tmp> bzip2 -dc freedce-1.1.0.7.tar.bz2|tar xvf -

tommieb@tbwizards:~/tmp> gzip —dc dcethreads-2.0.2.tar.gz|tar xvf -

Two directories will be created consequently, namely freedce-1.1.0.7 and
dcethreads-2.0. 2 respectively. Dcethreads needs to be built first, so that
FreeDCE can compile without problems

3. Change into the dcethreads-2.0.2 directory.

tommieb@tbwizards:~/tmp> cd dcethreads-2.0.2_l

4. Run configure to create the necessary makefiles.

tommieb@tbwizards:~/tmp/dcethreads-2.0.2> configure

5. Run make to build the dcethreads.

tommieb@tbwizards:~/tmp/dcethreads-2.0.2> make

When this is one, there should be no errors. At this stage, log in as super user to install

the dcethreads, this is necessary, as the install requires privileges.

6. Log in as super user.

tommieb@tbwizards:~/tmp/dcethreads-2.0.2> su

Password: **xx |

Page: 53

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

7. Run make install to create a common directory which will be world-

readable.

tbwizards:/home/tommieb/tmp/dcethreads-2.0.2 # make install .l

After this is done, /opt/dce/include, and /opt/dce/1lib is created and this
will be referenced by the FreeDCE's build process. We exit out of super user

privileges, and change into the freedce~-1.1.0. 7 directory.

tbwizards:/home/tommieb/tmp/dcethreads-2.0.2 # exit

tommieb@tbwizards:~/tmp/dcethreads-2.0.2> ed ../freedce-1.1.0.7 o

tommieb@tbwizards:~/tmp/freedce-1.1.0.7>

8. Repeat steps four, five, six and seven.

After this is done, there should be a couple of binaries created in /opt/dce/bin.

This is very much a common thing across all types of Open Source software, i.e.:

Run configure, run make, log on as super user, run make install.

6.3. Disappointment.

Yes, I was very disappointed after the installation of FreeDCE was performed. There
was absolutely no means of setting up security, authentication, DCE cells, etc., which
is a must-have when it comes to DCE development. I suppose this was to be expected,

since the project came to a standstill at sourceforge.

Furthermore, I suspected that the maintainers at sourceforge did look into Jim Doyle's
work and decided to abandon the security stuff, as it was overly complex to
implement especially under Linux, let alone to get it to work!

My suspicions were confirmed as I sent a posting to FreeDCE's newsgroup at

sourceforge, and got back a reply by a former maintainer of this FreeDCE source

Page: 54

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

code. Moreover, he mentioned that it would be a very big project involved in having
to port over OSF/DCE's security over to Linux, as the code itself is quite complex.

(See the appendix for more details on this posting!)
This was a big compromise in terms of the ease of building/installing FreeDCE. 1

hope that one day someone will come along and will want to revive the project again

and hack it to make it work, one day....

6.4. Implementation.
The experiment was to see if a client/server application could work with FreeDCE.
The application must be simple, concise, and demonstrate an application that would

be as realistic as in the real world.

6.4.1. Requirements of client/server application.

6.4.1.1. Client application.

Present a menu interface with four options.

¢ Add two numbers and display the results.

¢ Input a string, and display each letter in the string as uppercase if the input
contains lowercase letters, and to display each letter as lowercase if the input
contains uppercase letters.

¢ Input a string and compress it using a simple run-length encoding algorithm, and

to display the compressed string.

6.4.1.2. Server application.

Page: 55

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Take in input from each of the menu options and to compute the results, send it back
to the client. The server shall accept multiple clients and to process each client
accordingly. Since the server demands no user interaction from the end-user, it will
simply sit in the background waiting for requests coming from the client and process

each request.

6.4.2. In-Depth Analysis.

The requirements are quite simple, the source code to this application can be found in
the appendix. I will go through each step necessary to make it work and explain how
it works. Of course, the tools that come with FreeDCE are based on the standards in

terms of software development regardless of what platform is it under.

I will refrain from getting too technical here, at the same time; this analysis would be
more suited to a programmer and hence look at the tools from the programmer's

perspective.

6.4.2.1. IDL File.

IDL is an acronym for Interface Definition Language, and is the core of developing an
RPC call. This is where passing the file through the IDL compiler generates the stub

for client and server.

It is here, where the functions are made accessible both to the client and to server, and

the function resides on the server via linking with server code.

This client/server development paradigm is the same regardless of whether it is

commercial or Open Source DCE software. See Figure 6-1 for details.

Page: 56

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Hshong miboq

C Somce

Y

C Compiler

Y

WOhject Cod

Y

Linker

Y

Executable

Y

Debug

I0L Source

- IDL Gen. E

f-_‘LII-. Archive

v

Library

Enorfs) in RPC? ¢

Figure 6.1. Software lifecycle with DCE.

See table 6-1 for a cut-down reproduction of an IDL file as per in the Appendix. The

syntax bears resemblance to ‘C’ and gets parsed by a generator that creates client and

server stubs.

/*
* %
* %

* %

*/

[uuid(98e4bfa6-£323-11d6-823e-000000000000),

interface tommieb

{

SRCSfile:
SAuthor:
$Date: 2002/11/08 19:40:03 $

$1d:

typedef

[ptr,

tommieb $

typedef struct

{

unsigned32 argc;

string]

[size_is (argc)]

largs;

client_server.idl,v $

client_server.idl,v 1.3 2002/11/08 19:40:03 tommieb Exp $

version(l.1l), pointer_default (ptr)]

char * string_t;

string_t argvl[];

/* My interface definition goes here */

boolean AddIt (

[in]
[in]
[in]

[out,

ref]

handle_t

long
long
long

h,
in_numl,
in_num2,

*total,

Page: 57

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

[out, ref] error_status_t *status

Table 6-1. An IDL file containing simple RPC function called AddIt.

In the above sample of an IDL file, an RPC function is defined and called addrt

which takes in a number of parameters, in respective order,

e The handle to the RPC binding variable.

e The first number to pass in.

e The second number to pass in.

e A reference variable holding the sum of the two numbers.

e A reference variable containing the error of the RPC should it fail?

The output files (client/server stubs) are in machine code native to the platform; this is

linked with the other code to produce a final binary executable ready for execution.

As shown, in figure 6-1, the complexity of the development lifecycle is proportional
to the complexity of the project is. It may sound contradictory if in terms of compiling
the code via make files which does make life easier, having said that, it is the
maintenance part such as debugging/testing that can get quite complex. As in this case

for the simple implementation, it was quite simple.

To quote, “Development of the distributed application varies with computing
environment, individual skill and knowledge”. (Chu, 1997, Pg. 268) “Code
development style for distributed application is quite different from conventional
approach, leading the cost increase for distributed applications development” (Chu,

1997, Pg. 278)

His paper on the code development makes a very valid point, as the coding approach
is different. In the case of the implementation, there was an exception handler that is
very similar to C++’s try/catch exception handler that is based on complex C

macros via set jmp (..) and longjmp (..), and took a bit of getting used to even from

the perspective of C.

Page: 58

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Had Jim Doyle’s port of OSF/DCE for Linux worked, there would have been a few
idiosyncrasies in setting up the cells, and that would require extensive knowledge in

areas of troubleshooting and error reporting.

6.5. Factors governing Implementation using Open Source.

o (Cost Issues:
I have mentioned in the previous chapter regarding costs in licencing.

e FEase of Use:
As I have mentioned, sourceforge’s FreeDCE was easy to set-up, this can
make certain individuals wary about this, and it all more or less depends on
how experienced the individual is, again, technical mindset is mandatory and
not for the faint-of-heart. Despite being easy to set-up, it is not a complete
version of DCE, as there are many things missing from it.

® Support/Stability:
Since Jim Doyle has stopped supporting his version of FreeDCE, and the
FreeDCE project residing at sourceforge has come to a standstill. The question
mark will be hovering over the future of this software that is unless someone is

brave enough to examine OSF/DCE’s code to make it work.

Page: 59

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

This chapter wraps up the conclusions and any issue(s), surrounding this dissertation.

I will go through the following factors:

e Cost, this will govern both hardware and software, also known as TCO, from Case
study perspective, Commercial and Open Source perspective as well.
e FEase of Use.

e Support/Stability.

I will give a brief introduction into TCO, and then cover TCO in terms of hardware
and software. As per in the case study as outlined in Chapter 3, the cost of Entera is
unknown for the reason that Borland would not disclose a quote. However, I will try
to use a number of variables as outlined in Chapter 4. Entegrity willingly supplied the
quote on the basis that the software will be running under two distribution of Linux —
RedHat and SuSE. The quotation can be found in the appendix. I will start of by
explaining TCO and how it works.

7.1. Brief introduction to TCO.

TCO or Total Cost Ownership is an assessment factor that is taken into consideration
by many organisations. It enables to understand the expenditure or cost of owning,
producing and using an IT entity (hardware or software). The simplest way of
knowing the cost is by using simple maths to calculate the sum. There can be
unforeseen factors that can affect it such as an upgrade of hardware, software,
contingency plans such as prevention or loss of data, IT management planning and
mindset, to name but a few. For some organisations that are conscious of their budget
and the need to know where it is going, this can help them see what direction to take
and to make a balanced decision on this basis. That is the positive aspect of a TCO

study.

Here I will outline a number of factor(s) that would be perceived as the driving force

behind TCO:

Page: 60

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

e Platform(s) — Windows, *nix, MacOS.

e Architecture(s) — such as Intel x86, RISC.

e [T Management — such as poor communication/management techniques,
inadequate investments in hardware/software, inadequate staffing levels etc.

e Support — Poor response time, lack of training/awareness etc.

7.2. Estimated cost from Case Study.

Let us look at the cost of the hardware mentioned in the case study. I will use the
following specifications for entry-level workstation supplied by IBM as a guideline

for this basis.

7.2.1. Hardware.

IBM RS/6000 Entry Level pSeries 610 Model 6E1 Express.
Specifications:

e 64bit architecture.

e 450 MHz Dual processor.

e 8Mb Level two Cache.

e 2x36 GBRAID.

e 2 GBRAM.

e 5 PCI slots.

e 3 serial and 2 parallel ports

¢ Two integrated Ethernet NIC 10/100Mbps.
e AIXv4.33

Total cost of hardware (H): $17,395.

Upgrades etc is not accounted for in this TCO.

The cost of this workstation would be seen as a once off as it is looked at as an

investment or capital.

Page: 61

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

7.2.2. Software.

I have looked at in Chapter 4, what would be the cost of the Entera software. I have

duplicated it here to make this chapter feel complete.

Licence cost for developers = 50 x Single_Developers_Cost_Of_Licence (A)
Licence cost for end-users = NoClients x Single_Client_Cost_Of_Licence (B)
On-site support of hardware/software from IGS = Z x Cost per Year (Z)

On-site software support (Borland Personnel go on-site) = Y x Cost per Year (Y)
Technical Support by Borland = S x Cost Per Year (S)

Total cost of software (T): (A) + (B) + (Z) + (Y) + (S)

Note: A and B would be considered to be once off. However, for Y, usually, Borland
would offer a discount for support for say three/five years (depending on how long
they would support the software for)

Any additional licences such as expansion of development team is not taken into
consideration here, but as you can see in the simple maths above, this can work out to

be quite expensive on a yearly basis!

7.2.3. Conclusions from Case Study.

7.2.3.1. Cost.

Putting the two sums in the above, together; notice that H is once off; it still works out

to be quite expensive:

Overall Total Expenditure for Entera and IBM pSeries System: $(H + T)

Obviously, that can be perceived to be high, in terms of operational costs or running
costs of keeping the project alive. Hence, management was willing to trim down the
expenses by investing into Java and JavaBeans; still, even somewhat, the amount

saved would be made up for the cost of cross-training individuals to Java.

Page: 62

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

7.2.3.2. Ease of Use.

The process of hiding the low-level nuts and bolts of the software where conventional
software development is concerned — is very good, the development team are not put

off the beaten track and are able to maintain their focus on getting the logic working.

I will repeat this here from the previous chapter, “Code development style for
distributed application is quite different from conventional approach, leading the cost
increase for distributed applications development” (Chu, 1997, Pg. 278). 1t would be
a reasonable assumption that Borland did a very good job in the development of
Entera. As the software team, in which I was a participant of, did not lose productivity
or momentum and hence were able to get the job done. There was no need to worry
about the technical details as this was all hidden, I can assume that Entera must have
been a very expensive package put together to make everyday programmer’s lives

easier.
Also, there are “hands on decks”, by IGS and Borland. They were able to fine-tune
the software behind the scenes. I am conscious of the fact that I was talking about it

from the programmer’s perspective, speaking for the developers here.

7.2.3.3. Support/Stability

Putting cost aside for a moment, the organisation in the case study was willing to pay
the price initially — question is why? Security and support, the management’s mindset
was at ease in terms of feeling secure that there are experts who are backing up the
hardware/software in case of unforeseen problems. There is IGS and Borland who are
willing to give a hand and examine what went wrong, in event of a situation occurring

that requires expertise and knowledge.

Page: 63

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

7.3. Commercial Software — Entegrity.

Let us look at it from Entegrity’s perspective with Linux as the system installed.

Licence cost for developers = 50 x $110 (A, $5.500)
= This will be likely to change once Entegrity markets a server version!
Licence cost for end-users = NoClients x Single_Client_Cost_Of_Licence (B)

= Hard to estimate as Entegrity develops for a number of platforms
such Windows, Linux, and hence cost could be variable depending on
end-user’s platform in question.

Cost of buying boxed version of Linux Distribution e.g. SuSE 7.3 (Circa $50-$60)

* You can install it on as many systems as required; therefore, licence
cost is $0!

On-site support of Entegrity = Z x Cost per Year (Z)

* An organisation can have two choices here; hire an
experienced/competent Systems Administrator (will be cheaper in the
long run!). Or get Entegrity to send out qualified personnel specialist
who would charge by the hour or similar contract. (Expensive!)

On-site software support =Y x Cost per Year (Y)

= Ditto Z.

Technical Support by Entegrity = 20% of A (S, $5,500 x 20% = $1,100)

Total cost of software (T): (A) + (B) + (Z?) + (X?) + (S).

Again, A and B would be once off. Z and Y could be eliminated from the maths above
if an organisation hires a Systems Administrator. So we’re looking at a figure of
$1,100 + B. Sounds reasonable enough provided that the cost of a single licence does

not jump much, once a server version gets to be released in the near future.

