Module 1: History of Computing and Computing Ethics

Overview

This module focuses on two primary areas, (1) the history of computing and (2) computing ethics. The history of computing contains important milestones in the evolution of science itself, and this history is both fascinating and important. We trace it from three separate but linked perspectives—theory, hardware, and software. Read the section on history carefully but only to gain an appreciation of the topics. You need not remember the details. The online commentary gives a much more detailed history of computing than does the text.

The purpose of the material on ethics is to help you become aware of ethical issues that arise in computing. The focus is not on ethics in general (issues such as conflict of interest certainly also apply to computing but are not discussed here), but on issues of ethics particular to computing.

The issues covered in this module address three of UMUC's cross-curricular initiatives— historical perspective, effective writing, and civic responsibility.

Objectives

After reading this module, you should be able to:

· list and describe the important steps in the evolution of computing

· discuss ethical issues in computing

· describe how to conduct yourself ethically in your educational and professional career

· identify some of the major branches in computing

Commentary

Topics

I. History of Computing

A. Links with Mathematics and Astronomy

B. Evolution of Computing Theory

C. Evolution of Computing Hardware

D. Evolution of Computing Software

II. Different Branches in Computing

III. Civic Responsibilities of Computer Professionals

A. Access Issues

B. Privacy Issues

C. Computer Crime and Security

D. Viruses and Related Pestilences

E. Intellectual Property Rights

F. Malfunctioning Hardware and Software

G. Computers in the Workplace

H. Commerce Issues

I. Artificial Intelligence-Related Issues

I. History of Computing

Computing has actually existed for a long time, and it is important that students of the profession be able to trace its evolution, from its infancy (when it was closely connected with mathematics and astronomy) to its present stage of development. Computing is a truly international discipline. Throughout its history, scholars and practitioners from many different countries have made fundamental contributions, as we will show.

We will first examine briefly the links between computing and the venerable fields of mathematics and astronomy. Then, we will trace the evolution of three major areas of computing—theory, hardware, and software. Progress in each of these areas has not occurred in isolation—in fact, the evolution of computing in these three areas is highly intertwined.

A. Links with Mathematics and Astronomy

The Egyptian geometer, Euclid (c. 325–625 B.C.E.), author of The Elements, described one of the very first computational procedures. This procedure, which determines the greatest common divisor of two numbers, is still used by computer programmers today! We will describe Euclid's computational procedure in module 3.

Archimedes (c. 287–212 B.C.E.) described computational procedures for computing areas, surface areas, and volumes. Mathematicians and astronomers in India, such as Aryabhata (476–550 C.E.), Brahmagupta (598–670), and Bhaskaracharya (1114–1185), also described how to perform various computations. For example, they presented methods of multiplying two numbers, deriving square roots and cube roots, solving certain equations, evaluating the values of trigonometric functions, and predicting planetary positions, occurrences of eclipses, conjunctions of planets, and so on.

Many standard mathematical topics, for example, Newton's method for determining the roots of equations, the binomial theorem, matrix multiplication, and the use of series summations to compute functions, may be understood as actually being computational algorithms. In fact, the entire field of numerical analysis has a decidedly computational flavor!

B. Evolution of Computing Theory

Symbolic Logic and Boolean Algebra

One starting point for discussing the evolution of the theory of computing is the field of symbolic logic. Early work in this field was done by the German mathematician Gottfried Leibniz (1646–1715) and by the English mathematician Augustus de Morgan (1806–1871). Two works published by George Boole (1815–1864), an English mathematician—The Mathematical Analysis of Logic (1847) and An Investigation into the Laws of Thought (1854)—are of seminal importance.

In these works, Boole developed a complete algebra for manipulating propositions that have a value of true or false. This algebra is called Boolean algebra in his honor. We will see later that the world of Boolean algebra is intimately connected to the electrical circuits that form the fundamental components of computers.

Unsolved Problems

In 1900, in an address to the International Congress of Mathematicians in Paris, the German mathematician David Hilbert (1862–1943) challenged the mathematicians of the day to solve 23 major problems that he had identified as being important and hitherto unsolved. The tenth problem ("devise a process"), given below, has particular relevance to computing.

10. Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients, devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers. (Hilbert quoted in Joyce 1997)

In 1931, the German logician Kurt Gödel (1906–1978) published his famous "Incompleteness Theorem," which showed that a formal system that is simple enough to model integer arithmetic and that is not self-contradictory must necessarily contain propositions whose truth or falsity cannot be decided within the system. His result showed that Hilbert's tenth problem is unsolvable, and was one of the first important results to demonstrate that not everything is computable.

Turing Machines

The English mathematician Alan Turing (1912–1964) later also proved that not everything is computable. In 1936, he defined the notion of "algorithm" (discussed in module 2) using an abstract mathematical model (now called a "universal Turing machine") in his paper titled On Computable Numbers, with an Application to the Entscheidungsproblem (the problem of undecidability). In his paper, Turing proved that given a finite number of steps, the universal Turing machine cannot determine whether or not a given Turing machine will halt after a finite number of steps. In other words, the "halting problem" is undecidable. This result is the counterpart of Gödel's similar result in the world of logic.

Turing was not merely a theoretical mathematician. During World War II, he worked with British Intelligence to develop machines that could decipher coded German messages. After the war, he worked on the practical construction of a universal Turing machine.

