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The ParagonTM Algorithm, a novel database search en-
gine for the identification of peptides from tandem mass
spectrometry data, is presented. Sequence Temperature
Values are computed using a sequence tag algorithm,
allowing the degree of implication by an MS/MS spectrum
of each region of a database to be determined on a con-
tinuum. Counter to conventional approaches, features
such as modifications, substitutions, and cleavage events
are modeled with probabilities rather than by discrete
user-controlled settings to consider or not consider a
feature. The use of feature probabilities in conjunction
with Sequence Temperature Values allows for a very large
increase in the effective search space with only a very
small increase in the actual number of hypotheses that
must be scored. The algorithm has a new kind of user
interface that removes the user expertise requirement,
presenting control settings in the language of the labora-
tory that are translated to optimal algorithmic settings. To
validate this new algorithm, a comparison with Mascot is
presented for a series of analogous searches to explore
the relative impact of increasing search space probed
with Mascot by relaxing the tryptic digestion conform-
ance requirements from trypsin to semitrypsin to no en-
zyme and with the Paragon Algorithm using its Rapid
mode and Thorough mode with and without tryptic spec-
ificity. Although they performed similarly for small search
space, dramatic differences were observed in large
search space. With the Paragon Algorithm, hundreds of
biological and artifact modifications, all possible substi-
tutions, and all levels of conformance to the expected
digestion pattern can be searched in a single search step,
yet the typical cost in search time is only 2–5 times that of
conventional small search space. Despite this large in-
crease in effective search space, there is no drastic loss
of discrimination that typically accompanies the explora-
tion of large search space. Molecular & Cellular Pro-
teomics 6:1638–1655, 2007.

This study presents a new software technology for the
identification of peptides from tandem mass spectra called
the ParagonTM Algorithm, hereafter referred to interchange-
ably as “Paragon.” The most common application for this
class of software tools is so-called “shotgun” or “bottom-up”
proteomics experiments (1) where a protein mixture of any
complexity is digested with a proteolytic enzyme or reagent,
the peptides are analyzed by tandem mass spectrometry, and
then software of this type is used to identify the peptides (2, 3)
and, by inference, determine which proteins have been de-
tected in the mixture (4).1 Although it is currently much less
common, this type of software can also be applied to the
direct analysis of endogenous peptides that result from the
natural proteolysis in an organism (5–10). The Paragon Algo-
rithm and this study specifically focus on the peptide identi-
fication process. This search engine is part of a larger pack-
age called ProteinPilotTM Software, which uses the peptide
identification approach described here and then automatically
conducts protein inference analysis with the Pro GroupTM

Algorithm discussed elsewhere.1–3

Protein identification for the analysis of MS/MS fragmenta-
tion data in the bottom-up approach can be thought of as
having four main stages: 1) preprocessing, 2) selection of
peptide hypotheses, 3) scoring peptide hypotheses, and 4)
protein inference. The preprocessing stage 1 can include
conversion of raw data to simplified peak lists, averaging of
spectra deemed sufficiently similar, filtering of spectra con-
sidered unlikely to yield a good identification, etc. Most tools
fall into one of two main categories differing in how hypoth-
eses are selected: sequence approaches use some de novo
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estimation of sequence information from the observed
MS/MS fragmentation (11–17), whereas precursor ap-
proaches rely on the precursor mass as the main filter (17–25).
The goal of both approaches is to gain efficiency and discrim-
ination by constraining the universe of all possible peptides
and modifications to a much smaller search space that is
tractable for scoring or manual inspection.