Page: 64

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

7.3.1. Conclusions about Entegrity.

This is an interesting company to watch out for; we have to remember that their DCE
software was a derivative of OSF/DCE. Once they get the server version out; it will
open the doors of opportunity for organisations to make the switch over to Linux,

moreover, the capability to migrate existing applications across from legacy systems.

7.3.1.1. Cost.

The cost is an interesting one and all people who are familiar with DCE are keeping a
look-out for this, even then, with the licence cost of Linux to be $0, there still would
be money to be saved. Their evaluation version that is available for download, which I
think, is a very good idea thus enabling developers to try it out for thirty days. There
is a caveat emptor with the evaluation version that might tempt developers or

organisations to try it.

Would developers who downloaded it, be willing to spend a few days in setting up a
Linux box and taking a small subset of their application or organisation’s, and
integrate it with Entegrity to try it out? There are hidden costs in establishing whether
that would work or not for them. So, despite the evaluation being a good idea, one

must not forget in planning before downloading the software!

7.3.1.2. Ease of use and Support/Stability.

Due to the fact, that I was unable to use it, as it required existing DCE cells/brokers
up and running, which I do not possess. I was therefore unable to determine how easy
it would be to use and how stable it would be. However, it must not be forgotten or
ignored, that the stability of Linux might even lull a false sense of security, “Hey, this

DCE software is really stable?” or “This Linux distribution is very stable?”

Page: 65

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

7.4. Open Source Software — FreeDCE.

Licence cost for developers = 50 x Single_Developers_Cost_Of_Licence (A $0)
Licence cost for end-users = NoClients x Single_Client_Cost_Of_Licence (B $0)
Cost of buying boxed version of Linux Distribution e.g. SuSE 7.3 (Circa $50-$60)

* You can install it on as many systems as required; therefore, licence
cost is $0!

On-site support of Boxes = Z x Cost per Year (Z)
On-site software support =Y x Cost per Year (Y)
Technical Support = S x Cost Per Year (S)

* ForZ,Y,S, from an organisation’s perspective, their only choice is to
hire an experienced/competent Systems Administrator (will be cheaper
in the long run!), who shares enthusiasm of Open Source. Yet, one
must not forget the cost of dialling-up/spending time on the Internet
and help forums searching for answers/patches/fixes if he/she is

willing to do that.

7.4.1. Conclusions about Open Source - FreeDCE.

7.4.1.1. Cost.

There are no costs in regards to Open Source. Though I must admit, I am very curious
at how Entegrity were able to market their product, since OSF open sourced their
DCE software for academic/educational use only; there are a number of speculative
questions arising from it. Did Entegrity buy out the complete source, modified it for
Linux to the tune of $12M as per OSF’s Extended DCE Licensing Agreement?®
Alternatively, did they “borrow” the open source code, modity it, and sell it on? This
is highly unlikely as it would violate OSF’s licence or breach of contract and thus

Entegrity would end up in a legal wrangle or even worse, sued by OSF.

¥ For more information, http://www.opengroup.org/tech/dce/info/dce122pricelist. htm

Page: 66

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

There is a very valid question that I feel should be mentioned here:

e Should Entegrity open source their DCE software since it is available for
Linux and other platforms, and thus Linux is GPL’d, therefore software

available for a GPL’d system should also be GPL’d?

Now, the complexity behind the GPL licence can be seen here and must be

approached very carefully!

7.4.1.2. Ease of Use.

I will mention OSF/DCE’s Jim Doyle port for Linux. It was a complete nightmare as I
have highlighted in Chapter 5. It would be fair to say; never ever again will I play
about in setting it up due to poor documentation, ambiguous statements etc.
Furthermore, the structure of the source code tree was made a bit messy thanks to
following the documentation! Let us look at it from sourceforge’s FreeDCE

perspective.

The ease of use can be a bit ambiguous here; are we talking about in terms of setting it
up such as doing a configure, make, make install as I covered in the previous

chapter? On the other hand, is it in terms of programmer’s perspective?

I will provide the two perspectives; I have been an advocate of Open Source for a
long time since I first obtained Linux Slackware 3.0 (October 1995). In addition, I am
quite used to doing the procedure in setting it up and it gets easier each time and more
rightly, it is a standard way of setting up the binaries once source code is downloaded.
There is a hidden bonus in doing it this way; the source code is compiled natively

depending on the specifications of the machine and is optimised for that processor.

From the programmer’s perspective, the setting up of the implementation was; what I
thought was a bit fiddly, for instance, the IDL compiler that came with it was a
tedious process. It turned out that the utility uuid had to be executed initially, in order

to generate a unique number. By redirecting the output from the utility to a file that

Page: 67

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

had to be edited manually to include the RPC functions definition. Then this edited
file had to be passed through the dceidl compiler to generate client/server stubs.
Very messy indeed, with makefiles, the process would be painless without having to

remember the certain parameters supplied with switches on the command line.

The documentation was poor; at one stage, I got a very strange error message with no
meaningful statement or action on what to do. The error message indicated a number
in hexadecimal format — “0x16c9a01e” and thus not very friendly or informative. I
ended up spending two days trying to track down the error. Until I came across the
constants for the numbers in a header file in the include directory via searching (in
Unix speak, grep’ing) the headers for the constant, which meant the “RPC server was
already registered”. I had to manually un-register the server by explicitly calling

rpc_server unregister if (..), and everything was fine after that.
The FreeDCE software in general lacks a lot of functionality to make a distributed
environment and is inactive or that there is not much interest in keeping the project

alive as of now.

7.4.1.3. Support/Stability

I have illustrated the point about Open Source - there is no such thing as a general
company specialising in supporting Linux or Open Source for that matter. There is an
exception though; some distribution companies such as RedHat, SuSE do offer
support for 90 days, this can be extended with special deals/contracts at a cost; only

for problems with an installation of Linux. Any other installation of such software

that is not recognised by the distribution companies are not covered, which is fair

enough as it is not their responsibility.

There is an old adage about using Open Source, and it is known as RTFM or

Read The Fine Manual, and it is funny that documentation is one of the weakest
points about Open Source. The exclusion of boxed distributions applies here since
they come with very good manuals; this explains why they are sold around $50-$60

per box. Of course, the reason is that programmers collaborating from vast corners of

Page: 68

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

the world are involved in projects. Language barriers have yet to be broken which is
the major factor behind the poor quality of documentation. Notice that this does not
imply as a bad thing, as documentation would be available in their native tongue,
which would be seen as a good thing. Despite the English language being the most
popular, there are some programmers who have not the basics, hence, the language

barriers.

Nonetheless, there are thousands of newsgroups, site forums, where individuals post
their query and there is a very high chance that the postings would be answered. In
addition, since I have illustrated in Chapter 5, Open Source software tends to be more
robust, have responsive turn-around time concerning patches/fixes shortly after
release. And furthermore, by searching newsgroups, site forums, it is surprising how
one would gain knowledge from it and that far outweighs any negligible costs in

terms of dialling up and spending time online searching for answers!

7.5. Overall Conclusions.

Open Source sourceforge’s FreeDCE was a disappointment, there was no
functionality, and was hoping initially that it would have capabilities of setting up
cells with security authentication. Alas that is not the case, due to the complexity of
the code behind the OSF/DCE which was only portable to the Apollo, HP800, AIX,
SVR4 and 1386_sinix Unix variants.

Had there been more involvement with the project, there would have been more
functionality/features. Despite Jim Doyle who did a lot of work in porting it across to
the Linux platform, it is sad to see that his efforts for cell setting up, authentication et

al, did not make its way to sourceforge.

Entegrity, by far, looks the most promising, who knows, it may release its code under
Open Source. As the momentum is going from strength to strength, chances are many
software companies will release it under a somewhat restricted version of GPL in

order to beat off competition in the market place. Of course, the market to stay on top
only depends on whether the software companies have courage and to show the world

what their code is made of.

Page: 69

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

I would most certainly keep an eye on this promising aspect, unfortunately I am not a
clairvoyant so I will refrain from making any predictions here, but this is one

company to watch out.

Borland’s Entera, by far, the superior of the lot, holds tremendous staying power
when it comes to the DCE technology, but it comes with a price. Ease of use, focus on
getting the work done, abstraction of technical level hidden away from programmers,

clever handling of servers, this is a very polished, mature product.

Unfortunately, CORBA, WebSphere, MQSeries are maintaining their stance in
today’s software development trends and have shown to be far superior then DCE.
Again, this will depend on the management’s mindset on whether migrate the existing
DCE legacy applications to the more modern technology. While looking for ways in
keeping the cost down, and is highly dependent on their nature of business

requirements.

Open Source is a viable alternative despite weakness in documentation. There will be
opportunities for somebody who will start up a project. In addition, if it is perceived
to be a good idea in terms of “We could do with this”’; no doubt, development interest
will rise. As I have demonstrated above that the licence cost is the major factor in
terms of saving money. Despite FreeDCE having their weaknesses, and with projects
climbing upwards, more programmers are donating their time in development. With
big companies willing to spend money on development, research and design and
releasing proprietary code in order to stay one step ahead, the future looks promising

and bright.

Page: 70

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Appendix A - GPL Licence.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;

Page: 71

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
¢) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
¢) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

Page: 72

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to
this License.

7.1f, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

Page: 73

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w'".
This is free software, and you are welcome to redistribute it

under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may

be called something other than “show w' and “show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
“*Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

Page: 74

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Appendix B - Source Code for implementation using Sockets.

File: Makefile

.SUFFIXES: .c.o

CC = gcc

INCLUDE = -I/usr/include

LIBS = -L/usr/lib -lncurses

CFLAGS = -g #-Wall -W -pipe -g #-Werror -O

CLIENT_FILES = menu_client.o main_client.o
CLIENT_APP = client_app

SERVER_FILES = main_server.o
SERVER_APP = server_app

all: $(CLIENT_APP) $(SERVER_APP)

.C.0O:
$(CC) $(INCLUDE) $(CFLAGS) -c $<

S (CLIENT_APP) : $(CLIENT_FILES)
$(CC) -o $@ $(CFLAGS) $(INCLUDE) $(LIBS) $(CLIENT_FILES)

$ (SERVER_APP) : $ (SERVER_FILES)
$(CC) -o $@ $(CFLAGS) $(INCLUDE) $(LIBS) $(SERVER_FILES)

clobber:
rm -rf $(CLIENT_FILES) $(SERVER_FILES)

clean:
rm -rf $(CLIENT_APP) $(SERVER_APP)

File: in_out_data.h

/ *

** File: "S$RCSfile: in_out_data.h,v $"

** Author: "$Author: tommieb $"

** Date: "$Date: 2003/01/19 17:39:12 $"

** Purpose: Arrangement for data marshalling/unmarshalling buffer.
*/

#ifndef __ _IN_OUT_DATA_H
#define __IN_OUT_DATA_H

#define IN_OUT_DATA_SZ 80
char in_out_data[IN_OUT_DATA_SZ];
#endif /* __IN_OUT_DATA_H */

File: main_client.h

/*

** File: "S$RCSfile: main_client.h,v $"
** Author: "$Author: tommieb $"

** Date: "S$Date: 2003/01/19 17:39:12 $"
** Purpose: Header file for client side.
*/

#ifndef _ MAIN_CLIENT_H
#define _ MAIN_CLIENT_H

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <getopt.h>
#include <unistd.h>
#include <curses.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#ifdef __ _cplusplus

Page: 75

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

extern "C" {
#endif

static char *RCSIdHdr __attribute_ ((__unused_)) = "$Id: main_client.h,v 1.1
2003/01/19 17:39:12 tommieb Exp tommieb $";
extern int verbose, fdnet;

/* main_client.c */

void cleanup (void) ;

void panic(const char *, ...);
void init_signals (void);

/* menu_client.c */

int draw_menu (void) ;

int process_two_nums (void) ;
void process_string(int);

#ifdef __cplusplus
}
#endif

#endif /* __MAIN_CLIENT_H */

File: menu_client.c

/*

** File: "S$RCSfile: menu_client.c,v $"

** Author: "$Author: tommieb $"

** Date: "$Date: 2003/01/19 18:00:20 $"

** Purpose: This is where the menu options are processed...
*/

#include "main_client.h"
#include "in_out_data.h"

static char *Id __attribute_ ((__unused__)) = "$Id: menu_client.c,v 1.2 2003/01/19
18:00:20 tommieb Exp tommieb $";

int draw_menu (void)

{

char str_num[2];

int num, valid_num = 0;

mvprintw(3, 2, "----> Client <-——-");
mvprintw(5, 2, "1. Add two numbers.\n\n");
mvprintw(7, 2, "2. Input a string.\n\n");
mvprintw(9, 2, "3. Compress a string.\n\n");
mvprintw(ll, 2, "9. Goodbye!\n");

refresh();

crmode () ;

do

{
mvprintw (13, 2, "Enter Choice (9 to Quit): ");

refresh();

clrtoeol();

getnstr (str_num, 2);

sscanf (str_num, "%d", &num);

if ((num >= 1) && (num <= 9)
valid_num = 1;

}while (!valid_num);
return num;

int process_two_nums (void)

char str_num[2];

int valid_num = 0, quit = 0, value, rv;
long numl, num2, Total;
clear();
mvprintw (3, 2, "----> Client. (1. Add two numbers) <----");
refresh();
nocrmode () ;
do
{
mvprintw (5, 2, "Enter first number (0 to exit): ");
refresh();
clrtoeol();
getnstr (str_num, 2);
rv = sscanf (str_num, "%$1d", &numl);

Page: 76

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

if (numl ==

quit = 1;

else

valid_num

0

’

[l rv == 0)

= 1;

}while (!valid_num);
if (quit)
{
mvprintw (7, 2, "User quitted!");
crmode () ;
getch();
return 1;
}
valid_num = 0;
nocrmode () ;
do
{
mvprintw (7, 2, "Enter second number
getnstr (str_num, 2);
clrtoeol();
rv = sscanf (str_num, "%$1d", &num2);
if (num2 == 0 || rv == 0)
quit = 1;
else
valid_num = 1;
}while (!valid_num);
if (quit)
{
crmode () ;
mvprintw (9, 2, "User quitted!");
getch();
return 1;

}

if (verbose)

/* Call the server! */

mvprintw (9,

sprintf (in_out_data,
in_out_data,
&in_out_data,

write (fdnet,
read (fdnet,

sscanf (in_out_data,

2,

if (value == 100)

if (verbose)

mvprintw (11, 2,

else

mvprintw(1l1l, 2,

refresh();
crmode () ;
mvprintw (13, 25,
getch();

return 0;

"Calling the server...