Turing is considered one of the founding fathers of computing theory and in his honor, the Association of Computing Machinery (ACM) gives distinguished computer scientists the Turing Award. You may be interested in seeing a list of the recipients of the Turing award. Their acceptance speeches make for entertaining and educational reading. Unfortunately, they are not yet all available online, though you may still be able to read Ken Thompson's speech.

NP-Complete Problems

More recent developments in the theory of computing have led to the identification of problems that seem to have no easy, i.e., efficient, solutions—the class of "NP-Complete" problems. The Clay Mathematics Institute has announced a $1 million prize to be awarded to the first person to discover an efficient solution to such problems. If you want to accept the challenge and wish to learn more about the problem, go to the Clay Mathematics Institute site regarding the millennium prize problems and click on "P versus NP."

C. Evolution of Computing Hardware

For a complete discussion of the evolution of computing devices, you may wish to read The Universal History of Computing, by Georges Ifrah (John Wiley and Sons, 2001), on which the following discussion is based. Paul Ceruzzi gives a detailed history of the development of digital computers only in A History of Modern Computing (The MIT Press, 1998).

Since the earliest times, human beings have used various devices to help with computing. The counting board and the abacus were two of the earliest computing devices. A sand abacus was known by the second century, and the more familiar form of the abacus was in use by the thirteenth century. Are you interesting in seeing how to use an abacus?

John Napier (1550–1617), the Scottish mathematician who introduced logarithms, devised an early device consisting of 10 wooden rods, whimsically called Napier's Bones, to assist in performing multiplication.

Most of the early devices were designed to help perform calculations involving the four fundamental arithmetic operations—addition, subtraction, multiplication, and division—and could more properly be called calculators. We will distinguish between calculators and more general devices that can solve fairly complex, abstract problems. The latter will be called computers, and they come in two varieties—(1) analog computers and (2) digital computers.

The word analog means something that is similar to. Analog computers use a physical system to model the actual problem being solved. Various parameters of the physical system such as lengths, rotations, voltages, and so on are used to model the abstract parameters of the problem.

Analog computers suffer from several constraints. They are generally imprecise, cannot store information, have limited working ranges and speeds, and are not truly general devices (each analog computer models a specific problem). However, they do yield numerical solutions to problems that do not have closed-form answers.

The key to using digital devices is the fact that numbers can be represented in a binary system, a fact Leibniz discovered in 1703.

There is an obvious connection with the algebra of logic developed by Boole, where the variables have the values true and false. What was missing was some way of implementing the Boolean algebra using circuits, and this step was realized in 1937 by the work of Claude E. Shannon, then a student at MIT, in his thesis "A Symbolic Analysis of Relays and Switching Circuits."

We will now trace the history of each of these three types of computing devices—(1) calculators, (2) analog computers, and (3) digital computers.

Calculators

Mechanical Calculators

The slide rule was invented in 1620 by the Englishman Edmund Gunter, and the modern form was developed in 1750 by Charles Leadbetter. It remained popular till about 1970, when electronic calculators took over.

In 1623, the German mathematician and astronomer, Wilhelm Schickard (1592–1635) invented a mechanical calculator. Addition and subtraction were completely mechanical, but multiplication and division required human intervention. Later, in 1645, when only 23 years old, the French scientist Blaise Pascal (1623–1662) constructed a mechanical adding machine, the Pascaline, which featured automatic carry manipulation in additions. Perhaps the most ambitious of the early efforts was by the German mathematician Gottfried von Leibniz (1646–1716). In 1694, he constructed a machine (never commercialized) that could perform all four arithmetic operations mechanically.

One problem with the early calculators was that there was no easy way to enter numbers. In 1866–1867, the American printers, Christopher Sholes, Carlos Glidden, and Samuel Soule invented the "Literary Piano," which the Remington Company modified in 1873 to become the first typewriter. Between 1885 and 1893, the American engineer William Burroughs created the "Adding and Listing Machine," one of the earliest practical and robust calculators that had keys for input and a printing device for output.

Multiplication and division are significantly harder to perform than addition and subtraction. Ramon Verea, a Hispanic engineer living in New York, constructed the first commercial machine capable of direct multiplication in 1878. By 1908, Alexander Rechnitzer and Edwin Jahnz of Switzerland produced a machine that could perform division.

In 1910, the American engineer Jay R. Monroe integrated and automated all four arithmetic operations into the first basic calculator. The first portable mechanical calculator (the "Curta") was invented in 1946 by Curt Herzstark of Austria, and updated models were in use as late as 1972.

Electronic Calculators

All of the calculators just mentioned operated mechanically. The pioneering work done in 1821 by the English scientist, Michael Faraday, was responsible for the growth of electricity. By 1910, inventors had recognized the disadvantages of mechanical calculators and had turned to creating electrical versions of the existing devices. In 1937, Alan Turing described the construction of an electromechanical binary multiplier. And in the following year, George Stibitz, an engineer at Bell Telephone Laboratories, constructed a binary addition device using electromechanical telephone relays.

The next step in the evolution of calculators was the incorporation of electronic components. In 1904, the English physicist John Fleming had devised the first vacuum tube device (a diode), and by 1907, the American engineer Lee de Forest had built the triode vacuum tube. On this Web site featuring old devices, scroll down to see some triode vacuum tubes.