In sequence methods, an amino acid sequence(s) from
manual or automated de novo sequencing of full or partial
peptide sequences is used as an initial search space con-
straint. In the earliest example of this type of method by Mann
and Wilm (11), a small section of sequence, referred to as a
“sequence tag,” would be manually interpreted and then pro-
vided to their algorithm along with the masses of the unse-
quenced regions flanking the sequence tag. They referred to
all three pieces, preceding mass tag, sequence tag, and fol-
lowing mass tag, as a “peptide sequence tag.” The database
was subsequently scanned to find the matches to the three
elements of the peptide sequence tag. In “error-tolerant”
mode, all three elements of the peptide sequence tag are not
required to match, allowing successful identification even in
the presence of unsuspected modifications. At the same time,
Pappin and co-workers were developing similar software (12),
which now exists as the Mascot “Sequence query” search
(26). This sequence-based approach has now been imple-
mented in several forms, including MS-Seq in Protein Pro-
spector (17). More recently, there have been sequence cate-
gory approaches that use automatic de novo sequencing and
attempt to call larger stretches of sequence particularly as a
solution to the so-called “homology searching” problem
where it is expected that the proteins from the species of
interest are poorly represented in the database (27–29). Se-
quence tags have also been used to derive metrics of spectral
quality and as part of the scoring step with precursor-type
searches (30).

In the precursor category of algorithms, no MS/MS-derived
sequence information is used, and peptide hypotheses are
selected solely on the basis of conformance of the observed
precursor mass to the mass of the theoretical peptide. The
theoretical masses of all possible peptides are exhaustively
enumerated given the database and search space constraints
such as allowed modifications and digestion cleavage rules,
and then all hypotheses that match the observed precursor
mass within a prescribed tolerance are selected for scoring.
Although this is a brute force approach, it is the dominant
approach in current use, eclipsing approaches that use se-
quence tags. The two most common search engines, the
“MS/MS ions” mode of the Mascot search engine (19) and the
SEQUEST search engine (18), are of this type. The main
reason for this is almost certainly the ease of automated
analysis relative to sequence methods, which often require
some manual sequencing.

Despite being less used, sequence tag algorithms should,
in theory, be more powerful by increasing selectivity during

hypothesis selection giving this type of algorithm the potential
to be faster as well. However, in addition to being less prac-
tical for high throughput applications, sequence tags also
come with a significant risk: an incorrect sequence tag call
may exclude the right answer from consideration. Initially
most tag-based methods relied on a single interpreted tag per
spectrum where the assumption is made that the interpreta-
tion is correct. That is, the sequence information is used as a
hard filter; portions of the database without this sequence are
not considered. Newer tag-based approaches such as Guten-
Tag (13) and InsPecT (14) have offered improvements by
automatically determining sets of many smaller tags that are
used to restrict to any sequences in the database that contain
at least one of the tags.

Although precursor methods are broadly used, they do
have significant limitations. Unlike sequence methods, the
presence of a feature on a peptide that is not allowed in the
search will prevent it from ever being identified. For example,
if a peptide is N-terminally acetylated, but this feature is not
allowed in the search, only wrong answers can be returned for
a mass spectrum of this peptide. It might seem that the
solution is simply to allow for a large number of variations in
the search. This is not feasible, however, because it would
bring with it a combinatorial explosion in additional wrong
answers that would also need to be scored, yielding unac-
ceptable search times and poor discrimination in scoring. In
current practice, the upper limit of what is tractable with
precursor-type search engines is around 6–10 modifications.
Partly because of the challenges of large search space, cur-
rent analyses typically only identify a fraction of the total
MS/MS spectra acquired, roughly 5–20% for low resolution
ion trap type instruments (3, 31) and 15–70% for quadrupole
time-of-flight instruments (24, 32). In some cases, there may
be 2–3-fold more spectra with sufficient fragmentation quality
that go unidentified because of unexpected cleavages, incor-
rect monoisotopic peak assignments, incorrect charge state
determinations, modifications and substitutions not consid-
ered, etc. Although the frequency of any single feature might
be relatively small, collectively allowance for many less fre-
quent features can account for a significant number of addi-
tional spectra, and thus it is desirable to find ways to improve
exploration of large search space.