"1;%d,%d", numl, num2

"%$d; %d", &value,

"Result is %1d",

"Press a key...");

void process_string(int compress)

{

#define MY_MAX_INPUT

char str_inp[MY_MAX_INPUT],

int value;
clear();
nocrmode () ;
if (!compress)
mvprintw (3,
else
mvprintw (3,
mvprintw (5, 2,
getnstr (str_inp,

2,

2,

"Enter a string

30
*ptr;

"———-> Client. (2.

"-———-> Client. (3.

sizeof (str_inp));

if (!strlen(str_inp))
{
crmode () ;
mvprintw (7, 2, "User quitted!");
getch();
return;

}

if (verbose)

mvprintw (7, 2, "Calling the server...
if (!compress)

sprintf (in_out_data, "2;%s", str_inp);
else

sprintf (in_out_data, "3;%s", str_inp);

¥

)i

sizeof (in_out_data));
sizeof (in_out_data));
&Total);

"Got result from server...

Total);

Input a string)

ROF

(0 to exit): "™);

.%1d",

Compress a string)
(No entry to exit):

")

Total);

<oty

<——mmmy

Page: 77

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

ptr = strdup(str_inp);
write (fdnet, in_out_data, sizeof (in_out_data));
read (fdnet, &in_out_data, sizeof (in_out_data));
sscanf (in_out_data, "%d;%s", &value, str_inp);
switch (value)
{
case 102 : mvprintw (9, 2, "Original string was %s and length was %d",
ptr, strlen(ptr));
if (verbose)

mvprintw (11, 2, "Got result from server....");
mvprintw (12, 14, "Compressed string is %s and length is %d",
str_inp, strlen(str_inp));
break;
case 101 : ptr = (char *) &in_out_data;
while (*ptr != ';') *ptr++;
*ptr++;
if (verbose)
mvprintw (9, 2, "Got result from server....%s", ptr);
mvprintw (9, 2, "Result is %s", ptr);
break;
}
refresh();
crmode () ;
mvprintw (14, 25, "Press a key...");
getch () ;
return;
}
File: main_client.c
/ *
** File: "S$RCSfile: main_client.c,v $"

** Author: "$Author: tommieb $"

** Date: "$Date: 2003/01/19 17:39:12 $"

** Purpose: Demonstrates a menu driven interface!
*/

#include "main_client.h"
#include "in_out_data.h"

/* RCS Ident. */
static char *RCSId __attribute_ ((__unused__)) = "$Id: main_client.c,v 1.1 2003/01/19
17:39:12 tommieb Exp tommieb $";

/* Global variables pertaining to command line options */

int verbose = 0, curses_init = 0;
char tcp_host[128] = "localhost"; /* default! */
int fdnet;

/* Signal handler struct */
struct sigaction sigact;

/* Functions */

static void signal_handler (int);

static void shutdown_client (void) ;

static void usage (void);

static int tcp_connect (const char *, int);

int main(int argc, char **argv)
{
extern char *optarg;
extern int optind, opterr, optopt;
int ¢, menu_done = 1, menu_opt, arg_port = -1;

/* Process command line! */
while ((c = getopt(argc, argv, "h:p:v")) != EOF)
{

switch (c)

{

case 'v' : verbose = 1;
break;
case 'p' : /* Grab port # */
arg_port = atoi (optarg);
break;
case 'h' : strncpy (tcp_host, optarg, sizeof (tcp_host)-1);
break;
default : usage () ;

Page: 78

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

}

/* Initialise curses */

initscr();

curses_init = 1;

/* Set kbd to cooked mode */
nocbreak () ;

/* Set up signal handler! */
init_signals () ;

/* At first sign of trouble, we cleanup!

atexit (cleanup) ;

if (arg_port == -1)
arg_port = 9876;
/* Connect to the server! */

fdnet = tcp_connect (tcp_host, arg_port);

/* Do the biz! */

while (menu_done)

{
clear();
menu_opt = draw_menu();
switch (menu_opt)

{

case 1 : process_two_nums () ;
break;
case 2 : process_string (0) ;
break;
case 3 : process_string (1) ;
break;
case 9 : clear();
endwin () ;
curses_init =
menu_done = 0;
break;
default : break;
}
}
exit (EXIT_SUCCESS) ;
}
void panic(const char *fmt, ...)
{
va_list ap;
if (curses_init)
{
endwin () ;
curses_init = 0;
}
va_start (ap, fmt);
viprintf (stderr, fmt, ap);
va_end(ap) ;
exit (EXIT_FAILURE) ;
}
void init_signals (void)
{
sigact.sa_handler = signal_handler;
sigemptyset (&sigact.sa_mask);
sigact.sa_flags = 0;
/* Did we get ctrl-c'd */
sigaction (SIGINT, &sigact, (struct sigaction *)
/* Did we bomb? */
sigaddset (&sigact.sa_mask, SIGSEGV);
sigaction (SIGSEGV, &sigact, (struct sigaction ¥*)
}
static void signal_handler (int sig)
{
if (sig == SIGINT)
panic ("Whoops! We got “c'd....\n");
if (sig == SIGSEGV)
panic ("Whoops! We blew up....\n");

}

void cleanup (void)

{
/* Reset Signal handlers */

Page: 79

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

sigact.sa_flags = SA_RESETHAND;
sigaction (SIGINT, &sigact, O0);
sigaction (SIGSEGV, &sigact, 0);
/* Shutdown client gracefully! */
if (curses_init)
{

endwin () ;

curses_init = 0;
}

shutdown_client () ;

static void shutdown_client (void)

{

close (fdnet) ;

static void usage (void)

{

printf ("usage: client [-h hostname] [-p] [-v]\n");

printf (" -h : specify host where DCE server lives\n");
printf (" -p : use port number\n");

printf (" -v : verbose mode\n");

exit (1);

int tcp_connect (const char *hostname, int port)

struct hostent *host_info;
struct sockaddr_in server;
int sock;
sock = socket (AF_INET, SOCK_STREAM, O0);
if (sock < 0)
return -1;
host_info = gethostbyname (hostname) ;
server.sin_family = AF_INET;
memcpy ((char *) &server.sin_addr, host_info->h_addr, host_info->h_length);
server.sin_port = htons(port);
connect (sock, (struct sockaddr *) &server, sizeof (server));
return sock;

File: main_server.c

/ *

** File: "S$RCSfile: main_server.c,v $"
** Author: "$Author: tommieb $"

** Date: "$Date: 2003/01/19 18:00:20 $"
** Purpose: The server code!

*/

#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdarg.h>
#include "in_out_data.h"

#define LISTEN_PORT 9876
/* RCS Ident. */
static char *RCSId __ attribute_ ((__unused__)) = "$Id: main_server.c,v 1.2 2003/01/19

18:00:20 tommieb Exp tommieb $";

/* Signal handler struct */
struct sigaction sigact;

/* Global variables */
int fdnet;

/* Functions */

static void init_signals(void);
static void signal_handler (int);

Page: 80

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

static void shutdown_server (void) ;

static void usage (void);

static void panic(const char *fmt, ...);
static void cleanup (void);

int rle_compress (const char *, char **, int);
int create_tcp_endpoint (int);

int main(int argc __attribute__ ((__unused__)), char **argv
__attribute_ ((__unused__)))

{

int value, sock, total, numl, num2;
char *ptr, tmp_buf[40], *tmp_buf_ptrl, *tmp_buf_ptr2;

/* Set up signal handler! */
init_signals();

/* At first sign of trouble, we cleanup! */
atexit (cleanup) ;

if ((sock = create_tcp_endpoint (LISTEN_PORT)) < 0)
panic ("Unable to establish listening endpoint!\n");
/* Get connection from client! */
fdnet = accept (sock, NULL, NULL);
while (1)
{
/* Read in the incoming marshalled data */
read (fdnet, in_out_data, sizeof (in_out_data));

printf ("Marshalled data read in: %$s\n", in_out_data);
/* Unmarshall and process the data */
ptr = (char *) &in_out_data;

switch (*ptr++)
{
case '1' : /* Add two numbers */
*ptr++;
sscanf (ptr, "%d,%d", &numl, &num2);
total = numl + num2;
/* Clear the buffer */
in_out_data[0] = '\0';
sprintf (in_out_data, "100;%d", total);
break;
case '2' : /* string input */
*ptr++;
tmp_buf_ptrl = (char *)é&tmp_buf;
/* Do the business */
while (*ptr)
{
if (isupper (*ptr) && isalpha (*ptr))
*tmp_buf_ptrl = tolower (*ptr);

else
if (islower (*ptr) && isalpha (*ptr))
*tmp_buf_ptrl = toupper (*ptr);
else
*tmp_buf_ptrl = *ptr;
*tmp_buf_ptrl++; *ptr++;
}
*tmp_buf_ptrl = '\0';
/* Marshall the new values - Clear the buffer */
in_out_data[0] = '\0';
sprintf (in_out_data, "101;%s", tmp_buf);
break;
case '3' : /* compress a string */
*ptr++;
/* string input */
tmp_buf_ptrl = (char *)é&tmp_buf;

/* Copy the input string to temporary buffer */

while (*ptr)

*tmp_buf_ptrl++ = *ptr++;
*tmp_buf_ptrl = '\0';
tmp_buf_ptr2 = (char *)&tmp_buf;
tmp_buf_ptr2 = strdup (tmp_buf);
/* Do the business! */

if (rle_compress (tmp_buf, &tmp_buf_ptr2, strlen (tmp_buf)

== 2)

sprintf (in_out_data, "102;%"); /* Corruption occurred

- notify client! */

/* Clear the buffer */
in_out_data[0] = '\0';

sprintf (in_out_data, "102;%s", tmp_buf_ptr2);

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

break;
}
if (value == 9)
break;
/* Pass the marshalled data back to the client! */
write (fdnet, in_out_data, sizeof (in_out_data));
}
close (fdnet) ;
exit (EXIT_SUCCESS) ;

int create_tcp_endpoint (int port)

int sock;
struct sockaddr_in server;
sock = socket (AF_INET, SOCK_STREAM, O0);
if (sock < 0)
return -1;
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl (INADDR_ANY) ;
server.sin_port = htons(port);
if (bind(sock, (struct sockaddr *) &server, sizeof (server)) < 0)
return -2;
listen(sock, 5);
return sock;

}

void panic(const char *fmt, ...)
{
va_list ap;
va_start (ap, fmt);
viprintf (stderr, fmt, ap);
va_end(ap) ;
exit (EXIT_FAILURE) ;
}

static void init_signals (void)
{
sigact.sa_handler = signal_handler;
sigemptyset (&sigact.sa_mask);
sigact.sa_flags = 0;
/* Did we get ctrl-c'd */
sigaction (SIGINT, &sigact, (struct sigaction *) NULL);
/* Did we bomb? */
sigaddset (&sigact.sa_mask, SIGSEGV);
sigaction (SIGSEGV, &sigact, (struct sigaction *) NULL);
}

static void signal_handler (int sig)

{

if (sig == SIGINT)

panic ("Whoops! We got “c'd....\n");
if (sig == SIGSEGV)

panic ("Whoops! We blew up....\n");

}

void cleanup (void)

{
/* Reset Signal handlers */
sigact.sa_flags = SA_RESETHAND;
sigaction (SIGINT, &sigact, O0);
sigaction (SIGSEGV, &sigact, 0);
/* Shutdown server gracefully! */
shutdown_server () ;

static void shutdown_server (void)

{

close (fdnet) ;

int rle_compress (const char *orig_data, char **compressed_data, int orig_data_len)

{

int match = 1, first_time = 1;

char save_orig_char = 'A', *ptr_to_orig_data, *ptr_to_comp_data,
*compressed_data_buf;

Page: 82

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

if (! (compressed_data_buf =
return 2;
ptr_to_comp_data =
/* Signature! */

*ptr_to_comp_data++ =

(char *) malloc(sizeof (char) *

compressed_data_buf;
0xBE;

*ptr_to_comp_data++ = OxEF;

for (ptr_to_orig_data = (char *)orig_data; *ptr_to_orig_data;
{
if (first_time)
{
first_time = 0;
save_orig_char = *ptr_to_orig_data;
}
else
{
if (*ptr_to_orig_data == save_orig_char)
match++;
else

{
*ptr_to_comp_data++ =
*ptr_to_comp_data++ =
save_orig_char =
match = 1;

match;
(char) save_orig_char;
*ptr_to_orig_data;

}
}
*ptr_to_comp_data++ = match;
*ptr_to_comp_data++ = (char)save_orig_char;
save_orig_char = *ptr_to_orig_data;
*ptr_to_comp_data = '\0';
(*compressed_data) = compressed_data_buf;
return(l);

(orig_data_len + 5))))

*ptr_to_orig_data++)

Page: 83

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Appendix C - Source code for implementation using FreeDCE.