English scientists W. H. Eccles and F. W. Jordan, in 1919, devised the electronic flip-flop circuit, a fundamental electronic component using vacuum tubes. Using flip-flops, C. E. Wynn-Williams (England) created a binary electronic counting device in 1932. The first four-function calculators using vacuum tubes were built in the 1940s.

Vacuum tubes were large and fragile and needed bulky power supplies. A key revolution was the discovery of the discrete semiconductor transistor in December 1947 by John Bardeen, William Shockley, and Walter Brattain at Bell Telephone Labs. They were jointly awarded the 1956 Nobel prize in physics for this discovery. The first calculator to use transistors and printed circuit boards was "Anita," built by the British firm Bell Punch & Co.

American engineer Jack Kilby (awarded the Nobel prize for physics in 2000), who was working for Texas Instruments (TI), invented integrated circuits (ICs) in 1958. The replacement of discrete components by wafers that contained miniaturized circuits led to dramatic improvements in the size, reliability, and efficiency of all electronic components.

Calculators could now be made to fit in a pocket. The prototype of a hand-held calculator ("Cal-Tech") was made in 1967 by TI, and by 1972, TI's 2500 "Datamath" was available commercially. The first programmable electronic pocket calculator was the HP-65, built by Hewlett-Packard in 1974. Modern calculators are versatile tools, capable of a multitude of tasks.

Analog Computers

Some of the earliest analog computers included astrolabes (to determine the positions of planets), pedometers (to count steps and measure lengths), and planimeters, invented by Jacob Amsler in 1854 to measure areas.

The English mathematician Charles Babbage (1791–1871) was one of the true fathers of the modern computer. In 1819, he proposed the design of a difference engine, based on a mathematical method known as finite differences. Unfortunately, his design was not completely realized in practice because the government ended the funding!

Babbage's 1836 design for the Analytical Engine, one of the first true computers, was much more ambitious in scope than his earlier design. It could store and manipulate one thousand 50-digit numbers and could automatically carry out sequences of linked operations.

Ada Byron Lovelace (daughter of Lord Byron, the poet) made significant contributions to the programming of the Analytical Engine. She is generally considered one of the first "programmers," and the programming language, Ada, is named in her honor.

If you wish to read about the design of the Analytical Engine, click on "Table of Contents" and then select "Sketch of the Analytical Engine." You may also wish to explore the other interesting items on this Web site.

However Babbage's Analytic Engine was based on mechanical devices such as gears and wheels. Indeed, the main unit that controlled the engine was a modification of the Jacquard loom used to produce patterns in fabrics. Babbage's untimely death prevented him from realizing his brilliant conceptual design. It was left to the Spanish engineer Leonardo Torres y Quevedo (1852–1936) to show that it was possible to realize Babbage's Analytic Engine using electromechanical means. An elementary model that he built was exhibited in Paris in 1914.

In 1931, Vannevar Bush, then at MIT, developed the Differential Analyzer, based on wheels and gears and driven by electrical servomotors, and used it to solve differential equations.

In 1943, Howard Aiken, a professor of physics at Harvard, built the "Harvard Mark I," with the help of Thomas Watson, president of IBM. This was the first general-purpose analytical computer, and it marked the fulfillment of Babbage's dream. This machine still used electromechanical relays and gears. During World War II, the Navy used it to compute problems in ballistics. It was eventually decommissioned in 1959.

Digital Computers

As early as 1939, John V. Atanasoff and Clifford Berry started work on a small binary digital computer at Iowa State College. It was, however, geared to solve only linear equations.

ENIAC and EDVAC

The first completely electronic general-purpose calculator was the ENIAC (Electronic Numerical Integrator and Computer), built in 1945 by American physicists John P. Eckert and John W. Mauchly, of the Moore School of Electrical Engineering at the University of Pennsylvania.

Weighing 30 tons, the ENIAC occupied an area of 72 square meters, had 18,000 vacuum tubes, and consumed 200 Kilowatts when running. The operator had to set some 4,300 switches before starting the machine. The ENIAC featured the first truly electronic computing speeds—an addition took 200 microseconds (Ifrah 2001, 220).

You may wish to see some pictures of the ENIAC.

· ENIAC5

· Accumulator and high-speed panels of the ENIAC

· Mercury-delay-line memory tank

The ENIAC was still missing a key feature that prevented it from being a truly general-purpose machine. The device for storing the instructions was separate from the internal memory of the machine, which stored and processed data. Therefore, it was not possible to modify the sequence of instructions, and a human operator was required to make such decisions when required. If the instructions could be stored in the same memory, then the computer would no longer need to be modified for each problem.

Credit for the discovery of the "stored program architecture" (where both the sequence of operations and the data are stored in memory) has often been given to John von Neumann, the American mathematician then working for the Ballistics Research Laboratory, but this attribution is not without controversy.

Even before the ENIAC was completed, Eckert and Mauchly started work on the EDVAC (Electronic Discrete Variable Automatic Computer), which would incorporate the stored program concept. Von Neumann had consulted with the EDVAC group, and his name appeared in the first draft of a report on EDVAC in 1945. Von Neumann himself did not claim that he originated the concept, and it seems reasonably clear that the concept of the stored program was known to Eckert and Mauchly, as well as others involved in the EDVAC. The EDVAC was not completed until 1951, and it was used in the Ballistics Research Laboratory until 1962.

What is clear is that von Neumann provided the mathematical proofs necessary to show that the stored program computer was equal to the universal Turing machine and was therefore capable of implementing any algorithm. Von Neumann had met Turing in Princeton in 1937–1938 and was familiar with his work.

