
My Paging Notes

<Monsieur Ashish Shukla alias Wah Java !!>

February 22, 2006

Abstract

This article explains paging feature available in IA-32 processors since
80386 till the latest Pentium 4 processors. And will cover each and every
aspect of paging (both at OS and processor level). This article was based
on my research on paging. Most of the stuff covered in this document is
general, i.e. also applies to other CPU architectures. Sorry for my english.
:-(

1 Intro

Paging is one of the great features which are provided by IA-32 processors.
Generally, paging is used to emulate virtual memory. In paging, the address
space is divided into pages, and each process accesses memory through virtual
addresses, which are translated into physical addresses by processor with the
help of page directories, and page tables provided by the Operating System.

2 Support in IA32

The size of page in IA32 architecture is 4K, 4M and 2M. The 4M pages are
available only when PSE flag in register CR4 is set. The 2M pages are available
only when PAE flag in register CR4 is set1 is used. Each page begins at a page
aligned address. An address is page aligned or aligned to page boundary if it is
divisible by the page size, i.e.

iif PageAddress MOD PageSize = 0 ⇒ PageAddress is page aligned.

e.g.
3A4000h is aligned to 4K page boundary.
100000h is not aligned to 4M page boundary, but aligned to 4K page boundary.

Some formulae (usually implemented as macros) useful for aligning addresses to
page boundary:

1. Truncation. This formula aligns address to the previous page boundary.

AlignedAddress = (Address AND (NOT (PageSize - 1)))

1The 36-bit address is not discussed in this article

1

mailto:wahjava@gmail.com


My Paging Notes

Figure 1: How page translation occurs ?

2. Round Off. This formula aligns address to the next page boundary.

AlignedAddress = ((Address + PageSize - 1) AND (NOT (PageSize - 1)))

Page Directory, and Page Tables are 4096 bytes wide buffers consisting of 1024
entries, each of width 4 bytes. The CR3 register points to the page directory.
It is also known as Page Directory Base Register (PDBR). Each PDE (page
directory entry) points to physical address of a page table or a 4M wide page
2. Each PTE (page table entry) points to a 4K page. The page directory and
page tables are aligned on 4K page boundary.
Higher 10 bits of the address are used as an index in page directory to lookup a
page table. The bits 12-21 are used as an index into that page table to lookup
the physical address of the page. If PDE points to a 4M page, then no page
table lookup is needed. This is shown in Figure 1 on Page 2.
These PDE s and PTE s have some attributes which controls caching, access
rights (read/write), user/supervisor, presence of page etc. The detailed struc-
tures of PDE and PTE are available in [IA32SDM3].
In this article, we need to get aware of two attributes of PDE and PTE, which
are access right bit, user/supervisor bit. The access right bit can be 0 for read-
only, 1 for read-write access. The user/supervisor bit can be 0 for supervisor
and 1 for user. The pages which are marked supervisor can not be accessed
by the user in any way. The pages which are marked user and also marked
readonly, will be read-only for user, and any attempt to write on them by user,
will generate a #PF3. For supervisor, all pages are readable and writable.
There is a WP flag in register CR0 which controls supervisor mode sensitivity
to user mode pages. If WP flag is clear then, supervisor can read and write all

2if PSE bit of CR4 is set
3Page Fault

2



My Paging Notes

pages. But when WP flag is set, then supervisor is not allowed to write on user
mode readonly pages. This feature is used in COW 4 protection, explained
later.

3 How is it implemented in OS ?

You might have heard that in Windows and Linux each process runs in its own
separate virtual address space. This is implemented with the help of paging.
Each task has its own Page Directory and its own set of page tables. The page
tables don’t contain pages belonging to other task. Although other tasks are
also loaded in the memory. But they’re not visible in virtual address space.
So, in this way all tasks executes loads at same virtual address space without
overwriting each other’s memory. When context-switching occurs, the page
directory of next task is restored, and now pages belong to that task are visible.
So, in this way, each task run in its own separate virtual address space. If any
task wants access to other task pages, it can request it from OS via syscalls.
Now, it is upto OS to grant or deny access. If it grants access, then it maps the
requested pages into the requesting task ’s virtual address space.