File: Makefile

.SUFFIXES: .c.o

CC = gcc

IDL = /opt/dce/bin/idl

INCLUDE = -I/opt/dce/include -I/usr/include

LIBS = -L/opt/dce/lib -L/usr/lib -ldcerpc -luuid -1lstdc++ -lncurses
CFLAGS = —-D_REENTRANT -D_GNU_SOURCE -Wall -W -pipe #-Werror -O
IDL_GEN_HDR = mc.h

IDL_FLAGS = -header $(IDL_GEN_HDR)

CLIENT_FILES = menu_client.o main_client.o dce_misc.o
CLIENT_IDL = client_server.idl

CLIENT_STUB = client_server_cstub.o

CLIENT_APP = client_app

SERVER_FILES = main_server.o dce_misc.o
SERVER_STUB = client_server_sstub.o
SERVER_APP = server_app

all: $(CLIENT_APP) $(SERVER_APP)

$(CC) $(INCLUDE) $(CFLAGS) -c $<

$ (CLIENT_STUB) : $(CLIENT_IDL)
$(IDL) $(IDL_FLAGS) $(INCLUDE) $(CLIENT_IDL)

$ (CLIENT_APP) : $(CLIENT_STUB) $(CLIENT_FILES)
$(CC) -o $@ $(CFLAGS) $(INCLUDE) $(LIBS) $(CLIENT_FILES) $(CLIENT_STUB)

$ (SERVER_APP) : $ (SERVER_STUB) $ (SERVER_FILES)
$(CC) -o $@ $(CFLAGS) $(INCLUDE) $(LIBS) $(SERVER_STUB) $(SERVER_FILES)

clobber:
rm -rf $(CLIENT_STUB) $(SERVER_STUB) $(CLIENT_FILES) $(SERVER_FILES)
$ (IDL_GEN_HDR)

clean:
rm -rf $(CLIENT_APP) $(SERVER_APP)

File: client_server.idl

/* SRCSfile: client_server.idl,v $

** SAuthor: tommieb $

** SDate: 2002/11/08 19:40:03 $

** $Id: client_server.idl,v 1.3 2002/11/08 19:40:03 tommieb Exp $

*/

[uuid(98e4bfab6-£323-11d6-823e-000000000000), version(l.1l), pointer_default (ptr)]

interface tommieb

{
typedef [ptr, string] char * string_t;

typedef struct
{

unsigned32 argc;

[size_is(argc)] string_t argvl[];
targs;

/* My interface definition goes here */
boolean AddIt (

[in] handle_t h,

[in] long in_numl,
[in] long in_num2,
[out, ref] long *total,
[out, ref] error_status_t *status

)i
boolean Stringize (

[in] handle_t h,

[in] args *in_str,
[out] args sz_str,
[out, ref] error_status_t *status

Page: 84

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

)i
boolean Compress (

[in] handle_t h,

[in] args *orig_data,

[out] args **compressed_data,
[out, ref] error_status_t *status

)i

File: mc.h (Generated by IDL compiler - shown here for completion)

/* Generated by IDL compiler version OSF DCE T1.1.0-03 with GNU Flex/Bison */
#ifndef tommieb_vl_1_included

#define tommieb_vl_1_included

#ifndef IDLBASE_H

#include <dce/idlbase.h>

#endif

#include <dce/rpc.h>

#ifdef __cplusplus
extern "C" {
#endif

#ifndef nbase_v0_0_included
#include <dce/nbase.h>
#endif
typedef idl_char *string_t;
typedef struct {
unsigned32 argc;
string_t argv[l];
} args;
extern idl_boolean AddIt (
#ifdef IDL_PROTOTYPES
/* [in] */ handle_t h,
/* [in] */ idl_long_int in_numl,
/* [in] */ idl_long_int in_num2,
/* [out] */ idl_long_int *total,
/* [out] */ error_status_t *status
#endif
)i
extern idl_boolean Stringize(
#ifdef IDL_PROTOTYPES
/* [in] */ handle_t h,
/* [in] */ args *in_str,
/* [out] */ args **sz_str,
/* [out] */ error_status_t *status
#endif
)i
extern idl_boolean Compress (
#ifdef IDL_PROTOTYPES
/* [in] */ handle_t h,
/* [in] */ args *orig_data,
/* [out] */ args **compressed_data,
/* [out] */ error_status_t *status
#endif
)i
typedef struct tommieb_vl_1_epv_t {
idl_boolean (*AddIt) (
#ifdef IDL_PROTOTYPES
/* [in] */ handle_t h,
/* [in] */ idl_long_int in_numl,
/* [in] */ idl_long_int in_num2,
/* [out] */ idl_long_int *total,
/* [out] */ error_status_t *status
#endif
)i
idl_boolean (*Stringize) (
#ifdef IDL_PROTOTYPES
/* [in] */ handle_t h,
/* [in] */ args *in_str,
/* [out] */ args **sz_str,
/* [out] */ error_status_t *status
#endif
)i
idl_boolean (*Compress) (
#ifdef IDL_PROTOTYPES

Page: 85

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

/* [in] */ handle_t h,

/* [in] */ args *orig_data,

/* [out] */ args **compressed_data,

/* [out] */ error_status_t *status
#endif

)i

} tommieb_vl_1_epv_t;

extern rpc_if_handle_t tommieb_vl_1_c_ifspec;
extern rpc_if_handle_t tommieb_vl_1_s_ifspec;

#ifdef __cplusplus
}
#endif

#endif

File: dce_misc.h

/*

** File: "$RCSfile: dce_misc.h,v $"

** Author: "$Author: tommieb $"

** Date: "$Date: 2002/11/08 15:18:23 $"

** Purpose: Header file for miscellany DCE routines
*/

#include <dce/dce_error.h>

#ifndef _ DCE_MISC_H
#define __ DCE_MISC_H

#ifdef __ _cplusplus
extern "C" {
#endif

static char *RCSIdHdrl _ attribute_ ((__unused_))
15:18:23 tommieb Exp $";

/* dce_misc.c */

void chk_dce_err (error_status_t, const char *,

int get_client_rpc_binding(rpc_binding_handle_t *,

#ifdef __ _cplusplus
}
#endif

#endif /* __DCE_MISC_H */

File: dce_misc.c

/*

** File: "S$RCSfile: dce_misc.c,v $"

** Author: "$Author: tommieb $"

** Date: "$Date: 2002/11/08 13:09:41 $"

** Purpose: General DCE routines

*/

#include "main_client.h"

static char *Id _ _attribute_ ((__unused_)) =

13:09:41 tommieb Exp $";

void chk_dce_err (error_status_t ecode,
int fatal)
{

dce_error_string_t errstr;

int error_status;

if (ecode != error_status_ok)

{

const char *,
char ~*,

const char *where,

"$Id: dce_misc.h,v 1.2

unsigned int);
rpc_if_handle_t,

const char *why,

2002/11/08

char *);

"$Id: dce_misc.c,v 1.3 2002/11/08

unsigned

dce_error_ing_text (ecode, errstr, &error_status);

/* if (error_status == error_status_ok) */

printf ("\n>>>> DCE Error <<<<\nLast exec'd DCE stmt: %s\nFunction:
$s\nError code: 0x%lx\nReason: %$s\n", where, why, ecode, errstr);

/* else

printf ("ERROR. where = <%s> why = <%s> error code = 0x%1x\n",

ecode); */
if (fatal)
exit (EXIT_FAILURE) ;

where,

why,

Page: 86

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

}

int get_client_rpc_binding(rpc_binding_handle_t *binding_handle, char *hostname,
rpc_if_handle_t interface_spec,char *protocol)
{

char * resolved_binding;

char * printable_uuid __attribute__ ((__unused__));

char * protocol_family;

char partial_string_binding[128];

rpc_if_id_t interface __attribute__ ((__unused__));

uuid_t ifc_uuid __ _attribute_ ((__unused_));

error_status_t status;

/*
* create a string binding given the command line parameters and
* resolve it into a full binding handle using the endpoint mapper.
* The binding handle resolution is handled by the runtime library

*/
if (strcmp (protocol, "udp"))
protocol_family = "ncadg_ip_udp";
else
protocol_family = "ncacn_ip_tcp";
sprintf (partial_string_binding, "%s:%s[]", protocol_family, hostname);

rpc_binding_from_string_binding ((unsigned char *)partial_string_binding,
binding_handle, &status);

chk_dce_err (status, "rpc_binding_from_string_binding(...)",
"get_client_rpc_binding(...)", 1);
/*
* Resolve the partial binding handle using the endpoint mapper
*/
rpc_ep_resolve_binding (*binding_handle, interface_spec, &status);
chk_dce_err (status, "rpc_ep_resolve_binding(...)",
"get_client_rpc_binding(...)", 1);
/*

* Get a printable rendition of the binding handle and echo to
* the user.

*/
rpc_binding_to_string_binding (*binding_handle, (unsigned char
**)&resolved_binding, &status);
chk_dce_err (status, "rpc_binding_to_string_binding(...)",
"get_client_rpc_binding(...)", 1);
printf ("fully resolving binding for server is: %s\n", resolved_binding);
return 1;

File: main_client.h

/ *

** File: "S$RCSfile: main_client.h,v $"
** Author: "$Author: tommieb $"

** Date: "$Date: 2002/11/09 17:23:37 $"
** Purpose: Header file for client side.
*/

#ifndef _ MAIN_CLIENT_H
#define _ MAIN_CLIENT_H

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <getopt.h>
#include <unistd.h>
#include <curses.h>
#include <dce/rpc.h>
#include <dce/dce_error.h>
#include <dce/pthread_exc.h>

#ifdef __ _cplusplus
extern "C" {

#endif

static char *RCSIdHdr __ attribute_ ((__unused_)) = "$Id: main_client.h,v 1.7
2002/11/09 17:23:37 tommieb Exp $";

Page: 87

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

extern unsigned32 status;
extern rpc_binding_handle_t impl_server;
extern int verbose;

/* main_client.c */

void cleanup (void) ;

void panic(const char *, ...);
void init_signals (void);

/* menu_client.c */

int draw_menu (void) ;

int process_two_nums (void) ;
void process_string(int);

#ifdef __cplusplus
}
#endif

#endif /* __MAIN_CLIENT_H */

File: menu_client.c

/ *

** File: "S$RCSfile: menu_client.c,v $"

** Author: "$Author: tommieb $"

** Date: "$Date: 2002/11/09 17:40:28 $"

** Purpose: This is where the menu options are processed...
*/

#include "main_client.h"
#include "dce_misc.h"
#include "mc.h"

static char *Id __attribute_ ((__unused_)) = "$Id: menu_client.c,v 1.10 2002/11/09

17:40:28 tommieb Exp $";

int draw_menu (void)

{

char str_num[2];

int num, valid_num = 0;

mvprintw(3, 2, "----> Client <-——--");
mvprintw(5, 2, "1. Add two numbers.\n\n");
mvprintw(7, 2, "2. Input a string.\n\n");
mvprintw(9, 2, "3. Compress a string.\n\n");
mvprintw(ll, 2, "9. Goodbye!\n");

refresh();

crmode () ;

do

{
mvprintw (13, 2, "Enter Choice (9 to Quit): ");

refresh();

clrtoeol();

getnstr (str_num, 2);

sscanf (str_num, "%d", &num);

if ((num >= 1) && (num <= 9)
valid_num = 1;

}while (!valid_num);
return num;

}

int process_two_nums (void)
{
char str_num([2];
int valid_num = 0, quit = 0, rv;
long numl, num2, Total;
clear();
mvprintw (3, 2, "----> Client. (1. Add two numbers) <----");
refresh();
nocrmode () ;
do
{
mvprintw (5, 2, "Enter first number (0 to exit): ");
refresh();
clrtoeol();
getnstr (str_num, 2);
rv = sscanf (str_num, "%$1d", &numl);

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

if (numl == || rv == 0)
quit = 1;
else
valid_num = 1;
}while (!valid_num);
if (quit)
{
mvprintw (7, 2, "User quitted!");
crmode () ;
getch () ;

return 1;
}
valid_num = 0;
nocrmode () ;
do
{
mvprintw (7, 2, "Enter second number (0 to exit): ");
getnstr (str_num, 2);
clrtoeol();
rv = sscanf (str_num, "%$1d", &num2);
if (num2 == || rv == 0)
quit = 1;
else
valid_num = 1;
}while (!valid_num);
if (quit)
{
crmode () ;
mvprintw (9, 2, "User quitted!");
getch();
return 1;
}
if (verbose)
/* Call the server! */
mvprintw (9, 2, "Calling the server....");
rv = AddIt (impl_server, numl, num2, &Total, &status);
if (rv && status == error_status_ok)
if (verbose)
mvprintw (11, 2, "Got result from server....%ld", Total);
else
mvprintw (11, 2, "Result is %1d", Total);
if (status != error_status_ok)
chk_dce_err (status, "Addit(...)", "process_two_nums(...)", 1);
refresh();
crmode () ;
mvprintw (13, 25, "Press a key...");
getch();
return 0;

}

void process_string(int compress)
{
#define MAX_INPUT 30
char str_inp[MAX_INPUT];
args *in_args, *out_args;
long rv;
clear();
nocrmode () ;
if (!compress)
mvprintw (3, 2, "----> Client. (2. Input a string) <--—--");
else
mvprintw (3, 2, "----> Client. (3. Compress a string) <----");
mvprintw (5, 2, "Enter a string (No entry to exit): ");
in_args = (args *) malloc(sizeof (args) + (MAX_INPUT * sizeof (string_t)));
if (in_args == NULL)
return;
getnstr (str_inp, sizeof(str_inp));
if (!strlen(str_inp))
{
crmode () ;
mvprintw (7, 2, "User quitted!");
getch () ;
return;
}
in_args->argv[0] = (string_t) strdup(str_inp);
in_args->argc = 1;
if (verbose)

Page: 89

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

>argv[0],

mvprintw (7, 2, "Calling the server...
if (!compress)

rv = Stringize (impl_server,
else

rv = Compress (impl_server, in_args,

if (rv && status

{

if (compress)

{

out_args->argv[0],

>argv[0]);

}

if (status

getch

lelse

error_status_ok)

mvprintw (9, 2

if (verbose)
mvprintw (11,
mvprintw (12,

strlen (out_args->argv[0]));

if (verbose)
mvprintw (9,

else

, "Original string was %s and length was %d",
strlen(in_args->argv[0]));

ROF

in_args, &out_args,

&out_args,

&status) ;

&status) ;

in_args-

2, "Got result from server....");
14, "Compressed string is %s and length is %d",

mvprintw (9,

chk_dce_err (status,
"process_string(...)",
refresh();
crmode () ;
mvprintw (14,

()7

return;

25,

File: main_client.c

/*
* %
* %
* %

* %

*/

#include
#include
#include

File: "$RCSfile:

Author:

Date: "$Date:

Purpose:

"SAutho

1);

!= error_status_ok)

"Got result from server....%s",
"Result is %s", out_args->argv[0]);

(compress) ? "Compress(...)

"Press a key...");

r: tommieb $"

main_client.c,v $"

2002/11/09 17:23:37 $"

Demonstrates a menu driven interface!