Von Neumann Machines

The first operational von Neumann machine was MADM (Manchester Automatic Digital Machine), designed in 1946 in Manchester, England, by Tom Kilburn and Frederic C. Williams. It became operational in June 1948 but was a limited, experimental model. The world's first operational general computer based on von Neumann's design was the EDSAC (Electronic Delay Storage Automatic Calculator), built in 1949 by Maurice V. Wilkes at Cambridge University.

Eckert and Mauchly left the Moore School, and in March 1946, they founded their own company (Eckert-Mauchly Computer Corp., naturally!). In 1949, they built the BINAC (Binary Automatic Computer) for Northrop. Although it was built as a general-purpose computer, it was used purely in missile control systems.

UNIVAC

The company Eckert and Mauchly founded was absorbed into the UNIVAC division at Remington-Rand Corp., and it was there that they designed and built the UNIVAC 1 in 1951. This computer was the first commercial American computer and was also the first computer to be devoted to nonmilitary use, having been delivered to the U.S. Census Bureau.

IBM Computers

IBM's first electronic computer was the IBM 701, built in 1952. By 1960, IBM built the 7090, in which transistors had replaced vacuum tubes, and which employed both disc storage and magnetic core memory. The company would go on to build the pioneering 360 series computer in 1964, one of the first mainframe computers, and the 370 series in 1971, which were built using integrated circuits and which used semiconductor memory.

Microprocessors

By the 1970s, however, there was an emerging trend towards smaller computers. As early as 1965, Digital Equipment Corp. had demonstrated a market for the minicomputer, with the success of its PDP-8. The popular PDP-11, with its innovative architecture and instruction set, arrived in 1970, and microprocessors (Intel's 4004) were introduced by 1971.

Since the advent of very large scale integration (VLSI) technology in 1976, microprocessors have became ubiquitous in the world of consumer products, from cars to washing machines.

Personal Computers

The Xerox Palo Alto Research Center began work on developing a "personal computer" (PC) in 1972. A prototype was finished by 1973 but the first commercial product was MIT's Altair 8800. (This computer became available in 1975, the same year that Bill Gates and Paul Allen founded Microsoft. One of Gates's and Allen's early products was an implementation of the BASIC language for the Altair PC). Early models of personal computers were available from Apple by 1977. The first IBM PC was not available until 1981, and it was only after its introduction that the market for PCs began serious growth.

Alan Kay, of the Xerox Corporation, proposed the creation of a "portable computer" (now called a "laptop") in the 1970s. William Moggridge, of Grid Systems Corp., designed the first portable computer in 1979, and by 1986, IBM had introduced the PC Convertible, which was a true laptop with an LCD (liquid crystal display) panel.

Personal Digital Assistants

Personal digital assistants (PDAs), relatively recent additions to the computing world, resulted from collaboration between Sony and Palm Computing. Introduced in 2000, they can do a variety of chores, from accessing the Internet to holding reminders and notes to running scaled-down versions of popular applications.

Supercomputers

Even as the use of smaller computers grew, it became apparent that some problems, such as modeling weather patterns, simulating aerodynamic flows, and so on, required a tremendous number of computations, a number well beyond the power of conventional computers. This need gave rise to the development of supercomputers, which used extremely fast circuits and employed sophisticated architectures to achieve astounding speeds.

One of the first supercomputers was Control Data Corporation's CDC 6600, built in 1964. Seymour Cray (1925–1996), one of the pioneers in the supercomputing field, left CDC to form his own company and created supercomputers that were both extraordinarily fast and visually stunning!

Another approach to supercomputers has been developed on the basis of cooperative processing by extremely large numbers of processors. You may read more about this approach by browsing IBM's Blue Gene Web page.

The Internet occupies a rather special place in the annals of computing. It originated in 1969 as a small computer network called ARPANET, which linked four nodes together, but it quickly evolved into a network that connected many universities based in the United States. With the creation of standard protocols for networking, the network now links many millions of computers worldwide.

At this Smithsonian Computer History Collection Web site, you can read fascinating interviews with some of the people mentioned in this section, as well as other notable people in computing.

Whither the Future?

Gordon Moore, one of the founders of Intel, predicted in 1965 that computer performance would double every 18 months, while the cost would remain constant. Thus, computers would become 100 times faster in roughly every 10 years. This prediction, which has held up rather well till now, has been dubbed Moore's law (Intel 2002). But several scientists believe the traditional technologies are now rapidly approaching the limits of their potential.

Two of the many new technologies that hold enormous potential are described here.

1. Quantum computers: These computers promise heretofore unseen speeds and size reductions by using quantum phenomena that occur in atoms to store information and perform computations. There is an excellent discussion of quantum computers at the Centre for Quantum Computation Web site.

2. DNA computing: The ability of DNA elements to perform simple matches and to reproduce has been used to solve some computing problems that are typically extremely computation-intensive. In this article, titled Gene Genie, you can read about the use of DNA in computers.

We must note that, as of this writing, general-purpose computers using these technologies have not yet been built.

D. Evolution of Computing Software

The history of software spans fewer years than that of hardware, because real software development happened only after the stored program computer was created. Ada Byron Lovelace could legitimately be called the first real programmer—even before the advent of digital computers, she described how to control Babbage's Analytic Engine to perform sequenced computations.