4 COW

COW stands for Copy-on-write. Imagine you’re running multiple instances of
single application simultaneously. So, this means for each new instance, OS
has to reload the application executable in memory, and also needs to allocate
memory for all its dependencies. And since, application executable is same for
each instance, i.e. its code is same for each instance. So loading the same code,
multiple times will lead to the wastage of memory, and time (the time spent
in reading the executable from storage). So, in order to avoid this wastage of
memory and time, COW is used.
In COW, the sharable (usually code) pages are shared (i.e. mapped readonly
into their page directories) among the multiple tasks. So when first instance
of application is loaded, the executable is loaded in the memory from storage.
And when next instance of same application is loaded, then instead of reloading
executable from storage, OS maps the shareable physical address space of the
executable into the virtual address space (i.e. Page maps) of the new process.
So, in this way, for each new task, only new mappings have to be set up. If
any process attempts to write into the shared page, the processor generates a
#PF exception. The OS handles this exception by making a private copy of
that shared page, unmapping shared page, and then remapping private copy
of that page into the task’s page maps at the same location. The new private
copy is mapped with read/write access. So any modifications to page by one
task won’t alter other task ’s page. Usually, OS loads executables with code
pages marked readonly. So, in order to write into the code pages, task has to
explicitly request OS to grant COW access to the pages via syscalls. When
OS grants COW access, it doesn’t alter pagemaps (i.e. it doesn’t marks page
read/write in pagemaps instead it marks read/write in its internally maintained
datastructures). So, when #PF occurs it checks the fault address, that whether

4Copy-on-write

3



My Paging Notes

that address is marked read/write in its own internal data structures or not. If
it is not marked read/write, it is an Access Violation 5 error, but if it is marked
read/write then clearly it is the case of COW. OS automatically marks pages
used by DLLs, Shared Objects, Shared libraries for COW protection but they’re
still readonly for processor.
Note: COW protection is not provided by processor, instead it is emulated
by OS. So, and also it is possible to implement paging in OS without adding
support for COW. But, having COW is an advantage.

5 What if supervisor modifies COW pages ?

As it is mentioned previously that supervisor code can modify any page without
caring about the access, this means supervisor code won’t cause #PF and hence
COW won’t happen at all. To change this behavior, WP flag in register CR0 needs
to be set, which prevents supervisor from writing on to usermode pages marked
readonly, and hence causing #PF, which then causes COW to happen.

6 TLB

TLB stands for Translation Lookaside Buffer. For address translation in paging
mode, pagemap entries are needed. As, we know that pagemaps are stored in
RAM, so access time is more. To overcome this problem, TLBs are invented.
TLBs are the on-chips caches used by processor to store recently accessed PDE s
and PTE s. When any pagemap entry is accessed for first time, it is cached in
the TLB, and after that any subsequent accesses for that pagemap entry will be
using TLB. Any pagemap entry not present in TLB will be fetched into TLB.
If any pagemap entry is modified in memory, which was also present in TLB,
should be invalidated by OS, otherwise the memory accesses for that entry are
still using old physical address, and attributes. There are two bits in pagemap
entries which are useful in TLB invalidation logic for OS.

1. Accessed Bit. Processor sets this bit in pagemap entry, whenever it
accesses that pagemap entry.

2. Dirty Bit. Processor sets this bit in PTE, when PTE is used for store
operations. This bit is present in PTE.

These bits are sticky, means if they’re once set, they’re not implicitly cleared
by the processor. The accessed bit can be used to check whether the pagemap
entry has been used by the processor, which means that the entry might be in
TLB, so it is time to invalidate the TLB entry. The dirty bit is useful for paging
in and paging out stuff6.

7 Invalidating TLB

TLBs can be invalidated in following ways:
5SIGSEGV signal in Linux
6Might be useful in TLB stuff. As I’ll know, I’ll update this document

4



My Paging Notes

1. By reloading page directory whole TLBs can be invalidated. The page
directory can be loaded by a following MOV instruction:
MOV CR3, EAX
or at task switch7 when CR3 register is reloaded. Also, see section 8 for
Global Pages.

2. Specific TLB entries can be invalidated using INVLPG instruction as shown
below:
INVLPG [EAX]
In the above example, the TLB entry for the page containing the memory
address specified in EAX register is flushed8.

3. Any changes to PG, PE flags in CR0 register will flush all9 TLBs.

Note: The TLBs can be invalidated in privilege level 0 only.

8 Global Pages

Suppose we want some part of memory to be shared (not really shared but
mapped) among all programs at common addresses. To share those pages, we
mapped them in the pagemaps of all processes. But each time context switch
happens (or page directory is reloaded), all page map entries flushed automat-
ically from TLBs. To avoid this, the concept of Global Pages is introduced in
IA-32 processors. When PGE flag in CR4 is set, global pages are enabled . The
pagemap entries for global pages are explicitly hinted to avoid their automatic
flushing from TLBs. This is achieved by a bit in pagemap entries which speci-
fies whether the page corresponding to pagemap entry is a global page or not.
The cached TLB entries, corresponding to global pages are prevented from au-
tomatically invalidating on task switch and reloading of CR3 register. To flush
TLB entries for specific global page use INVLPG instruction. To flush all pages
(including global pages) clear the PGE flag in CR4 register and then reload CR3
register.