/* RCS Ident. */
static char *RCSId _ attribute_ ((__unused_))
17:23:37 tommieb Exp $";

"main_client.h"
"dce_misc.h"
"mc.h"

/* Global variables pertaining to command line options */

int use_udp = O,

char rpc_host[128]
char *protocol;

use_tcp

/* Signal handler struct */
struct sigaction sigact;

/* DCE handle to server!
unsigned32 status;
rpc_binding_handle_t
/* Functions */
static void signal_handler (int);

static void shutdown_client (void) ;
static void usage (void);

int main(int argc,

{

extern char *optarg;
extern int optind,

int c

, menu_done =

/* Process command line!

while

{

((c =

switch

{

(c)

= 0, verbose = 0, curses_init = 0;
= "localhost"; /* default! */
*/
impl_server;
char **argv)
opterr, optopt;
1, menu_opt;
*/
getopt (argc, argv, "h:utv")) != EOF)
'u' use_udp = 1;

case

" : "Stringize(..

out_args-—

g,

"$Id: main_client.c,v 1.7 2002/11/09

Page: 90

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

break;
case 't' use_tcp = 1;
break;
case 'v' verbose = 1;
break;
case 'h' strncpy (rpc_host,
break;
default usage () ;
}
}
if ('use_tcp && !use_udp)
use_tcp = 1;
if (use_udp)
protocol = "udp";
else
protocol = "tcp";
/* Initialise curses */
initscr();

curses_init = 1;

/* Set kbd to cooked mode */
nocbreak () ;

/* Set up signal handler!
init_signals();

*/

optarg, sizeof (rpc_host)-1);

/* At first sign of trouble, we cleanup! */
atexit (cleanup) ;
/* Get binding handle to server! */
if (get_client_rpc_binding(&impl_server, rpc_host, tommieb_vl_1_c_ifspec,
protocol) == 0)
{
endwin () ;
curses_init 0;
panic ("Could not obtain RPC Server binding handle\n");
}
/* Do the biz! */
while (menu_done)
{
clear();
menu_opt = draw_menu();

switch (menu_opt)
{
case 1
break;
case 2
break;
case 3
break;
clear();
endwin () ;

case 9

curses_init

menu_done
break;
default break;
}
exit (EXIT_SUCCESS) ;

}

void panic(const char *fmt, ...)
{
va_list ap;
if (curses_init)
{
endwin () ;
curses_init = 0;
}
va_start (ap,
vifprintf (stderr,
va_end(ap) ;
exit (EXIT_FAILURE) ;

fmt) ;

fmt, ap);

void init_signals (void)

{
sigact.sa_handler = signal_handler;
sigemptyset (&sigact.sa_mask);
sigact.sa_flags = 0;
/* Did we get ctrl-c'd */

process_two_nums () ;
process_string (0) ;

process_string (1) ;

= 0;
= 0;

Page: 91

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

sigaction (SIGINT, &sigact, (struct sigaction *)
/* Did we bomb? */

sigaddset (&sigact.sa_mask, SIGSEGV);

sigaction (SIGSEGV, &sigact, (struct sigaction *)

}

static void signal_handler (int sig)
{
if (sig == SIGINT)
panic ("Whoops! We got “c'd....\n");
if (sig == SIGSEGV)
panic ("Whoops! We blew up....\n");
}

void cleanup (void)
{
/* Reset Signal handlers */
sigact.sa_flags = SA_RESETHAND;
sigaction (SIGINT, &sigact, O0);
sigaction (SIGSEGV, &sigact, 0);
/* Shutdown client gracefully! */
if (curses_init)
{
endwin () ;
curses_init = 0;
}

shutdown_client () ;

static void shutdown_client (void)

{

rpc_binding_free (&impl_server, &status);

chk_dce_err (status, "rpc_free_binding(...)", "shutdown_client(...)",

}

static void usage (void)

{

NULL) ;

NULL) ;

printf ("usage: client [-h hostname] [-u] [-t]\n");

printf (" -h : specify host where DCE server lives\n");

printf (" -t : use TCP protocol\n");
printf (" -v : verbose mode\n");
exit (1);

(
(
printf (-u : use UDP protocol\n");
(
(

File: main_server.c

/ *

** File: "S$RCSfile: main_server.c,v $"
** Author: "$Author: tommieb $"

** Date: "$Date: 2002/11/08 19:41:55 $"
** Purpose: The server code!

*/

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <ctype.h>

#include <stdlib.h>

#include <dce/rpc.h>
#include <dce/pthread_exc.h>
#include "mc.h"

#include "dce_misc.h"

/* RCS Ident. */

1);

static char *RCSId __ attribute_ ((__unused__)) = "$Id: main_server.c,v 1.7 2002/11/08

19:41:55 tommieb Exp $";

/* Functions */

pthread_t sig_handler_thread;

static void signal_handler (void *);

static void wait_for_signals (void);

int rle_compress (const char *, char **, int);

int main(int argc __attribute__ ((__unused__)), char **argv

__attribute_ ((__unused_)))

Page: 92

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

char *server_binding_str;

unsigned32 status = 0,1i;

rpc_binding_vector_p_t impl_server_bind;

printf ("Registering server....");

rpc_server_register_if (tommieb_v1l_1_s_ifspec, NULL, NULL, &status);
chk_dce_err (status, "rpc_server_register_if(...)", "main(...)", 1);
printf ("Registered!\n");

printf ("Preparing binding handle....");
rpc_server_use_all_protseqgs (rpc_c_protseq max_calls_default, &status);

chk_dce_err (status, "rpc_server_use_all_protsegs(...)", "main(...)", 1);
rpc_server_ing bindings (&impl_server_bind, &status);
chk_dce_err (status, "rpc_server_ing bindings(...)", "main(...)", 1);

printf ("Prepared!\n");

printf ("Registering bindings with endpoint mapper....");

rpc_ep_register (tommieb_vl_1_s_ifspec, impl_server_bind, NULL, (unsigned char
*)"tommieb_server", &status);

chk_dce_err (status, "rpc_ep_register(...)", "main(...)", 1);
printf ("Registered!\n");
printf ("Server's communication endpoints are...\n");
for (1 = 0; 1 < impl_server_bind->count; i++)
{
rpc_binding_to_string_binding (impl_server_bind->binding_h[i], (unsigned

char **)é&server_binding_str, &status);
if (server_binding_str)
printf ("\t%s\n", server_binding_str);
}
wait_for_signals();
printf ("Listening for calls....\n");
TRY
{
rpc_server_listen(rpc_c_listen_max_calls_default, &status);

}

CATCH_ALL
{
printf ("Server stopped....\n");
}
ENDTRY
printf ("Killing the server's signal handler thread....\n");

pthread_cancel (sig_handler_thread);

printf ("Unregistering bindings from endpoint mapper....");
rpc_ep_unregister (tommieb_vl_1_s_ifspec, impl_server_bind, NULL, &status);
chk_dce_err (status, "rpc_ep_unregister(...)", "main(...)", 1);

printf ("Unregistered!\n");

printf ("Cleaning up communications endpoint....");
rpc_server_unregister_if (tommieb_vl_1_s_ifspec, NULL, &status);
chk_dce_err (status, "rpc_server_unregister_if(...)", "main(...)", 1);
printf ("Cleaned up!\n");

exit (EXIT_SUCCESS) ;

static void wait_for_signals (void)
{
sigset_t default_signal_mask;
sigset_t old_signal_mask;
sigemptyset (&default_signal_mask) ;
pthread_sigmask (SIG_BLOCK, &default_signal_mask, &old_signal_mask);
pthread_create (&sig_handler_thread, pthread_attr_default, (void
*)signal_handler, NULL);
}

static void signal_handler (void *arg __attribute__ ((__unused__)))
{

sigset_t catch_signal_mask;

sigset_t old_signal_mask;

int which_signal;

unsigned32 status;

sigemptyset (&catch_signal_mask);

sigaddset (&catch_signal_mask, SIGINT);

pthread_sigmask (SIG_BLOCK, &catch_signal_mask, &old_signal_mask);

while (1)

{

sigwait (&catch_signal_mask, &which_signal);

if ((which_signal == SIGINT) ||
(which_signal == SIGQUIT) ||
(which_signal == SIGTERM) ||
(which_signal == SIGKILL) ||

Page: 93

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

(which_signal == SIGHUP))
rpc_mgmt_stop_server_listening (NULL, &status);

idl_boolean AddIt (rpc_binding_handle_t h, long in_numl, long in_num2, long *Total,
error_status_t *status)
{

char *binding_info;

error_status_t e;

rpc_binding_to_string_binding(h, (unsigned char **)s&binding_info, &e);

if (e == rpc_s_ok)

printf ("AddIt(...) called by client: %s\n", binding_info);
printf ("AddIt's parameters are: %1d, %1d\n", in_numl, in_num2);
*Total = in_numl + in_num2;
*status = error_status_ok;
return 1;

}

idl_boolean Stringize (rpc_binding_handle_t h, args *in_args, args **out_args,
error_status_t *status)
{

char *binding_info, *ptr, *tmp_ptr;

error_status_t e;

unsigned tmp_len;

args *tmp;

rpc_binding_to_string_binding(h, (unsigned char **)s&binding_info, &e);

if (e == rpc_s_ok)
printf ("Stringize(...) called by client: %s\n", binding_info);
printf ("Stringize's parameters are: %$s\n", in_args->argv[0]);
ptr = in_args->argv[0];
tmp_len = sizeof (args) + (in_args->argc * sizeof (string_t *));
tmp = (args *) rpc_ss_allocate(tmp_len);
tmp->argc = in_args->argc;
tmp->argv[0] = (string_t) rpc_ss_allocate(strlen(in_args->argv[0]) + 1);

tmp_ptr = tmp->argv([0];
while (*ptr)
{
if (isupper (*ptr) && isalpha (*ptr))
*tmp_ptr = tolower (*ptr);
else
if (islower (*ptr) && isalpha (*ptr))
*tmp_ptr = toupper (*ptr);
else
*tmp_ptr = *ptr;
*tmp_ptr++;
*ptr++;
}
*tmp_ptr = '\0';
*out_args = tmp;
*status = error_status_ok;
return 1;

idl_boolean Compress (rpc_binding_handle_t h, args *orig_data, args **compressed_data,
error_status_t *status)
{

error_status_t e;

char *binding_info;

args *tmp;

unsigned tmp_len;

rpc_binding_to_string_binding(h, (unsigned char **)s&binding_info, &e);

if (e == rpc_s_ok)

printf ("Compress(...) called by client: %s\n", binding_info);
printf ("Compress's parameters are: %s\n", orig_data->argv([0]);
tmp_len = sizeof (args) + (orig_data->argc * sizeof(string_t *));
tmp = (args *) rpc_ss_allocate(tmp_len);
tmp->argc = orig_data—->argc;
if (rle_compress (orig_data->argv([0], &tmp->argv[0], strlen(orig_data->argv([0]) +

1) == 2)
tmp->argv[0] = NULL;
/* rle_compress same code as in for sockets in Appendix B!!!! */

*compressed_data = tmp;
*status = error_status_ok;

Page: 94

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Appendix D - Original posting to usenet on the birth of Linux.|

To: Linux-Activists @BLOOM-PICAY UNE.MIT.EDU

From: torvalds @klaava.Helsinki.FI (Linus Benedict Torvalds)
Subject: Birthday (was Re: Uptime found. Thanks to all)
Date: 31 Jul 92 22:15:20 GMT

In article <1992Jul30.211132.20101 @cc.umontreal.ca> duperval @ ERE.UMontreal.CA (Duperval Laurent) writes:
>

>P.S. BTW, noone answered yet: when is Linux's birthday? Let's have a

>party!

I couldn't for the life of me remember when it all happened, and I don't
keep a diary, so I can't give you any exact dates for when linux "was
born". But I did start to wonder, so I started ftp'ing around for
archives of the comp.os.minix group (where I announced it), and this is
what I came up with (with some editing).

This is just a sentimental journey into some of the first posts
concerning linux, so you can happily press 'n' now if you actually
thought you'd get anything technical.

> From: torvalds @klaava.Helsinki.FI (Linus Benedict Torvalds)

> Newsgroups: comp.os.minix

> Subject: Gee-1.40 and a posix-question

> Message-ID: <1991Jul3.100050.9886 @klaava.Helsinki.FI>

> Date: 3 Jul 91 10:00:50 GMT

>

> Hello netlanders,

>

> Due to a project I'm working on (in minix), I'm interested in the posix
> standard definition. Could somebody please point me to a (preferably)
> machine-readable format of the latest posix rules? Ftp-sites would be
> nice.

The project was obviously linux, so by July 3rd I had started to think
about actual user-level things: some of the device drivers were ready,
and the harddisk actually worked. Not too much else.

> As an aside for all using gcc on minix - [deleted]

Just a success-report on porting gcc-1.40 to minix using the 1.37
version made by Alan W Black & co.

> Linus Torvalds torvalds @kruuna.helsinki.fi

>

> PS. Could someone please try to finger me from overseas, as ['ve

> installed a "changing .plan" (made by your's truly), and I'm not certain
> it works from outside? It should report a new .plan every time.

So I was clueless - had just learned about named pipes. Sue me. This
part of the post got a lot more response than the actual POSIX query,
but the query did lure out arl from the woodwork, and we mailed around
for a bit, resulting in the Linux subdirectory on nic.funet.fi.

Then, almost two months later, I actually had something working: I made
sources for version 0.01 available on nic sometimes around this time.
0.01 sources weren't actually runnable: they were just a token gesture

to arl who had probably started to despair about ever getting anything.
This next post must have been from just a couple of weeks before that
release.

> From: torvalds @klaava.Helsinki.FI (Linus Benedict Torvalds)
> Newsgroups: comp.os.minix

> Subject: What would you like to see most in minix?

> Summary: small poll for my new operating system

> Message-ID: <1991Aug25.205708.9541 @klaava.Helsinki.FI>
> Date: 25 Aug 91 20:57:08 GMT

> Organization: University of Helsinki

>

>

> Hello everybody out there using minix -

>

> I'm doing a (free) operating system (just a hobby, won't be big and

Page: 95

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

> professional like gnu) for 386(486) AT clones. This has been brewing
> since april, and is starting to get ready. I'd like any feedback on

> things people like/dislike in minix, as my OS resembles it somewhat

> (same physical layout of the file-system (due to practical reasons)

> among other things).

>

> I've currently ported bash(1.08) and gec(1.40), and things seem to work.
> This implies that I'll get something practical within a few months, and
> I'd like to know what features most people would want. Any suggestions
> are welcome, but I won't promise I'll implement them :-)

>

> Linus (torvalds @kruuna.helsinki.fi)

>

>PS. Yes -it's free of any minix code, and it has a multi-threaded fs.