The Paragon Algorithm presents a new approach to protein
identification. In contrast to recent advances in peptide iden-
tification, the algorithm relies on three key innovations that
have nothing to do with the scoring stage. Our efforts have
focused on the hypotheses selection stage, driven by the
belief that there is greater potential for improvement from
advances in determining what to score, not how to score it.
First, the likely relevance of each sequence segment of a
database to the MS/MS spectrum is quantified on a contin-
uum using many weighted de novo sequence tags to compute
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a Sequence Temperature Value (STV).4 Second, feature prob-
abilities are formally used to model the frequencies of peptide
features such as modifications, digestion events, and substi-
tutions, allowing the estimation of a net probability of any
peptide hypothesis. The use of feature probabilities has also
allowed a great reduction in the algorithmic complexity of the
user interface through the implementation of a translation
layer between what the user describes and what the engine
understands. Third, an overall threshold is applied to the net
effect of STV and feature probabilities, yielding a highly se-
lective triage of which peptide hypotheses are worth scoring.
The assessment of both tag evidence and feature probabili-
ties on a continuum allows the efficient balancing of scoring
effort to be commensurate with the likelihood that a candidate
is worth scoring. Sequence regions more likely to be related to
the correct answer for a spectrum are “searched more exten-
sively” in the sense that peptide hypotheses with lower com-
bined feature probabilities will be scored, whereas weakly
implicated sequence segments are “searched less,” only
scoring precursor matches for peptides that have highly prob-
able features.

The Paragon Algorithm offers significant advances in per-
formance in searching very large search space and removes
much of the informatics expertise barrier to doing quality
protein identification by tandem mass spectrometry while
maintaining the automation of conventional precursor-type
search engines. The focus of this study was the fundamental
description and validation of this new technology.

EXPERIMENTAL PROCEDURES

Sample Preparation—A mixture of proteins was assembled from 20
proteins purchased separately from Sigma-Aldrich and mixed at var-
ied stoichiometries, several proteins at relative concentrations of 100,
20, 10, and 1, to cover 2 orders of magnitude of concentration.
Protein mixture (1 mg/ml) in 50 mM NH4HCO3, 0.05% SDS was
reduced in 0.4 mM tris(2-carboxyethyl)phosphine for 60 min at 60 °C.
The cysteines were then alkylated with 1 mM iodoacetamide (Sigma)
for 30 min in the dark at 20 °C. Porcine trypsin (Promega, San Luis
Obispo, CA) with 2 mM CaCl2 was added for a final enzyme to protein
ratio of 1:25. The digest was conducted at 37 °C for 16 h and then
desalted on a Poros R2 20 column. An aliquot was dried and sub-
mitted for amino acid analysis. The true number of detectable pro-
teins in the sample was far greater than the nominal 20 that were
added to the mixture (due to contaminant proteins present in the
purchased stock) based on prior exhaustive analysis of this sample
using multiple mass spectrometry techniques and careful resolution
of the number of detectable isoforms for each protein. The true
number of detectable protein forms in the sample was estimated to
be �130, and the true dynamic range of concentrations is likely to be
over 3 orders of magnitude due to the additional contaminant proteins
detectable in the purchased stocks.

Mass Spectrometry—The resulting peptide mixture was separated
by reverse phase chromatography (TempoTM nano-LC system, Ap-
plied Biosystems) using a 75-�m-inner diameter � 150-mm PepMap

C18 column (Dionex) and a 30-min linear gradient from 5 to 30%
acetonitrile in 0.1% formic acid with a total flow rate of 300 nl/min.
The eluting peptides were ionized by electrospray ionization and
analyzed by a QSTAR� Elite QqTOF system (Applied Biosystems/
MDS Sciex). Peptide MS/MS spectra were acquired in an information-
dependent manner utilizing the Analyst QS software 2.0 acquisition
features (Smart Exit, rolling collision energy, and dynamic exclusion).
The raw data file is included in the supplemental data.

Peak List Creation—Reduction of raw data in the *.wiff format to
searchable MS/MS peak lists was conducted without any merging of
putatively like spectra. No restriction of mass range for precursors
was applied beyond the constraints used during acquisition. Spectra
containing less than three fragment peaks were not searched. For the
file examined in this study, no spectra were rejected. Peak lists are
created automatically at the beginning of a search in ProteinPilot
Software using this protocol. Mascot Generic Format peak list files
(.mgf) generated from the raw data file in this study using both the 1.0
and 2.0 versions of ProteinPilot Software have been included in the
supplemental data.