In this section, we will trace the evolution of general-purpose programming languages that have been used to program digital computers. We will not consider special-purpose languages, for example, languages used to program machine tools; scripting languages, such as perl or Ruby; compiler writers, such as YACC; statistics packages, such as SAS; or database query languages, such as SQL.

When digital computers were first created, the focus was on the machine. The engineers who designed the machines were more concerned with simplifying the design than in making it easier to write code. The hardware was hard to get and expensive, but it was easy to recruit many bright minds, eager to write programs for these marvels of the day.

A half a century later, the situation has been reversed completely. The focus is now on the human side—how can programming be made easier for humans? The machines are now easy to obtain, whereas getting good programmers has become difficult (we aim to address this difficulty in this and the succeeding courses!).

Binary Code

The first programs were written in binary (using 0s and 1s) because such code could be executed directly by the machine. For example, the following string of 0s and 1s represents an instruction to add two numbers in the PDP-11:

0110010001110100
Not very readable, is it? Try to imagine an entire program that contains only lines that look like this! You can see that programs written in binary are not only difficult to write, but difficult to read as well. A single mistake, such as using a 1 instead of a 0, can radically alter the program's behavior. In addition, the binary codes are unique to each computer, which means that binary code written for one machine generally would not run on a different computer.

Assembly Code

The next step in the evolution of software was the use of symbols to represent operations and memory locations. The same instruction shown above could now be written as:

ADD (R1)+,10(R4)

Even though this code is still fairly cryptic, it is at least clear, even to the casual reader, that two quantities are being added. Code written in this form was called assembly code. A separate software program called the assembler would convert assembly code into the binary code that computers required. With both machine code and assembly code, each line of code performs a rather simple operation. Thus, it takes many lines of code to implement a complex operation. Though assembly code is much easier to read and write, each computer still has its own assembly code, and code written for one machine is not portable to another.

High-Level Languages

The final step in the evolution of software was the creation of high-level languages. With such languages, programs are more readable, and each line of code can perform complex operations. A special piece of software called a compiler is needed to convert the high-level code into binary. The Add instruction we have been considering above might be written as follows in a high-level language, such as C++ or Java:

result = operand1 + operand2 ;
The growth of high-level programming languages has resulted in portable programs and programs that are easier to write, read, and maintain. With the growth in size of software, entire teams, not just individuals, are needed for development, and many modern programming languages offer special facilities to make such teamwork easier.

But there are some disadvantages too. Compiling code written in a high-level language does take extra time, and if the compiler is not of good quality, it might produce binary code that might not equal the best hand-coded binary program. However, most modern compilers do produce good-quality code, and the many benefits of using high-level languages significantly outweigh the few disadvantages.

We will now consider briefly several important milestones in the development of high-level languages.

The ANSI (American National Standards Institute) is responsible for creating standardized versions of programming languages in the United States. The ISO (International Organization for Standardization) is its international counterpart. Compliance with the ANSI and ISO standards for particular programming languages will increase the likelihood that programs written in those languages will be portable among different computer systems.

II. Different Branches in Computing

We have studied the history of computing in some detail, but what is the present stage of the field? The answer is that computing has evolved into a vast number of fairly specialized areas. The following are some of the most important areas, listed in random order:

· computer architecture—ways of building computers and computer systems

· artificial intelligence—the study of such areas as computer vision, expert systems, image processing, game playing, and so forth

· data structures—efficient ways of storing and accessing data

· database theory—theory and implementation of databases

· software engineering—the study of issues that arise in the creation of large software projects

· robotics—the creation of hardware and software that can be used in creating robots of various kinds

· networking and distributed systems—ways in which computers may be connected to form networks

· operating systems—the study of issues that arise in managing different components of a computer system

· theory of programming languages—ways in which the features of programming languages are actually implemented

· formal languages and automata theory—the study of various theoretical models of computation

· theory of computing—fundamental issues relating to computing, such as what can computers do, what tasks are inherently difficult, and so on

· compiler design—ways of writing compilers for programming languages

· computer games—techniques used to create computer games

· analysis of algorithms—ways of estimating the complexity of algorithms

· cryptography and computer security—ways of ensuring the safety of communications and computer systems

· human-computer interactions—ways of making it easier for people to use computers

· computer ethics—ethical issues that arise in computing

The National Institute of Standards and Technology (NIST) maintains a useful and comprehensive glossary of terms related to computing. You should bookmark this dictionary of algorithms and data structures.

III. Civic Responsibilities of Computer Professionals

Ethics may be defined broadly as the study of moral principles. Knowledge of ethics will usually help a person distinguish right from wrong. Practitioners of computing, like their colleagues in other professions, have certain civic responsibilities. In their professional capacity, they must interact with members of society, their employers, their clients, and their colleagues. It is important that they be aware of ethical concepts in conducting these relations. Countless examples attest to the fact that if ethical practices are willfully ignored, it is merely a matter of time before they come to light, and that by that time, many lives may have been affected adversely.

Although ethics, as an independent field, has been studied for eons, the advent of computers has significantly affected the field:

· Some ethical problems have become easier to resolve. For example, computer simulations have, in some cases, replaced animal testing. Computer simulations may also be used to analyze the potential consequences of some decisions before actually making these decisions.

· Other ethical problems have undergone unexpected transformations. For example, ethical issues relating to intellectual property are now being applied to computer software.

· Some entirely new problems have been created. Computer-related concepts such as expert systems and virtual reality have created new ethical dilemmas.