> Itis NOT protable (uses 386 task switching etc), and it probably never
> will support anything other than AT-harddisks, as that's all T have :-(.

Judging from the post, 0.01 wasn't actually out yet, but it's close. I'd
guess the first version went out in the middle of September -91. I got
some responses to this (most by mail, which I haven't saved), and I even
got a few mails asking to be beta-testers for linux.

After that just a few general answers to quesions on the net:

> From: torvalds @klaava.Helsinki.FI (Linus Benedict Torvalds)

> Newsgroups: comp.os.minix

> Subject: Re: What would you like to see most in minix?

> Summary: yes - it's nonportable

> Message-ID: <1991Aug26.110602.19446 @klaava.Helsinki.FI>

> Date: 26 Aug 91 11:06:02 GMT

> Organization: University of Helsinki

>

> In article <1991Aug25.234450.22562 @nntp.hut.fi> jkp@cs. HUT.FI (Jyrki Kuoppala) writes:
> >> [re: my post about my new OS]

>>

> >Tell us more! Does it need a MMU?

>

> Yes, it needs a MMU (sorry everybody), and it specifically needs a

> 386/486 MMU (see later).

>

>>

>>>PS. Yes -it's free of any minix code, and it has a multi-threaded fs.
>>>[tis NOT protable (uses 386 task switching etc)

>>

>>How much of it is in C? What difficulties will there be in porting?

> >Nobody will believe you about non-portability ;-), and I for one would
> >like to port it to my Amiga (Mach needs a MMU and Minix is not free).
>

> Simply, I'd say that porting is impossible. It's mostly in C, but most

> people wouldn't call what I write C. It uses every conceivable feature

> of the 386 I could find, as it was also a project to teach me about the

> 386. As already mentioned, it uses a MMU, for both paging (not to disk
> yet) and segmentation. It's the segmentation that makes it REALLY 386
> dependent (every task has a 64Mb segment for code & data - max 64 tasks
> in 4Gb. Anybody who needs more than 64Mb/task - tough cookies).

>

> It also uses every feature of gcc I could find, specifically the __asm__

> directive, so that I wouldn't need so much assembly language objects.

> Some of my "C"-files (specifically mm.c) are almost as much assembler as
> C. It would be "interesting" even to port it to another compiler (though

> why anybody would want to use anything other than gcc is a mystery).

[editors note: linux has in fact gotten more portable with newer
versions: there was a lot more assembly in the early versions. Not that
anybody in their right mind would try to port it even now]

> Unlike minix, I also happen to LIKE interrupts, so interrupts are

> handled without trying to hide the reason behind them (I especially like
> my hard-disk-driver. Anybody else make interrupts drive a state-

> machine?). All in all it's a porters nightmare.

>

> >As for the features; well, pseudo ttys, BSD sockets, user-mode

> >filesystems (so I can say cat /dev/tcp/kruuna.helsinki.fi/finger),

> >window size in the tty structure, system calls capable of supporting
>>POSIX.1. Oh, and bsd-style long file names.

Page: 96

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

>

> Most of these seem possible (the tty structure already has stubs for

> window size), except maybe for the user-mode filesystems. As to POSIX,
> I'd be delighted to have it, but posix wants money for their papers, so

> that's not currently an option. In any case these are things that won't

> be supported for some time yet (first I'll make it a simple minix-

> lookalike, keyword SIMPLE).

>

> Linus (torvalds @kruuna.helsinki.fi)

>

> PS. To make things really clear - yes I can run gcc on it, and bash, and

> most of the gnu [bin/file]utilities, but it's not very debugged, and the

> library is really minimal. It doesn't even support floppy-disks yet. It

> won't be ready for distribution for a couple of months. Even then it

> probably won't be able to do much more than minix, and much less in some
> respects. It will be free though (probably under gnu-license or similar).

Well, obviously something worked on my machine: I doubt I had yet gotten
gec to compile itself under linux (or I would have been too proud of it
not to mention it). Still before any release-date.

Then, October 5th, I seem to have released 0.02. As I already
mentioned, 0.01 didn't actually come with any binaries: it was just
source code for people interested in what linux looked like. Note the
lack of announcement for 0.01: I wasn't too proud of it, so I think I
only sent a note to everybody who had shown interest.

> From: torvalds @klaava.Helsinki.FI (Linus Benedict Torvalds)

> Newsgroups: comp.os.minix

> Subject: Free minix-like kernel sources for 386-AT

> Message-ID: <19910ct5.054106.4647 @klaava.Helsinki.FI>

> Date: 5 Oct 91 05:41:06 GMT

> Organization: University of Helsinki

>

> Do you pine for the nice days of minix-1.1, when men were men and wrote
> their own device drivers? Are you without a nice project and just dying

> to cut your teeth on a OS you can try to modify for your needs? Are you

> finding it frustrating when everything works on minix? No more all-

> nighters to get a nifty program working? Then this post might be just

> for you :-)

>

> As I mentioned a month(?) ago, I'm working on a free version of a

> minix-lookalike for AT-386 computers. It has finally reached the stage

> where it's even usable (though may not be depending on what you want),
> and I am willing to put out the sources for wider distribution. Itis

> just version 0.02 (+1 (very small) patch already), but I've successfully

> run bash/gcc/gnu-make/gnu-sed/compress etc under it.

>

> Sources for this pet project of mine can be found at nic.funet.fi

> (128.214.6.100) in the directory /pub/OS/Linux. The directory also

> contains some README-file and a couple of binaries to work under linux
> (bash, update and gcc, what more can you ask for :-). Full kernel

> source is provided, as no minix code has been used. Library sources are

> only partially free, so that cannot be distributed currently. The

> system is able to compile "as-is" and has been known to work. Heh.

> Sources to the binaries (bash and gec) can be found at the same place in

> /pub/gnu.

>

> ALERT! WARNING! NOTE! These sources still need minix-386 to be compiled
> (and gece-1.40, possibly 1.37.1, haven't tested), and you need minix to

> set it up if you want to run it, so it is not yet a standalone system

> for those of you without minix. I'm working on it. You also need to be

> something of a hacker to set it up (?), so for those hoping for an

> alternative to minix-386, please ignore me. It is currently meant for

> hackers interested in operating systems and 386's with access to minix.

>

> The system needs an AT-compatible harddisk (IDE is fine) and EGA/VGA. If
> you are still interested, please ftp the README/RELNOTES, and/or mail me
> for additional info.

>

> I can (well, almost) hear you asking yourselves "why?". Hurd will be

> out in a year (or two, or next month, who knows), and I've already got

> minix. This is a program for hackers by a hacker. I've enjouyed doing

> it, and somebody might enjoy looking at it and even modifying it for

> their own needs. It is still small enough to understand, use and

Page: 97

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

> modify, and I'm looking forward to any comments you might have.

>

> I'm also interested in hearing from anybody who has written any of the

> utilities/library functions for minix. If your efforts are freely

> distributable (under copyright or even public domain), I'd like to hear

> from you, so I can add them to the system. I'm using Earl Chews estdio
> right now (thanks for a nice and working system Earl), and similar works
> will be very wellcome. Your (C)'s will of course be left intact. Drop me
> a line if you are willing to let me use your code.

>

> Linus

>

> PS. to PHIL NELSON! I'm unable to get through to you, and keep getting
> "forward error - strawberry unknown domain" or something.

Well, it doesn't sound like much of a system, does it? It did work, and
some people even tried it out. There were several bad bugs (and there
was no floppy-driver, no VM, no nothing), and 0.02 wasn't really very
useable.

0.03 got released shortly thereafter (max 2-3 weeks was the time between
releases even back then), and 0.03 was pretty useable. The next version
was numbered 0.10, as things actually started to work pretty well. The
next post gives some idea of what had happened in two months more...

> From: torvalds @klaava.Helsinki.FI (Linus Benedict Torvalds)

> Newsgroups: comp.os.minix

> Subject: Re: Status of LINUX?

> Summary: Still in beta

> Message-ID: <1991Dec19.233545.8114 @klaava.Helsinki.FI>

> Date: 19 Dec 91 23:35:45 GMT

> Organization: University of Helsinki

>

> In article <469 @htsa.htsa.aha.nl> miquels @ maestro.htsa.aha.nl (Miquel van Smoorenburg) writes:
> >Hello *,

>> Iknow some people are working on a FREE O/S for the 386/486,

> >under the name Linux. I checked nic.funet.fi now and then, to see what was
> >happening. However, for the time being I am without FTP access so I don't
> >know what is going on at the moment. Could someone please inform me about it?
> >It's maybe best to follow up to this article, as I think that there are

> >a lot of potential interested people reading this group. Note, that I don't

> >really *have* a >= 386, but I'm sure in time I will.

>

> Linux is still in beta (although available for brave souls by ftp), and

> has reached the version 0.11. It's still not as comprehensive as

> 386-minix, but better in some respects. The "Linux info-sheet" should

> be posted here some day by the person that keeps that up to date. In

> the meantime, I'll give some small pointers.

>

> First the bad news:

>
> - Still no SCSI: people are working on that, but no date yet.
> Thus you need a AT-interface disk (I have one report that it
> works on an EISA 486 with a SCSI disk that emulates the
> AT-interface, but that's more of a fluke than anything else:
> ISA+AT-disk is currently the hardware setup)

As you can see, 0.11 had already a small following. It wasn't much, but
it did work.

> - still no init/login: you get into bash as root upon bootup.

That was still standard in the next release.

- although I have a somewhat working VM (paging to disk), it's not
ready yet. Thus linux needs at least 4M to be able to run the

GNU binaries (especially gec). It boots up in 2M, but you
cannot compile.

VV VYV

T actually released a 0.11+VM version just before Christmas -91: 1
didn't need it myself, but people were trying to compile the kernel in
2MB and failing, so I had to implement it. The 0.114+VM version was
available only to a small number of people that wanted to test it out:
I'm still surprised it worked as well as it did.

Page: 98

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

- minix still has a lot more users: better support.

- it hasn't got years of testing by thousands of people, so there
are probably quite a few bugs yet.

Then for the good things..

- It's free (copyright by me, but freely distributable under a
very lenient copyright)

VVVVVVVYVYV

The early copyright was in fact much more restrictive than the GNU
copyleft: I didn't allow any money at all to change hands due to linux.
That changed with 0.12.

- it's fun to hack on.
- /real/ multithreading filesystem.
- uses the 386-features. Thus locked into the 386/486 family, but

it makes things clearer when you don't have to cater to other
chips.

VVVVYVVYVVYV

- alot more... read my .plan.

>

> /I/ think it's better than minix, but I'm a bit prejudiced. It will

> never be the kind of professional OS that Hurd will be (in the next

> century or so :), but it's a nice learning tool (even more so than

> minix, IMHO), and it was/is fun working on it.

>

> Linus (torvalds @kruuna.helsinki.fi)

>

> --—- my .plan ----------mmmmm e

> Free UNIX for the 386 - coming 4QR 91 or 1QR 92.

>

> The current version of linux is 0.11 - it has most things a unix kernel
> needs, and will probably be released as 1.0 as soon as it gets a little

> more testing, and we can get a init/login going. Currently you get

> dumped into a shell as root upon bootup.

>

> Linux can be gotten by anonymous ftp from 'nic.funet.fi' (128.214.6.100)
> in the directory /pub/OS/Linux'. The same directory also contains some
> binary files to run under Linux. Currently gcc, bash, update, uemacs,
> tar, make and fileutils. Several people have gotten a running system,
> but it's still a hackers kernel.

>

> Linux still requires a AT-compatible disk to be useful: people are

> working on a SCSI-driver, but I don't know when it will be ready.

>

> There are now a couple of other sites containing linux, as people have
> had difficulties with connecting to nic. The sites are:

> Tupac-Amaru.Informatik. RWTH-Aachen.DE (137.226.112.31):

> directory /pub/msdos/replace
> tsx-11.mit.edu (18.172.1.2):

> directory /pub/linux

>

> There is also a mailing list set up 'Linux-activists @niksula.hut.fi'.
> To join, mail a request to 'Linux-activists-request@niksula.hut.fi'.
> It's no use mailing me: I have no actual contact with the mailing-list
> (other than being on it, naturally).

>

> Mail me for more info:

>

> Linus (torvalds @kruuna.Helsinki.FI)

>

> 0.11 has these new things:

>

> - demand loading

> - code/data sharing between unrelated processes

> - much better floppy drivers (they actually work mostly)

> - bug-corrections

> - support for Herculess MDA/CGA/EGA/VGA

> - the console also beeps (WoW! Wonder-kernel :-)

> - mkfs/fsck/fdisk

> - US/German/French/Finnish keyboards

> - settable line-speeds for com1/2

Page: 99

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

As you can see: 0.11 was actually stand-alone: I wrote the first
mkfs/fsck/fdisk programs for it, so that you didn't need minix any more
to set it up. Also, serial lines had been hard-coded to 2400bps, as that
was all I had.

> Still lacking:

> - init/login

> - rename system call
> - named pipes

> - symbolic links

Well, they are all there now: init/login didn't quite make it to 0.12,
and rename() was implemented as a patch somewhere between 0.12 and 0.95.
Symlinks were in 0.95, but named pipes didn't make it until 0.96.

> (.12 will probably be out in January (15th or so), and will have:
> - POSIX job control (by tytso)

> - VM (paging to disk)

> - Minor corrections

Actually, 0.12 was out January Sth, and contained major corrections. It
was in fact a very stable kernel: it worked on a lot of new hardware,
and there was no need for patches for a long time. 0.12 was also the
kernel that "made it": that's when linux started to spread a lot faster.
Earlier kernel releases were very much only for hackers: 0.12 actually
worked quite well.

That's all I found for 1991 - maybe it answered some questions.

Linus

To: Linux-Activists @BLOOM-PICAY UNE.MIT.EDU

From: torvalds @klaava.Helsinki.FI (Linus Benedict Torvalds)
Subject: Re: Writing an OS - questions !!

Date: 5 May 92 07:58:17 GMT

In article <10685 @inews.intel.com> nani @td2cad.intel.com (V. Narayanan) writes:

>
>Hi folks,

> For quite some time this "novice" has been wondering as to how one goes
>about the task of writing an OS from "scratch”. So here are some questions,
>and I would appreciate if you could take time to answer 'em.

Well, I see someone else already answered, but I thought I'd take on the
linux-specific parts. Just my personal experiences, and I don't know
how normal those are.