Mascot Searches—Mascot searches were performed from Protein-
Pilot Software version 1.0 to assure that exactly the same peak list
was searched by both Mascot and the Paragon Algorithm. The Mas-
cot server was version 2.1 and was run on a Dell Precision 340
computer with a Pentium IV 2.4-Hz processor, 1.0 gigabyte of RAM,
and Windows XP SP2.

Paragon Searches—All Paragon searches were run using Protein-
Pilot Software version 1.0 on a Dell Latitude D810 laptop computer
with a Pentium M 1.86-GHz processor, 2.0 gigabytes of RAM, and
Windows XP SP2. To allow better comparison with Mascot and to
avoid the issue of modification identification, custom modification
sets that were depleted with respect to the normal operation of the
software were created and used to more closely equal Mascot search
space. Repetition of several of the same Paragon searches on the
desktop computer used to run Mascot searches found that the two
hardware configurations were fairly equivalent. Small search space
Paragon searches ran 15% faster on the desktop configuration,
whereas large search space searches ran about 17% slower on the
desktop. These differences were relatively small, and the point of
emphasis in the results is on the relative trends, not absolute speed
measurement.

Annotation of Spectra for Performance Evaluation—An annotation
was created for the reference file where the correct sequence was
explicitly determined for a subset of the spectra in the whole file. The
orthogonal nature of the protein information was leveraged to avoid
bias toward either search engine while still allowing advantages to be
detected. That is, a consensus set of confident proteins was deter-
mined from Mascot and Paragon-Pro Group analyses, and then only
peptide IDs to these very confident proteins were included in the
annotation. This approach allowed a natural distribution of fragmen-
tation qualities to be included in the annotation, which thus contains
a realistic distribution of low confidence to high confidence peptides.
The goal was not to annotate every spectrum in the file, nor was it a
goal to precisely determine the exact modification location; the aim
was to identify only the correct sequence for each spectrum, accept-
ing that this method is not perfect.

To accomplish this, protein identification analyses were conducted
with both Mascot 2.1 and Paragon-Pro Group with the same search
types later used for comparison, and the best peptide answers for
each spectrum according to the best set of proteins were manually
aligned for all searches. The only difference between the Paragon
searches run for annotation and the searches used for comparison
was that the normal set of 35 workup modifications was used for
searches for annotation rather than the depleted sets. This yielded
1228 of the total 1987 spectra (62%) with an answer in at least one of

4 The abbreviations used are: STV, Sequence Temperature Value;
ROC, receiver operating characteristic; ID, identification; SS, Search
Space; CDS, Celera Discovery System.
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the searches. Note that these were not necessarily the top ranked
peptides for each spectrum. Each spectrum was manually validated
for the presence of an answer with sufficient orthogonal evidence to
be included in the annotation without risk of bias toward the engine
that produced it if it was found by only one of the engines. Then the
intended grading protocol was run on all of these searches, and all
cases where either engine reported a high confidence answer that
was graded as incorrect were inspected manually. There were few
of these cases, and the majority of them were due to Lys/Gln
differences or absence of one of these forms in the searched
database. Because of this, we decided to allow Lys/Gln difference
during grading.