Unlike other professions, for example, architecture, law, and medicine, computing has few boundaries. Computers exert a pervasive influence in almost every aspect of modern society. The subject of computing ethics has therefore assumed increasing importance, and the ACM recommends making computing ethics an integral part of every computing curriculum so that students are aware of ethical issues before entering the workplace. To see what the ACM has to say on this subject, go to this ACM Web site, select "Chapter 8. Intermediate Courses," and then scroll down to find "Social and Professional Issues."

Many of the questions that separate right from wrong involve intricate legal matters and definitions ("Is software a product or a service?") that are still being argued in courts. In this section, we will attempt only to highlight and increase your awareness of key ethical issues in computing faced by both users and practitioners. We refer you to the following sources of information for detailed information about computing ethics.

Books

· Computers and Ethics in the Cyberage—D. Micah Hester and Paul J. Ford (Englewood Cliffs, N.J.: Prentice-Hall, 2001)

· Ethics and Computing—edited by Kevin W. Bowyer (Piscataway N.J.: IEEE Press, 2001)

· Computer and Information Ethics—John Weckert and Douglas Adeney (Westport, Conn.: Greenwood Press, 1997)

· A Gift of Fire: Social, Legal, and Ethical Issues in Computing—Sara Baase (Englewood Cliffs, N.J.: Prentice-Hall, 1996)

Professional Organizations

· The Association of Computing Machinery

· The ACM also has a Special Interest Group (SIG) devoted to the issue of Computers and Society (CAS)

· The Institute of Electrical and Electronics Engineers (IEEE)

· Computer Ethics Institute (see its "ten commandments")

· International Federation for Information Processing

· British Computer Society

Clearinghouses

· Centre for Computing and Social Responsibility

· Computer Professionals for Social Responsibility

Many of the ethical issues in computing may be classified under the following nine broadly defined and linked categories:

1. access issues

2. privacy issues

3. computer crime and security

4. viruses and related pestilences

5. intellectual property rights

6. malfunctioning hardware and software

7. computers in the workplace

8. commerce issues

9. artificial intelligence-related issues

We will consider each of these issues in turn, providing a brief description and relevant history, and we will highlight some of the ethical issues involved. This discussion is based, in part, on the sources listed above.

A. Access Issues

With the Internet providing easy access to information of every kind, ethical questions arise almost immediately:

· Should some form of censorship exist to prevent children from accessing sites that might be deemed unsuitable for them (such filters already exist, e.g., Surfwatch, CyberPatrol, and so on)?

· Should access to certain information, for example, instructions on making bombs or hate speech, be restricted?

· How can restricting access to information be squared with freedom of speech and the value of truth in a democracy or republic?

B. Privacy Issues

Computers have made it easy for privacy violations to occur. Information about people has been collected in databases by various agencies, from credit card companies to supermarkets. Such databases have often been genuinely useful but they have also been misused (ask anyone receiving unsolicited phone calls, e-mails, or faxes).

Today, electronically gathered information plays an extremely important role in everything from a college application to a loan application. Often, people never even find out why one of their applications was denied, because certain decisions are made entirely on the basis of data stored in databases.

Some important ethical questions related to ownership arise when data are stored in this form. A few of these issues are listed below.

· Does the person about whom data have been collected own that data?

· Does a person have a right to see what information is being stored about him or her? Even if the stored data are accurate, a person's behavior might have changed radically, and it is possible for the data to now be used out of context.

· How can the anticrime and antiterrorism efforts and the release of information about individuals be reconciled with the right to protection against self-incrimination, the right to privacy, and the privacy of e-mail?

The consequences of incorrect information in some databases or the undetected theft of information from databases can be severe. People have been billed incorrectly and have had their credit histories ruined. Consider this recent case. In January 2000, a hacker named Maxus stole thousands of credit card numbers from the database maintained by an online CD vendor (CD Universe). He blackmailed the company, threatening to post the numbers if the company did not pay him. When CD Universe refused to oblige, he actually posted all these numbers on the Web.

Another ethical issue arises when attempts are made to link separate databases. In some cases, such linking has been beneficial. For example, linking separate welfare databases maintained by states allowed U.S. government officials to catch people who were drawing welfare money from two states. But such linking also allows complete profiles to be built up and might be in violation of certain laws.

A recent case involving cookies is an example of database linking.

Privacy has become such a concern today that several organizations provide means of anonymizing e-mails and visits to Web sites, encrypting phone calls, and so forth. But such measures bring ethical concerns of their own. The Electronic Frontier Foundation is a watchdog organization that has taken on the task of ensuring freedom of access to new technologies and has taken part actively in several legal cases. Read these three fascinating legal cases involving free speech.

The Electronic Privacy Information Center (EPIC) is a useful clearinghouse for electronic privacy-related matters.

C. Computer Crime and Security

Some of the most common computer crimes are

· forging (using desktop publishing to print checks and currency)

· hacking

· various forms of fraud (e.g., in ATM transactions, long distance calling, and credit card transactions, and illegally decoding cable TV signals)

Web sites that are maintained by government agencies, such as the FBI and the White House, and companies, such as Microsoft and Citibank, have been hacked in recent times.