>1) How would you typically debug the kernel during the development phase?

Depends on both the machine and how far you have gotten on the kernel:
on more simple systems it's generally easier to set up. Here's what I
had to do on a 386 in protected mode.

The worst part is starting off: after you have even a minimal system you
can use printf etc, but moving to protected mode on a 386 isn't fun,
especially if you at first don't know the architecture very well. It's
distressingly easy to reboot the system at this stage: if the 386

notices something is wrong, it shuts down and reboots - you don't even
get a chance to see what's wrong.

Printf() isn't very useful - a reboot also clears the screen, and

anyway, you have to have access to video-mem, which might fail if your
segments are incorrect etc. Don't even think about debuggers: no
debugger I know of can follow a 386 into protected mode. A 386 emulator
might do the job, or some heavy hardware, but that isn't usually

feasible.

What I used was a simple killing-loop: I put in statements like

die:
jmp die

Page: 100

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

at strategic places. If it locked up, you were ok, if it rebooted, you
knew at least it happened before the die-loop. Alternatively, you might
use the sound io ports for some sound-clues, but as I had no experience
with PC hardware, I didn't even use that. I'm not saying this is the

only way: I didn't start off to write a kernel, I just wanted to explore
the 386 task-switching primitives etc, and that's how I started off (in
about April-91).

After you have a minimal system up and can use the screen for output, it
gets a bit easier, but that's when you have to enable interrupts. Bang,
instant reboot, and back to the old way. All in all, it took about 2
months for me to get all the 386 things pretty well sorted out so that I
no longer had to count on avoiding rebooting at once, and having the
basic things set up (paging, timer-interrupt and a simple task-switcher
to test out the segments etc).

>2) Can you test the kernel functionality by running it as a process on a

> different OS? Wouldn't the OS(the development environment) generate
> exceptions in cases when the kernel (of the new OS) tries to modify

> ‘'priviledged' registers?

Yes, it's generally possible for some things, but eg device drivers
usually have to be tested out on the bare machine. I used minix to
develop linux, so I had no access to IO registers, interrupts etc.
Under DOS it would have been possible to get access to all these, but
then you don't have 32-bit mode. Intel isn't that great - it would
probably have been much easier on a 68040 or similar.

So after getting a simple task-switcher (it switched between two
processes that printed AAAA... and BBBB... respectively by using the
timer-interrupt - Gods I was proud over that), I still had to continue
debugging basically by using printf. The first thing written was the
keyboard driver: that's the reason it's still written completely in
assembler (I didn't dare move to C yet - I was still debugging at

about instruction-level).

After that I wrote the serial drivers, and voila, I had a simple
terminal program running (well, not that simple actually). It was still
the same two processes (AAA..), but now they read and wrote to the
console/serial lines instead. I had to reboot to get out of it all, but

it was a simple kernel.

After that is was plain sailing: hairy coding still, but I had some

devices, and debugging was easier. I started using C at this stage, and

it certainly speeds up developement. This is also when I start to get
serious about my megalomaniac ideas to make "a better minix that minix".
I was hoping I'd be able to recompile gcc under linux some day...

The harddisk driver was more of the same: this time the problems with
bad documentation started to crop up. The PC may be the most used
architecture in the world right now, but that doesn't mean the docs are
any better: in fact I haven't seen /any/ book even mentioning the weird
386-387 coupling in an AT etc (Thanks Bruce).

After that, a small filesystem, and voila, you have a minimal unix. Two
months for basic setups, but then only slightly longer until I had a
disk-driver (seriously buggy, but it happened to work on my machine) and
a small filesystem. That was about when I made 0.01 available (late
august-91? Something like that): it wasn't pretty, it had no floppy

driver, and it couldn't do much anything. I don't think anybody ever
compiled that version. But by then I was hooked, and didn't want to

stop until I could chuck out minix.

>3) Would new linkers and loaders have to be written before you get a basic
> kernel running?

All versions up to about 0.11 were crosscompiled under minix386 - as
were the user programs. I got bash and gcc eventually working under
0.02, and while a race-condition in the buffer-cache code prevented me
from recompiling gcc with itself, I was able to tackle smaller compiles.
0.03 (October?) was able to recompile gcc under itself, and I think
that's the first version that anybody else actually used. Still no
floppies, but most of the basic things worked.

Afetr 0.03 I decided that the next version was actually useable (it was,
kind of, but boy is X under 0.96 more impressive), and I called the next

Page: 101

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

version 0.10 (November?). It still had a rather serious bug in the
buffer-cache handling code, but after patching that, it was pretty ok.
0.11 (December) had the first floppy driver, and was the point where I
started doing linux developement under itself. Quite as well, as I
trashed my minix386 partition by mistake when trying to autodial
/dev/hd2.

By that time others were actually using linux, and running out of
memory. Especially sad was the fact that gcc wouldn't work on a 2MB
machine, and although c386 was ported, it didn't do everything gcc did,
and couldn't recompile the kernel. So I had to implement disk-paging:
0.12 came out in January (?) and had paging by me as well as job control
by tytso (and other patches: pmacdona had started on VC's etc). It was
the first release that started to have "non-essential" features, and

being partly written by others. It was also the first release that

actually did many things better than minix, and by now people started to
really get interested.

Then it was 0.95 in March, bugfixes in April, and soon 0.96. It's
certainly been fun (and I trust will continue to be so) - reactions have
been mostly very positive, and you do learn a lot doing this type of
thing (on the other hand, your studies suffer in other respects :)

Linus

Page: 102

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Appendix E - An insider's perspective of commercial DCE software.

From : Mark <cartermr @erols.com>

To : Tom Brennan <tomas_o_braonain@hotmail.com>
CC: <cartermr @erols.com>

Subject : Entera/DCE

Date : Wed, 20 Nov 2002 19:56:20 -0500

Hi Tommie,

First, I changed the subject so I don't accidentally delete a message in
this thread. It looks like a spam (help wanted ;-)

Second, So sorry to hear about your job situation. I understand. The
economy can't stay flat forever. Sounds like you're making the best of it
by returning to school.

I tried to build some earlier free DCE distributions with little success. I
have a Mac, and will not buy a WindozePC just for that. I don't see how a
technology this complex can be free. Open source, perhaps. But not as a
"self licking ice cream cone" like Perl or sendmail. It's just too big and
bizarre. (No one system does what it did/could do to this day).

Entera 3.2 TCP (ever work with that?) load balanced very well. We tested
it: I'm essentially a system and application admin and I don't trust our
architects. We tested which server a client reached out to with individual
calls (new bind each time). It balanced well, and paused only slightly when
we forced server instances down. I've not seen where Entera 3.2 DCE had
balance problems either. The client rips through it's partial bindings to
connect to a server. We keep queue depth small and run lots of individual
instances. So thatif a client makes a call to a "busy" server, it goes
elsewhere. There are other performance issues with the weird way Entera
uses ObjectUUIDs when exporting to DCE namespace, but I can't say it's poor.
I guess it depends on what you mean by poor. My take is that if a client
favors an individual instance, that's poor. We don't have high overhead
associated with locating a server for each RPC, because we bind during init
and use the server until death (if we can).

Quotes are hard to find because, like airline seats, costs differ. I don't

know what we pay for hardware/software. Not my job description. I know we
pay for sw license, and did take out extended support from the vendors for
dependent software (e.g., DCE itself). Right now, you can't get support for
Entera 3.X anywhere I know of. Sorry I can't take the cost issues to

ground. I do know it's getting expensive to maintain hardware/software

(e.g., OS for those old machines) that still run Entera. We want to retire

the services but the new ones (CORBA/WebSphere) aren't ready. That says
something about the robustness of Entera and the DCE model.

Overall view: I liked working with Entera. It has idiosyncrasies, but so
does CORBA and WebSphere. It was much better than native DCE API
programming.

Once we built some test programs (to check how busy servers are) and
monitored them all closely, we had a fairly stable environment. We seldom

if ever lost the whole machine or entire enterprise. Contrast that with a

rogue Java program that grabs all memory on the machine, or with a corrupted
WebSphere admin server DB that would bring everything to a halt. We guarded
our DCE cell, that's for sure. We used replication and backed up the

pertinent DCE DB files, and used best practices to keep the cell stable. If
DCE dies, Entera dies. But DCE servers were on dedicated machines and we
had only one major outage when an undersized CDS server couldn't keep up
with a large namespace. After we upgraded our server machines, so they can
reload that DB into memory faster, we had no more issues. Knock on wood
(the prod cell is still up).

I doubt we could have scaled up to an e-commerce environment under Entera.
Not the way our systems were architected anyway. They say DCE scales, but
the namespace resides in memory (cf LDAP) as does the registry. There were
vendor plans to put a real DB on the backend, but by the time that may have
happened, we froze our DCE version and moved on. I wasn't able to stay with
the product then.

So, as an admin, I learned how to handle the Entera environment. I grew to
appreciate it. It has shortcomings, and some of the programmers had issues,

Page: 103

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

but I can't know for sure if their problems were more in dealing with how we
deployed the technology as opposed to inherent shortcomings.

Good luck, and if I can help further, let me know.

-Mark
cartermr @erols.com

> From: "Tom Brennan" <tomas_o_braonain@hotmail.com>

> Date: Wed, 20 Nov 2002 13:26:22 +0000

> To: cartermr @erols.com

> Subject: Re: Help wanted

>

> Hi Mark,

>

> Many thanks for your reply to my posting on google. Yes, you are correct
> about the feeling that DCE is dead - I have felt that when I embarked on

> this dissertation..., there is an open source version called freedce -

> http://sourceforge.net/projects/freedce

> Alas this version lacks security et al, but compilable under Linux. I have

> made a successful if not bare-bones model of a client/server. This software
> just creates an rpc portmapper daemon which sits in the background and

> execute the server, which listens for clients etc. You get the drift.

>

> The real reason is to evaluate freedce (from now on I'll refer to this)

> against the more commercial products. I have worked with Entera 3.2 under
> IBM RS/6000's AIX for nearly 6 years - 3 years on client/server development
> (but had to go back to college as of now, due to the slump in the I.T sector
> here in Ireland - we have had so many job losses here and had hard time

> trying to get a placement...anyway), but information is hard to get by on

> this one since borland/inprise have dropped support on entera 3.2, -1 do

> remember it had poor balance-handling via round-robin scheduling - can you
> back me up on this?.

>

> Ideally, I would like to do some comparisons based on Entera w. FreeDCE,
> in terms of cost, licensing, cost of support per year. Borland/Inprise do

> not disclose the quotations of cost, which is what I'm trying to get my

> hands on. I am also looking into Entegrity www.entegrity.com which btw has a
> precompiled binary for various Linux distros.

>

> Am I correct in saying, that for Entera 3.2 for AIX, this would involve

> cost of support from Borland and from IBM per year, excluding licensing?
> Would you be able to help me out regarding costs of a) licensing, b)

> support, ¢) overall view of entera in terms of how you felt about working

> with it, easy etc..? I totally understand and do respect a company that is

> not willing to disclose the figures.

>

> Hope you could help me out.

>

> Thanking you,

> Tommie.

>

>

>

>

> MSN 8 helps eliminate e-mail viruses. Get 2 months FREE*.

> http://join.msn.com/?page=~features/virus

>

Page: 104

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Appendix F - A query posted to sourceforge regarding FreeDCE.

This has been edited for inclusion here in the appendix, the original posting can be
found at
http://sourceforge.net/forum/forum.php ?thread_id=760757 &forum_id=29666

Project: Free DCE and DCOM: Forums: View Forum

Discussion Forums: Open Discussion Admin

By: tommieb_bsc (Tom Brennan)

Re: Where is http://dcerpc.net ?72???

Date: 2002-11-07 03:40

Hello again, where is the above website, I am getting desperate in looking for a most recent version of FreeDCE? Is there a
mirror site available?

Thanking you,
T.

By: finieous (Phillip Iorio)

RE: Where is http://dcerpc.net ?7???

Date: 2002-11-11 13:15

It has been down for awhile now. What's up here is the most recent version. I've been working on some of the memory leaks,
and some build fixes. Redhat 8.0 causes from breaks in the builds.

By: tommieb_bsc (Tom Brennan)

RE: Where is http://dcerpc.net ?72???

Date: 2002-11-11 15:00

Cool! I am working on a dissertation for my Bachelor of Science in Information Systems regarding Open Source vs Commercial
Client/Server Software Development Technologies. I have tried to build Jim Doyle's port found at
http://www.treepax.co.uk/FreeDCE which failed miserably due to missing bits of information in the instructions on that site so
resorted to using this version here at sourceforge, which was very peachy and good, BTW I ran this under Suse 7.3 and had no
problems....yet! The only thing that is missing is there is no means of setting up cells, security, authentication, nonetheless I have
set up a client/server application successfully using the portmapper. What are the plans with this version of FreeDCE?

Like is security etc going to be put into this version?

Thanks!
Tom.

By: wez (Wez Furlong)

RE: Where is http://dcerpc.net ?7???

Date: 2002-11-11 15:27

freedce does not include those security services, and to implement them is one hell of a large project. The OSF have recently
announced plans to release DCE/RPC 1.2 under an open source licence, and this is most likely your best bet for a full DCE/RPC
solution.

By: tommieb_bsc (Tom Brennan)

RE: Where is http://dcerpc.net 77?7

Date: 2002-11-12 05:41

Many thanks for your response Wez and Phillip, Ok! I guess I am on my own here re: OSF/DCE, I've downloaded OSF/DCE
1.2.2, and the license states it is for academic/research only. Other than that, the makefiles only cater for AIX, DEC and HP-
UX....Iam speculating would it compile if I change all references to it's own OSF/DCE dcethreads, and use this version.....food
for thought.......Ho hum....Would you know of anyone who has used FreeDCE either in a company or personally for client/server
development so I could find out what was their opinions on it were?

Thanks,
T.

This is another email I got from a guy called Bruce Foster, who answered my query at a newsgroup at google.com....and this was
where I learnt of Entegrity...

From : Bruce Foster <bef@northwestern.edu>

To: "Tom Brennan" <tomas_o_braonain @hotmail.com>

Subject : Re: FreeDCE

Date : Mon, 4 Nov 2002 17:30:10 -0600

I think that the FreeDCE and Doyle stuff is pretty old and stale. The OpenDCE site just emerged, and at least the email list
associated with it has generated some interest and traffic. If anything happens, it'll probably be from that. And some of the
original DCE developers are active on that email list. In the long run, if you're going to do anything with the DCE code, you'll
need to set up a security server and a CDS server. You can put them both on the same machine -- you can make your whole cell
run on one machine for that matter. Of course, there are features such as replication that take advantage of multiple machines in a
cell..