Each peptide answer in the annotation had to be associated with a
multi-hit protein or have a clear consensus peptide identification
between the two engines, and the vast majority had both conditions.
This reduced the set of 1228 spectra down to 902 of which an
additional 12 spectra were excluded because spectra with ambigu-
ous charge state assignments were not handled properly in submit-
ting peak lists to Mascot in the first version of the software. Ultimately
this left 890 spectra that were included in the annotation of which 708
(80% of 890) had correct answers that were sequences found by both
search engines, not necessarily in the same spectrum. The other 182
(20%) of the annotated spectra were sequences from Paragon only,
but they were from proteins clearly found by Mascot and had at least
50% confidence in one of the Paragon Algorithm searches. Because
the full workup modification sets were used for annotation but not
the main series of searches in this study, 96 of these 182 were out
of search space for both search engines because the right answers
had modifications that were not allowed. Most of these additional
modifications were from minor side reactions of iodoacetamide
such as modification of peptide N termini and reaction with methi-
onine followed by dethiomethylation. Of the spectra in the annota-
tion, 90% were associated with the top 32 proteins in the Paragon
Thorough search of the CDS Combined database, meaning the vast
majority of annotated spectra were connected to extremely solid
protein identifications. The peptide set generally had few missed
cleavages with 91% having none, 8% having one, and 1% having
more than one missed cleavage. Because the file was a relatively
deep characterization in terms of the number of spectra per pro-
teins detectable in the sample and because the annotation set is
enriched for peptides from multi-hit proteins, the frequency of
cleavages at sites other than tryptic specificity was moderately high
with 70% fully tryptic, 29% semitryptic, and less than 1% fully
non-tryptic. The annotation and additional statistics are included in
the supplemental data.

Grading Searches against the Annotation—All search results were
graded against the annotation for only the subset of 890 spectra for
which the right answers were known. The grading protocol compared
the peptide sequence of each answer against the known correct
sequence(s) for the spectrum allowing for bidirectional Ile/Leu and
Lys/Gln substitution and unidirectional Asn 3 Asp and Gln 3 Glu to
allow for equivalence via deamidation. It was determined that more
than one correct sequence should be allowed for 12 spectra (1.3%
of 890) because manual inspection of the spectra showed they
lacked fragmentation information that could favor a single answer.
Virtually all of these cases had a pair of or several shuffled residues.
The exact modification state, including name and location, was not
considered as part of the grading procedure, consistent with the
effort to remove the issue of modification finding throughout this
study.

Receiver Operating Characteristic (ROC) Analysis—ROC data were
generated for a search by taking all first reported peptide answers for

each spectrum, sorting the list by the peptide discriminating variable
of the search engine, and tallying the cumulative sum of correct and
incorrect first answers according to grading against the annotation,
moving from highest to lowest confidence. The discriminating variable
for the Paragon Algorithm is the peptide Confidence value, which is a
0–99.0 scaled real number. The peptide E-value was used as the
discriminating variable for Mascot. This was chosen over the ion
score because it takes advantage of spectrum-specific significance
thresholds. Note that only the first answer was considered; other
degenerate top ranked answers were not considered. This is neces-
sary because engines may vary in their granularity of binning in
ranking answers.

RESULTS

Paragon Algorithm Search Components—Fig. 1A presents
a diagram of the elements of a Paragon search. The peptide
identification algorithm has two core components that are
invoked depending on the needs of the particular search. The
first component, referred to as Fraglet, is essentially a stand-
ard precursor mass-filtered database search that can be run
in isolation as the initial search in conjunction with the second
component or not at all as in the case of no digest searching.
The second component, referred to as Taglet, is the sequence
tag component. This component is always the “separate
pass” and is the initial search as well for no digest searches.
In all cases, the coordination of which components are used
is controlled automatically by the software based on user
input. Unlike our previous Interrogator algorithm (24), both
components were designed to work directly from the data-
base without any need to first create an index file. Although
the indexing made some types of searching faster, it was
decided that the greater flexibility to support different diges-
tions, species filters, and modifications was more important. A
common scoring method is used in the two search compo-
nents. A peptide hypothesis is scored with a p value giving an
absolute measure of the chance a hypothesis might randomly
match as many fragment ions to the observed spectrum,
ignoring homology. This is generally done using only b and y
ions. A percent confidence for a peptide is determined by
taking into account the quality of all other matches derived for
the same spectrum, how distinct these matches are from
each other using a basic homology measure, and the proba-
bility of the various feature attributes for each peptide, j, as
given by Equation 1.