It is difficult to enforce security when computers are involved—valuable data are often left on removable disks, and password security is often lax. The growth of the Internet has meant that there are hackers worldwide, thus making the effects of hacking felt worldwide. There is a constant battle between people who invent security measures and hackers who try to defeat these measures. You can read about the capture of the notorious hacker Kevin Mitnick in the book Takedown: The Pursuit and Capture of Kevin Mitnick, by Tsutomu Shimomura and John Markoff.

Computer crime, especially hacking, is often viewed as a game. It is usually nonviolent, depersonalized, and requires ingenuity. Indeed, the earliest forms of hacking began rather innocently at MIT and Stanford. But hacking can cause severe economic damage and can lead to the loss of confidential information. Many countries now have laws making hacking a crime.

Here is an often-posed ethics-related question: If a hacker gains access but does not alter anything, has a crime been committed? Most countries have laws under which unauthorized use of computers is illegal. Some computer professionals, however, do not agree with this position. Richard Stallman of the Free Software Foundation has argued that unauthorized access, in itself, should not be a crime unless the action unjustly harms others. (See Ethics and Computing, edited by Kevin W. Bowyer, p. 86.) Another question that has not been answered fully is if computer professionals can be sued for lax computer security.

D. Viruses and Related Pestilences

Viruses are computer programs that invade host computers. Other unwelcome guests in computers have been given picturesque names, such as worms or Trojan horses, to denote their distinct, undesirable behaviors. For the purpose of this discussion, however, we will refer to all such programs collectively as viruses.

Viruses exhibit a remarkable resemblance to their biological counterparts. Both need a host that they "infect," and both can "mutate," making detection and cure difficult. Viruses are usually introduced to a computer through "infected" disks or when the computer executes programs that often appear as innocuous-seeming attachments to e-mails. From an infected computer, a virus spreads to other machines through networks into which the infected machine is connected, using e-mails or other messages as vectors.

Viruses can exhibit a wide range of behaviors. Some are rather benign, merely causing a message to appear on the computer screen, whereas others can be malicious, destroying essential files, denying service, or flooding a network. A phenomenon related to viruses is the "hoax," which warns users of a virus that does not really exist. Repeated exposure to such "cry wolf" messages can cause users to ignore real warnings.

Cornell student, Robert Morris, unleashed one of the most notorious viruses on November 4, 1988. It affected computers nationwide and reduced Internet traffic to a crawl. Many other notorious viruses have infected computer systems in recent years.

One company (McAfee) reports that currently, there are well over 50,000 viruses that threaten computers. In an unceasing battle, several programs exist to detect and delete viruses and their known mutations. The Federal Computer Incident Response Center is a clearinghouse for information on viruses.

What are some of the ethical concerns regarding viruses? It was claimed that Morris created the virus with the "good" intention of demonstrating security flaws in the Unix operating system. Because of modern society's dependence on computers, it has been reported that even some governments have been actively investigating the uses of viruses to cripple the computer installations of potential enemies.

E. Intellectual Property Rights

Many computer users routinely copy software for their friends and relatives. Many companies and even governments have been convicted of illegal use of software. Software theft has resulted in the loss of untold amounts of money.

Mechanisms such as patents and copyrights exist to protect intellectual property. But should software be patentable? Patents can have a stifling effect on creativity in the computer industry. One position in this matter has been staked out by the Free Software Foundation. It is the GNU philosophy that all software should be freely available.

Richard Stallman, founder of the Free Software Foundation, has pointed out that patents have also been issued inappropriately in many cases, for example, for implementations of commonly known and used ideas (see R. Stallman and S. Garfinkle "Viewpoint: Against Software Patents," CACM 35, No. 1 Jan. 1992 17–22, 121). In this article, the authors offer the following picturesque analogy:

… imagine if each square of pavement on the sidewalk had an owner, and pedestrians required a license to step on it. Imagine the negotiations necessary to walk an entire block under this system. That is what writing a program will be like if software patents continue. (Stallman and Garfinkle 1992, 121)

One of the more interesting ethical questions is whether or not algorithms can or should be patented.

Is copying software a form of stealing? What sort of intellectual rights should software developers have? These are some of the ethical questions that arise in the context of software. In a recent case, a judge ruled that Napster, an online music-sharing program, was in violation of the copyright laws in music. But the existing laws, such as copyright laws, that protect intellectual property have proven difficult to apply to computer software.

Digital formats for storing images, sounds, and so on have made them easily manipulable. Body parts may be easily cut and pasted, and images may be altered. Such manipulations have ethical implications.

Finally, should patents prevent the process of "reverse compilation," where engineers try to recreate high-level computer code, working backward from the binary code? Reverse compilation can be useful in modifying existing code and also in creating new software that is compatible with existing code.

F. Malfunctioning Hardware and Software

Computer programs and hardware have been given crucial monitoring and other tasks in a wide variety of applications. When the hardware or software fails, the results can be serious. Computers have been blamed for all of the following disasters:

· Three Mile Island meltdown in March 1979

· New York City's telephone system failure in January 1990

· Russia's downing of KAL flight 007 in September 1983

· the space shuttle Challenger disaster in January 1986

· the crash of the Mars Polar Lander in December 1999, which was caused by a software problem

· the malfunctioning of a computerized radiation therapy machine between 1985 and 1987, which caused massive overdoses of radiation to patients

· the crash of the Ariane 5 rocket in June 1996, which caused losses of a half billion dollars and was blamed on a software error

Computer scientist Joseph Weizenbaum argued as early as 1976 that computers should not be assigned certain tasks even though they may be able to perform them in a more sophisticated way than human beings! For example, should computers be allowed to perform laser eye surgery, where a degree of finesse is required that is beyond human hands? Or should computers be allowed autonomous control in the chaos of battlefield situations? In fact, flight control computers in some Airbus planes maintain certain flight parameters that even pilots are not allowed to overrule.