From what I recall, the development environment for DCE was quite unusual for its time, and it was not extended (modified) to
fit current norms. Furthermore, it was not developed on Linux at all, so there are no hooks that help with Linux.

Page: 105

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Doyle et al did a lot of work to get that environment to work somewhat on Linux. There was some chat about reconciling
different thread environments too. The DCE threads are quite old Posix threads, and they are incompatible with modern thread
libraries and calls. You'll find yourself working to prevent collisions. Commercial versions of the DCE services for Linux are
under development at Entegrity Solutions (http://www.entegrity.com). You might check them out -- they may be willing to loan

you their software for the duration of your project.
Bruce

> Hi Bruce,

>I have currently downloaded opendce 1.2.2,
>and obtained Jim Doyle's patches from a mirror
>site of boston uni (www.treepax.co.uk/FreeDCE),
>and have followed instructions, so far, it did
>not even get to the compile stage as the build
>scripts is broken.....I did however look at
>freedce from sourceforge.net/projects/freedce,
>and noticed something different about it....like
>I have tried to figure out how to set up a cell
>etc...as I am basing my dissertation on "open
>source vs commercial client/server s/w devel.
>tech" for Bachelor Science in Computers...this
>version from sourceforge simply compiles an rcpd
>- nothing more....no security set up etc...BTW I
>am running Suse Linux 7.2 w. 256M ram, 20G
>drive... here's hoping.....but so far it seems
>that the build scripts are a bit screwy....

>

>Thanks,

>T.

>>From: bef@northwestern.edu (Bruce Foster)
>>Reply-To: bef @northwestern.edu (Bruce Foster)
>>To: tomas_o_braonain @hotmail.com
>>Subject: Re: FreeDCE

>>Date: Thu, 31 Oct 2002 15:20:28 -0600 (CST)
>>

>>You should take a look at OpenDCE:

>>

>>http://www.opengroup.org/opendce

>>

>>Bruce

>>--

>>Northwestern University | Academic Technologies
>>| 1935 Sheridan Rd, 2East

>>Evanston IL 60208-2323 |
>>http://charlotte.at.northwestern.edu/bef/

Page: 106

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

|Appendix G - A query in obtaining a quotation for Entegrity.

From : "Tom Brennan" <93110376Q@lit.ie>
To : tomas_o_braonain@hotmail.com
Subject : Fwd: RE: Eval License Expiring
Date : Wed, 11 Dec 2002 12:43:34 +0000

77777 Original Message—-——---—

From: Ray Cavanagh <ray.cavanagh@entegrity.com>
To: "'Tom Brennan'" <93110376@lit.ie>

Date: Fri, 6 Dec 2002 10:06:20 -0500

Subject: RE: Eval License Expiring

Tom - The current list price for Linux clients is $110 per license.

Support is 20% of list. So, for 50 users, the product cost is $5,500 and support is

$1,100. This is client only, the customer would nee do have the server side

to set up a cell. There may be charges for media and shipping as well.

There have been, literally, millions of lines of code written since the version

that FreeDCE represents. Let me know if you have any other questions.

Regards,

Ray Cavanagh

Director, DCE Worldwide Sales and Business Development
Entegrity Solutions

ray.cavanagh@entegrity.com

603-882-1306 x 2208

77777 Original Message—--—----—

From: Denise Cloutier

Sent: Monday, November 11, 2002 10:44 AM
To: 'Tom Brennan'; Denise Cloutier

Cc: Ray Cavanagh

Subject: RE: Eval License Expiring

Hi Tom,

I forwarded your question to our Sales manger. The support team will help

with any technical problems you may have with you Evaluation.
Ray can you answer this customer regarding pricing.
Regards,

Denise P. Cloutier
Support Administrator
Phone 1-800-525-4343
Fax 1-603-882-6092

77777 Original Message—--—---—

From: Tom Brennan [mailto:93110376Q@1lit.ie]
Sent: Monday, November 11, 2002 5:33 AM
To: Denise Cloutier

Subject: RE: Eval License Expiring

Hi Denise,

I am wondering would this be possible, I do not know how to ask..to
give me a pricing on Entegrity for say, avg 50 users in a company XYZ
running SuSE Linux 7.3, and price of technical support per annum? It
would be handy to get this info so that I can do broad conclusions like,
so far after carrying out research, there are some advantages with
commercial client/server devel. technologies over the likes of FreeDCE
which I was experimenting with....as a matter of interest what is the
cost for a single user re: same?

Thanking you,
Tom.

77777 Original Message—-----—

From: Denise Cloutier <denise.cloutier@entegrity.com>
To: "'Tom Brennan'" <93110376@lit.ie>

Date: Tue, 5 Nov 2002 15:25:19 -0500

Subject: RE: Eval License Expiring

> That was suppose to be 'concerns'.. haha not concurs..
>

Page: 107

VV VYV VYVVYVYV

VVVVVVVVVVVVVVYVVYVVYV

VVVVVVVVVVVVVVVVVVYVYVYVYV

\2

VVVVVVVVVVVVVVVVVVVYVVYVYVYVYV

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Thanks,

Denise P. Cloutier
Support Administrator
Phone 1-800-525-4343
Fax 1-603-882-6092

77777 Original Message—-——---—

From: Denise Cloutier

Sent: Tuesday, November 05, 2002 3:25 PM

To: 'Tom Brennan'; Support Admins (suppadmin)
Subject: RE: Eval License Expiring

Surely,

Feel free to contact us with any concurs. We would be glad to help!

Cheers,

Denise P. Cloutier
Support Administrator
Phone 1-800-525-4343
Fax 1-603-882-6092

77777 Original Message—-----—

From: Tom Brennan [mailto:93110376Q@1lit.ie]
Sent: Tuesday, November 05, 2002 2:18 PM
To: Support Admins (suppadmin)

Subject: Re: Eval License Expiring

Hi Denise,

Many thanks for your email, but I have not tried it out yet as I am
carrying out research as part of my Dissertation for Bachelor Science
in Information Systems here in LIT, Limerick, Ireland, the dissertation is
aptly called "Open Source vs Commercial Client/Server Development
Technologies" and am currently researching into Jim Doyle's work on
porting OSF/DCE across to Linux, I am not getting much success out of
it so far.... I have yet to review any commercial DCE software....Entegrity
is one of them..... I am wondering would it be ok should I have any
questions about Entegrity, to contact you?

Thanking you,

Tom.

77777 Original Message—--—---—

From: "Support Admins (suppadmin)" <suppadmin@entegrity.com>
To

Date: Tue, 5 Nov 2002 10:07:24 -0500
Subject: Eval License Expiring

Hi,

My name is Denise Cloutier - I am the support administrator for
Entegrity Solutions.

Recently you download an evaluation version of our product.

I just wanted to send a friendly reminder that your license is
about to expire.

We would be happy to prepare a quote for you, please let us know
how many PC-DCE Runtime, CDS Server, Security Server and ADK licenses you
need for your project.

Please send request to DCESales@Entegrity.com

Regards,

Denise P. Cloutier
Support Administrator

VVVVVVVVVVVVVVVVYVYVYVYV

Page: 108

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Bibliography|

Bloomer, John, "Distributed Computing and the OSF/DCE", Dr. Dobb's Journal,
February 1995, pg-18.

Borland, Borland’s Entera 4.2 "Welcome Manual", available on internet -
http://info.borland.com/techpubs/entera/secure/entera/enterad42/welcome/enterawel-42. pdf

Cashin, John, "Client/Server Technology. The New Direction in Computer
Networking.", ISBN-0-56607-008-2.

Chu, Chih-Ping, "On the code development paradigm of RPC and Corba
applications",Computer Communications, 21, (1998), pg 267-278.

Cubranic, Davor, Open-Source Software Development, available on internet, last
accessed, 13/11/2002, htp://sern.ucalgary.ca/~maurer/ICSE99WS/Submissions/Cubranic/Cubranic.html
Davidson, John, "An Introduction to TCP/IP", Springer-Verlag, ISBN-0-387-93351-
X.

Di-Bona, Chris, and others, “Open Sources; Voices from the Open Source
Revolution”, 1st Edition January 1999, ISBN - 1-56592-582-3.

Doyle, Jim, port of OSF/DCE for Linux, available on internet,
http://www.treepax.co.uk/FreeDCE

Drummond, Richard, Linux Format, The, Linux in Business, March 2001, available
on internet, last accessed, 06/01/2003, htp://www.linuxformat.co.uk/archives/LXF12.business.pdf

Entegrity, Linux DCE Client, available on internet
http://www.entegrity.com/products/dce/dce.shtml

FreeDCE, available on internet, hup:/sourceforge.net/projects/FreeDCE

Free Software Foundation, available on internet, hup://www.fsf.org

GPL, GNU, Software licence, available on internet, hup:/www.fsf.org/licenses/gpl.txt
Kozinski, Maciej, "Open Source - Ready for Business", available on internet, last
accessed 12/11/2002, htp:/mewsforge.com/article.pl?sid=02/11/07/0246213

Luce, Thom, "Computer Hardware, System Software, and Architecture", ISBN
0075577720.

Matthew, Neil/Stones, Richard, "Beginning Linux Programming", Wrox, Press,
ISBN-1-874416-68-0.

Mockus, Audris, Fielding, Roy T., Herbsleb, James D., Open Source, a study,
available on internet, last accessed 20/10/2002,

http://www.research.avayalabs.com/techreport/ALR-2002-003-paper.pdf,
http://slashdot.org/articles/02/10/08/1553244.shtml ?tid=99

OSF/DCE, available on internet, hup://www.opengroup.org/dce
OSF, The Open GI'Ollp PDFs, hup://support.entegrity.com/private/doclib/indexDCE. shtml#osf122
PSeries 610 Model 6E1, Entry level RS/6000, available on internet, last accessed

13/11/2002, htp://www-
132.ibm.com/content/home/store_IBMPublic USA/en_US/eServer/pSeries/entry/6 106E1. html

Ricciuti, Mike, "DCE: Yesterday's Technology for Tomorrow's Apps?", Datamation,
July 1, 1994, pg 52-54.

Stallman, Richard, available on internet, hp://www.stallman.org/#serious &
http://www.softpanaroma.org/People/Stallman

Umar, Amjad, "Distributed Computing and Client-Server Systems", Prentice-Hall,
ISBN-013-036252-2.

Page: 109

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Index|

(References)

(Bloomer, 1995) - 14

(Borland, 2002) - 24

(Cashin, John, Pg 247, 2002) - 39
(Chu, 1997, Pg. 268) - 48

(Chu, 1997, Pg. 278) - 48
(Di-Bona, 1999, Cubranic, 2002) - 33
(Doyle, 2002) - 40

(Drummond, 2002) - 36
(Entegrity, 2002) - 28

(GPL, 1991) - 31

(Kozinski, 2002) - 34

(Luce, 1989) - 6

(Mockus, 2002) - 33

(OSF, 2002) - 39

(OSF/DCE, 2002) - 28

(Ricciuti, 1994, Pg 54) - 39
(Stallman, 2002) - 34

(Umar, 1993, pg 247) - 11

A

ActiveX - 3

AIX4.3-19

American Healthcare - 16

Andrew Tanenbaum - 36

Apache - 35

API (Applications Programming Interface) - 26
Application Interface - 8

Architecture - 51

ASCII flat file - 26

B

Berkeley standard - 13
binary - 7

black box testing - 21
Borland's Entera - 20
broker - 26

buffer overflows - 1

C

cell - 26

conclusions - 3

configure - 44

CORBA -2

CSMA/CD - Carrier Sense Multiple Access with Collision Detection - 6

D

DB2 Universal Database - 19
dceidl - 58

Destination IP Address - 11
distribution - 37

Page: 110

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Drummond 2001 - 2

E

Entegrity - 28
Ethernet Network - 6

F

fixes/patches - 1

Free Software Foundation (FSF, 2002) - 31
FreeBSD - 33

FreeDCE - 38

FreeDCE (2002) - 2

G

Gary Nutt - 39

gee - 34

gdb - 34

GIMP - 35

GNU Emacs - 34

GNU General Public Licence - 31
GNU/Linux - 37

H

HMO Plan - 17

I

IDL - 21

infinite loop - 21

Inprise - 22

Interbase - 25

Interface Definition Language - 46

IP (Internet Protocol) - 7

IP version 6 - §

IPv4 -5

IT Management - 51

ITS (Incompatible Time-Sharing System) - 34

J

Java/Javabeans/HTML - 22
Jim Doyle - 40

K

Kozinski 2002 - 2

L

LAN (Local Area Network) - 5

Page: 111

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

Linus Torvalds - 36
Linux - 24, 36

M

make - 44

make install- 44

makefiles - 58

make-files - 23

marshalling/unmarshalling - 11

Massachusetts Institute of Technology (M.L.T) - 34
MIN Plans - 17

Minix - 36

MQSeries - 2

N

NetBios - 7

Network - 17
Network Interface - 8
newsgroups - 59
NIC- 6

0

ODBC - 25

Open Group - 24

Open Office - 35

Open Software Foundation - OSF - 12
Open Systems Interconnection - 7
Oracle - 25

OSF/DCE - 38

P

packet - §

PCPs - 17

Pipes - 13

Plan - 17
Platform - 51

port - 21

POSIX - 37
Powerbuilder - 20
PowerBuilder - 26
protocols - 7

R

R.P.F - Remote Programming Facility - 16
RedHat 7.2 - 28

Richard Stallman - 34

RPC - 14

rpcdebug - 21

RTFM - 58

Page: 112

Open Source vs. Commercial DCE Client/Server Software Development Technologies.

S

sendmail - 1

Sockets - 13

Source IP Address - 11
SQL - 25

Support - 51

SuSE Linux 7.3 - 28

T

T1 link - 19

TCO - 50

TCP/IP - 7

Token Ring Network - 6

U

UDP -7
uncertainty - 1
Unix - 3
uuid- 57

| 4

VB - 26

w

WAN (Wide Area Network) - 5
WebSphere - 2

white box testing - 21

Winsock - 13

Page: 113