Confidencej �
f�p-value�j�phypothesis�j

�
i�1

n

�f�p-value�i�phypothesis�i�

(Eq. 1)

The summation in the denominator includes only one member
for each set of highly identical peptides. This allows a set of
very similar high quality matches to all have high confidence
(where generally only one among the ambiguous set is actu-
ally right) while it brings a beneficial competitive element that
dilutes the confidences in cases with many dissimilar marginal
matches. The probability of a peptide hypothesis, phypothesis,
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is determined by information independent of MS/MS
fragmentation,

phypothesis � �
f�1

m

�pf� (Eq. 2)

where pf are probability factors for various features of the
peptide hypothesis such as modifications or lack of expected
modifications, conformance of peptide termini to expected
digestion patterns, and consistency of the observed precur-
sor ion to the theoretical mass to charge ratio. For example, a
tryptic peptide with the expected cysteine alkylation modifi-
cation would have a much higher hypothesis probability than
a peptide with neither end conforming to tryptic digestion and
missing an expected modification. We estimate the pf factors
by empirically measuring the fraction of occurrences of a
feature. For example, the probability of cleavage between
lysine and proline could be estimated as follows.

pcleavage (K-P) �
�cleaved K-P

�cleaved K-P � �uncleaved K-P
(Eq. 3)

Clearly the frequencies of features will vary even among data
sets that are putatively treated and acquired the same way.
We have found that for the various ways feature probabilities
are used by Paragon, estimating average values by looking at
many samples of the same type captures enough of this
variation, and more importantly, Paragon has proven to be
quite robust such that rough estimates are sufficient.

Although higher precision is used internally, peptide confi-
dences are never reported higher than 99.00% to place a limit
on the impact any single peptide can have on protein identi-
fication. This ceiling is justified as a conservative error bound
because the accuracy rate in any subset of spectra is almost
never higher than this.

Taglet Search Component—For a given spectrum, a sub-
stantial number of sequence “taglets” two and three amino
acids long are called. Each tag is rated on a quality scale to
indicate how likely it is that the tag call is correct. In this case,

the tags are generated by doing de novo sequencing and
breaking the results into continuous or nearly continuous
sequence sections, although there are clearly other methods
for automated derivation of sequence tags that could be used.
Similarly the approach could be used with variable or longer
length tags than have been used here. Modified amino acids
are used in tag calling where the set of allowed modifications
is determined automatically by applying a threshold to the
estimated modification feature probabilities. Each called tag is
then matched against the database to find all locations where
the sequence occurs. The sequences in the database are
divided into segments seven residues in length. Longer,
shorter, or even variable length segments could be used
instead. The degree to which a segment is implicated by the
set of tags is evaluated as the STV for that segment,

STVi � Ti � cTi�1 � cTi�1 (Eq. 4)

where Ti is the net evidence or score from all taglets mapping
to segment i calculated as

Ti � �
j�1

n

tj (Eq. 5)

the sum of tag quality scores tj for all n tags that map to
segment i. Of course, there are many ways to determine a “net
effect” of the evidence of many tags of differing qualities. The
second and third terms in Equation 4 allow the neighboring
segments of a segment in the database to influence the STV
of the segment by including their T scores diminished by
some fractional coefficient, c.

The calculation of STV for all sequence segments in the
database allows them to be ranked, producing a full range of
the degree to which each segment is implicated by the set of
tags. Segments that are closer to the true sequence of the
correct peptide for the spectrum should be ranked higher
because more and higher quality tags hit these segments,
whereas segments that are unlikely to be related to the cor-
rect peptide should be ranked lower because fewer and