Although software engineering has made substantial progress, bugs cannot be ruled out in complex programs. The space shuttle contains millions of lines of some of the most intensively tested code. Yet few will assert that it is bug-free. Can we ever trust computer programs absolutely? And if an accident is caused by hardware or software, who can be held responsible?

Anyone who has looked at the licensing agreement that users are required to accept before using software can see that the prevailing rule is that of caveat emptor—buyers beware! For example, look at the conditions in this Microsoft licensing agreement. Should such warnings absolve designers of all responsibility? If the responsibility does not lie entirely with the end user, should the company as a whole or individuals, such as programmers and designers within the company, be held responsible?

Another issue of responsibility arises when products like CASE (computer-aided software engineering) tools are used. Here, a computer program generates code that will be used in another program! If a failure occurs in the final product, to whom should responsibility be assigned?

G. Computers in the Workplace

Computers have revolutionized the workplace. One side to this revolution is that even as new jobs have been created, many people have also lost jobs. Work performed by computers is constantly being compared to work performed by humans, and in some cases, the computers win (for example, in the modern movie industry, computers now routinely generate images, create animations, and so on).

With the use of computers, health issues have surfaced. Increased use of computers in the workplace has led to the prevalence of carpal tunnel and other repetitive motion disorders. There are also lingering questions about prolonged exposure to video terminals.

Privacy issues have also surfaced. Computers make it easy to conduct surveillance of workers, by screening e-mails and so on.

These are just a few of the ethical problems caused by computer use in the workplace.

H. Commerce Issues

Among the ethics-related issues that arise in commerce are the following:

· Vaporware refers to hardware and software products that have been announced and advertised but that are not currently, and may never actually, be available.

· Cybersquatting is the act of registering a popular Internet domain name (a company's name, for example) so that a company has to pay to buy the electronic address from the person who registered it.

· Computerized trading has been blamed for some problems in the stock market. Should programs be allowed to buy and sell shares?

· Papermills make plagiarizing easier. Should it be illegal to use computers to sell term papers and other materials that are used in determining grades in schools and colleges?

· Taxation—Should Internet commerce be taxed? Traditional commerce is taxed in many places, and if Internet commerce is not taxed, this creates an uneven playing field.

· Monopolies—Is it ethical for companies to bind customers to their products? The U.S. government has sued Microsoft over this practice.

I. Artificial Intelligence-Related Issues

Artificial intelligence (AI) may be broadly defined as the use of computers to study and model cognitive processes such as reasoning, vision, speech, and so on. Some of the outcomes of research in AI include robots of various kinds and the so-called expert systems, which attempt to simulate the work of experts in various fields. Expert systems have been created for use in fields such as

· medicine (MYCIN, INTERNIST)

· mineral exploration (PROSPECTOR)

· chemical analysis (DENDRAL)

· computer configuration (XCON)

Other AI products include programs that can play complicated games like chess and checkers.

Several fundamental ethical questions can arise in the field of AI. First of all, is AI even a proper goal? Are computer programs (or robots) conscious, and do they have any rights if they exhibit some cognitive abilities? Do human beings have a demeaning attitude towards machines? Who "owns" the information that is placed in an expert system—the company, the programmers, or the experts who contributed their expertise? Should we entrust lives to a medical expert system? If a computer does something really unexpected and inexplicable (at least in hindsight), has it "malfunctioned"?

References

Hilbert, David. Quoted in "David E. Joyce's html page index; The Mathematical Problems of David Hilbert." http://aleph0.clarku.edu/~djoyce/hilbert/problems.html#prob10 (Accessed 26 March 2002).

Ifrah, Georges. 2001. The Universal History of Computing. New York: John Wiley and Sons.

Intel. "Moore's Law—Overview." 2002. http://www.intel.com/research/silicon/mooreslaw.htm (Accessed 26 March 2002).

Stallman, R., and S. Garfinkle. 1992. "Viewpoint: Against Software Patents." CACM 35 (January):17–22.

Module 1: History of Computing and Computing Ethics

Self-Assessment

1. With what fields was computing linked during the early days of computing? Answer

2. Who showed that Hilbert's tenth problem is unsolvable? Answer

3. In what year did Dr. Donald Knuth win the Turing award? Answer

4. What is the difference between a calculator and a computer? Answer

5. What are the disadvantages of analog computers? Answer

6. What values can be taken by the variables in Boolean algebra? Answer

7. Who was Ada Byron Lovelace? Answer

8. Who was the creator of the design for the Analytic Engine? Answer

9. Who created the first binary computer? Answer

10. What was the first general-purpose electronic computer? Answer

11. Who was instrumental in the design of laptop computers? Answer

12. What is Moore's law in computing? Answer

13. Is assembly code unique to a computer? Answer

14. If you wrote a program in assembly code and a program in a high-level language to solve the same problem, which program would, in general, be longer, in terms of number of lines? Answer

15. Who created the Java programming language? Answer

16. What are the roles of ANSI and ISO in the field of programming languages? Answer

17. What is studied in the field of operating systems? Answer

18. What is vaporware? Answer

Report broken links or any