9 Locking Pages

Page locking is a feature provided by OS, not processor. In page locking memory
pages are locked in memory. The pages are not swapped out (or paged out) to
the disk. Page locking is done for several reasons like:

Speed up. Page faults are prevented since the page is always present in
memory, hence no page faults. Since, there are no page fault, all process’s
memory is present in RAM, therefore application speeds up.

Security. For some security reasons, pages are locked. e.g. You’ve stored
password (or confidential information) in RAM, then if that page is paged
out, to the page file (or swap file), then your password and confidential
information also goes to disk which means anybody can see your password.

7A context switching mechanism provided by the processor
8or invalidated
9Global entries too

5



My Paging Notes

So, in order to prevent this the page containing your password should be
locked in memory.

10 Mapping to memory

Mapping to the memory is the fastest way to access a file (or devices). In
memory mapping, a file is mapped into memory. i.e. In the internal data
structures of the OS kernel, that portion of memory is marked as “mapped to a
file”, and marked as not-present in PTEs. When initial memory access is made,
a page fault occurs, and then OS kernel loads the of required page of file in the
memory and marks its corresponding PTE present. So, no explicit read from
file occurs. And since, memory accesses are faster than disk accesses.

11 Page Execution

Page execution controls whether page is executable or not or whether code
can be executed from those pages or not. On IA-32, page execution is not
supported10. In some OSs, esp. those which run on different processor archi-
tectures, expose their APIs in accordance with hardware abstraction layer. On
some processor architectures, page execution is supported, so in order to provide
a similar interface across all architures, these OSs support execution bit, which
is not effective on IA32 architecture.
Some OSs emulate the page execution by some other means, e.g. code segment
resizing11. In code segment resizing, the limits of the code segment descriptor
is changed. e.g. To disable execution on code segment’s last 2 pages, invoke
the OSs page protection routine(s) with execution bit clear. The OS will then
decrease the upper limit of the code segment by 2 pages. So if program tries
to execute or tries to read via code segment selector, from those last 2 pages,
the segment limit check fails, and a exception is raised. But what if we wanted
to disable execution of some pages which are located in the middle of the code
segment, then segment resizing won’t work because there are only two limits12

of the segment descriptor. Similarly making the last page executable, means
making your whole address space executable.
There are some workarounds for this page based execution out of which one
i.e. code segment resizing is mentioned above. For those, who are interested in
researching on this feature, there is a project named PAX13, whose objective is
to research various defense mechanism againsthe exploitation of software bugs
that give an attacker arbitrary read/write access to the attacked task’s address
space going on.

12 NXE Bit

The NXE bit (also known as Execute Disable bit) is available in recent IA-32
processors. The execute disable bit is available when PAE mode is active (i.e.

10On some recent processors, page execution bit is available, see section 12
11Linux does this
12Upper limit or lower limit
13See, http://pax.grsecurity.net/

6

http://pax.grsecurity.net/


My Paging Notes

00898000-008ad000 r-xp 00000000 03:09 3260429 /lib/ld-2.3.3.so
008ad000-008ae000 r--p 00014000 03:09 3260429 /lib/ld-2.3.3.so
008ae000-008af000 rw-p 00015000 03:09 3260429 /lib/ld-2.3.3.so
008b5000-009d6000 r-xp 00000000 03:09 2932849 /lib/tls/libc-2.3.3.so
009d6000-009d8000 r--p 00120000 03:09 2932849 /lib/tls/libc-2.3.3.so
009d8000-009da000 rw-p 00122000 03:09 2932849 /lib/tls/libc-2.3.3.so
009da000-009dc000 rw-p 009da000 00:00 0
08048000-0804c000 r-xp 00000000 03:09 2031672 /bin/cat
0804c000-0804d000 rw-p 00003000 03:09 2031672 /bin/cat
08d5c000-08d7d000 rw-p 08d5c000 00:00 0
f6dda000-f6fda000 r--p 00000000 03:09 479119 /usr/lib/locale/locale-archive
f6fda000-f6fdb000 rw-p f6fda000 00:00 0
fee3a000-ff000000 rw-p fee3a000 00:00 0
ffffe000-fffff000 ---p 00000000 00:00 0

Figure 2: A dump of /proc/self/map for /bin/cat

PAE bit in CR4 register)

13 OS API Routines

The OS exposes some page manipulation routines through syscall interface. In
some OS, the syscall14 interface is publically exposed, whereas in some OS it is
private. e.g. Unix etc. OSs exposes syscall interface, whereas Windows don’t
exposes. In Windows, you can access kernel routines indirectly via system DLLs
(e.g. ntdll.dll). The routines in these system DLLs make syscalls to the kernel.
In this section, I’ll briefly document library routines15 for page manipulation on
Windows and Unix16. For detailed documentation refer to [PSDK] for Windows
routines and [UNIXMAN] for Unix routines.