Fig. 1. A, Paragon Algorithm diagram. The two major boxes depict the separate pass approach of the Paragon Algorithm where an initial search
is done, typically a Fraglet search, and then all spectra are searched again in a separate pass, which is always a Taglet search. The separate
pass box gives the steps in a Taglet search of one spectrum. A large set of short tags are called and then used to compute STVs for all
segments in the database; all possible peptides are computed; feature probabilities for digestion events, modifications, and mass deltas are
determined from the inputted sample information; and a decision is made to score or not to score each peptide hypothesis if its overall
probability is greater than a threshold value. The overall probability is based on the STV of the segment, the features probabilities of the peptide,
and prior probabilities of the protein from which the peptide is derived as estimated from the initial search. Then all scored peptide hypotheses
for the spectrum from both the initial search and the separate pass are considered to assign confidences to all the scored hypotheses. B, a
simplified example of the sequence temperature concept. A simplified list of sequence tags called from a spectrum are shown in order of
decreasing confidence, and the mapping of these taglets to a single example protein sequence are indicated by underlining proportional to
confidence. The protein sequence is divided into segments seven residues long as indicated by the vertical lines. The Sequence Temperature
Value of each of these segments is indicated by the degree of red glow. The two segments with the highest STVs, TYASTIG and HYDINAH,
have the most collective tag evidence and also benefit from a proximity effect as described in Equation 4. For these hot segments, even peptide
hypotheses with very low probability features will be scored because the segments are very likely to be related to the true answer, whereas
at the other limit of the spectrum, only extremely probable peptides will be scored for cold segments like MYRYLGE at the beginning of the
protein.
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poorer tags match these segments.
Peptide hypotheses are then generated from each segment

using all allowed features regardless of probability, and then
the overall probability for each hypothesis being the correct
answer for the spectrum is calculated using the fundamental
Paragon equation.

poverall � psegment phypothesis pprotein (Eq. 6)

The probability that the segment used to generate a peptide
hypothesis is associated with the correct answer, psegment, is
determined based on the STV ranking of the segment among
all segments. The probability pprotein that the protein corre-
sponding to the peptide hypothesis is detected in the sample
as estimated by the initial search can also be factored into the
decision to score or not to score a peptide.

By applying a threshold to the fundamental equation,
Equation 6,

pthreshold � poverall (Eq. 7)

scoring can efficiently be limited to only those peptides that
have an overall probability that assures a minimum level of
believability while at the same time letting search space be
very large for those segments very likely to contain the true
sequence. This is the central innovation in the Paragon Algo-
rithm. Sequence segments with very “hot” STVs are searched
addressing very large search space such that peptide hypoth-
eses containing lower probability features such as unlikely
modifications and unexpected cleavages will be considered.
Segments at the other limit of “cool” STVs are searched within
very small search space such that only peptide hypotheses
with the most probable features will be considered. These
ideas are illustrated in Fig. 1B.

Note that because precursor mass delta is a factor, this
approach is able to consider hypotheses that differ greatly from
the expected mass. Robustness to inaccurate precursor mass
information is one of the conventional advantages of sequence-
based approaches over precursor-based methods, and this
approach preserves that benefit. As long as the net effect of
STV and other factors is favorable, large delta hypotheses can
be considered in scoring. This allows identifications that would
be lost by other approaches to be recovered, for example, in
cases where multiple peptides pass the first mass analyzer.

Because the algorithm uses many tags and considers their
qualities, identifications can also be recovered for some cases
where the exact sequence is not in the database or the
appropriate modifications were not considered. Identifica-
tions of this type will appear with multiple improbable fea-
tures. The modifications, their locations, and the digestion
information should not be considered reliable in these cases,
but there will generally be a significant portion of the se-
quence that is correct, if the confidence is high, which often
allows connection to the correct protein or a close homolog.
For example, in the annotation in the supplemental data there

is a peptide reported as AQCHTVEK with N-terminal car-
bamylation, deamidation of Gln, carbamidomethylcysteine,
and a semitryptic Cys-Ala cleavage at the N terminus. How-
ever, a better interpretation of the spectrum would probably
be the corresponding tryptic peptide CAQCHTVEK with an
internal disulfide, a modification that was not allowed. Most of
the sequence is correct, allowing connection to the right
protein, but the exact details of the answer are not reliable.
Note that this peptide was out of search space for all searches
analyzed in the study so this inaccuracy in the annotation had
no impact on the results presented here.