1. Page Protection. Page protection routines are used to change pro-
tection of pages. VirtualProtect() and mprotect() routines are used
for page protection in Windows and Unix respectively. Page protection
can be queried using VirtualQuery() routine in Windows. In Unix,
the /proc filesystem is used for querying page protection. It contains
a file named maps in process directories. The maps for current process
is listed in /proc/curproc/maps (in FreeBSD) or /proc/self/maps (in
GNU/Linux) directory depending on the Unix you’re running. A dump of
/proc/self/map is shown in Figure 2. First column contains address
range. Second column contains type of protection (r=read, w=write,
x=execute, p=copy-on-write, s=shared). Third column contains offset
into the file, i.e. from where the file is mapped. Fourth column contains
the device. Fifth column contains the i-node. The last column contains
the path of the file mapped.

14System call i.e. call to kernel running in privileged mode
15For syscalls interface, check developer documentation of the OS
16See [IEEE1003.1]

7



My Paging Notes

2. Page Locking/Unlocking. Pages are locked using VirtualLock() and
mlock() routines in Windows and Unix respectively. Pages are unlocked
using VirtualUnlock() and munlock() routines in Windows and Unix
respectively. There are mlockall() and munlockall() routines in Unix
which are used to lock and unlock all pages (code, data, stack etc.) mapped
in the address space of the process, respectively. The memory locks do not
stack, in other words locking multiple times can be unlocked by a single
call to the unlock routine.

3. Memory Mapping/Unmapping. Files can be mapped to memory us-
ing mmap() and MapViewOfFileEx() routines in Unix and Windows re-
spectively. Their parameters are file handle or file descriptor, offset in the
file, length of mapping, page protection flags, type of mapping to create,
base address where file has to be mapped (used as hint). In Windows,
mapping stuff is slightly different from Unix, CreateFileMapping() or
OpenFileMapping() are used to initialize a mapping object. The map-
ping opject is then passed to MapViewOfFileEx() routine. To unmap files
from memory, munmap() and UnmapViewOfFile() routines are used, in
Unix and Windows respectively.

14 Units used

K stands for Kilobyte. 1K = 1024 bytes
M stands for Megabyte. 1M = 1024K = 1048576 bytes

15 Operators used

MOD - Remainder Function
AND - Boolean AND
NOT - Boolean NOT
⇒ - Implies that

16 Terminology

Context Switch. Context switching refers to the switching from one pro-
cess to another process. In Multitasking systems, context switch occurs
frequently.

User Code. Code running in privilege 3 usually user apps.

Supervisor Code. Code running in privilege 0, 1 and 2 usually OS kernel,
drivers.

#PF. Page Fault, Interrupt 14.

PE Flag. Protection Enable, Bit 0 of CR0. When set switches processor into
protected mode.

8



My Paging Notes

PG Flag. Paging Enable, Bit 31 of CR0. When set paging is enabled.

WP Flag. Write Protect, Bit 16 of CR0. When set enables supervisor write
protection over usermode pages.

PSE flag. Page Size Extension, Bit 4 of CR4. When set enables 4M pages.

PAE flag. Page Address Extension, Bit 5 of CR4. When set enables 2M pages
and 36-bit addressing.

CR0, CR1, CR2, CR3, CR4. Control Registers in IA32.

Pagemaps. A term used for describing page directories and page tables.

COW. Copy-on-write protection. See, section 4, page no. 3.

TLB. Translation Lookaside Buffer. See, section 6, page no. 4.

OS. Operating System e.g. Windows, Linux, FreeBSD, MS-DOS etc. In
this document OS refers to protected mode OS such as Windows, Linux,
FreeBSD etc.

17 Dedications

Dedicated to Gautam Renjen a.k.a. AIDS

References

[IA32SDM3] IA-32 Intel Architecture Software Developer’s Manual, Vol-
ume 3:System Programming Guide (Order No. 253668).

[IEEE1003.1] The Open Group Base Specifications Issue 6, IEEE Std 1003.1-
2001

[PSDK] Platform SDK Documentation, Available from
http://msdn.microsoft.com/msdownload/platformsdk/sdkupdate/

[UNIXMAN] Unix man pages

[GLIBCINF] GNU C Library Reference Manual, Edition 0.10, for version 2.3.x
of the GNU C library

9

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

	Intro
	Support in IA32
	How is it implemented in OS ?
	COW
	What if supervisor modifies COW pages ?
	TLB
	Invalidating TLB
	Global Pages
	Locking Pages
	Mapping to memory
	Page Execution
	NXE Bit
	OS API Routines
	Units used
	Operators used
	Terminology
	Dedications