Protein Inference Analysis—The peptide ID search results
are passed automatically to a third component, the Pro Group
Algorithm, which is also part of ProteinPilot Software. This
algorithm takes the top 10 peptide hypotheses for each spec-
trum as input, regardless of maximal confidence, and rigor-
ously distills this set into the set of proteins that can be
reported as having been detected with a specified level of
confidence in a way consistent with established publication
guidelines (33, 34). The Pro Group Algorithm is described
elsewhere.1–3

User Interface Control and Parameterization—In conven-
tional search engines, all method settings explicitly control
how to do the search. In an effort to remove algorithmic
complexity and reduce the risk of incorrect parameterization,
a user interface was developed that hides virtually all of these
direct algorithmic controls. This was achieved by implement-
ing a business logic layer containing a “translation” framework
whereby user input can be in the language of the experimental
scientist as description of 1) the sample and treatment (cys-
teine alkylation, digestion, labeling scheme, acquisition instru-
ment, and species) and 2) what is desired from the search in
terms of the compromise between speed and the quality of
the result. This simple input is then translated into the optimal
set of algorithmic settings. For example, selecting trypsin as
the digestion agent is translated to a set of digest feature
probabilities to capture major and minor specificities of tryp-
sin as well as a background rate for all other potential cleav-
age sites. This obviates the need to do “semitrypsin” or “no
enzyme” searches on a tryptic sample because search space
is made large enough for segments with very hot STV that
many peptides of these less common types can be identified.
The same concept of the translation of workflow factors into
more complex feature probability descriptions applies to the
rest of the method input. Selecting iodoacetamide as the
cysteine alkylation would be translated into a set of feature
probabilities that includes the major modification on Cys and
also known less frequent side reactions from the reagent. A
field called Special factors captures additional workflow steps
that would impact how a search should be parameterized. For
example, an option in this list called Gel-based ID translates
into the increased frequency of oxidation artifact modifica-
tions and modifications due to acrylamide. For all sample
types, there is a translation that describes the background
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rate of general workup (artifact) modifications like pyroglu-
tamic acid formation, oxidations of methionine, and deamida-
tion. The need to set mass tolerances is obviated by inferring
expected variances of MS and MS/MS data for the specified
instrument. There are only a few actual options about how to
do a search. There are ID focus options, which allow the
additional consideration of large sets of biological post-trans-
lational modifications and/or substitutions. The desired
tradeoff between speed and quality of result is indicated by
selecting a Rapid or Thorough search. The former only runs
the simple Fraglet search component, whereas the latter in-
vokes the Taglet component as well. A sequence database to
be searched is selected, and a species constraint function is
applied as with other search engines. A table containing all
the modification translations is included in the help function
within the software, and missing modifications can be de-
fined. A figure showing the method definition screen is in-
cluded in the supplemental data.

A fully functional trial version of the software is available for
download (ProteinPilot, Applied Biosystems). This software is
completely independent of the instrument acquisition soft-
ware so any modern Windows-based computer can run it.

Searches for Comparative Assessment Versus Mascot
A series of five Paragon Algorithm searches and five Mas-

cot searches were run to assess relative performance both
between the two search engines and also among the different
searches with each engine. Table I shows a summary of the
searches run, the parameters used, and measurements from
the analysis of each search. Searches were run on two differ-
ent FASTA format protein databases, the UniProtKB/Swiss-
Prot database, which has about 200,000 proteins, and the
CDS Combined file (35, 36), which is essentially a version of
National Center for Biotechnology Information (NCBI) NR.fas
that has been made truly non-redundant for public proteins,
and then Celera proteins are added to this set, yielding a total
size of about two million proteins. These two were chosen
because they differ in size by an order of magnitude, but both
carry a full diversity of proteins from different species as was
necessary to search the test mixture of proteins from multiple
species. Each row in the table represents a type of search
where an effort has been made to align similar Mascot and
Paragon searches in terms of what peptides can be found by
each search. The first row for each database is referred to as
the Small Search Space (Small SS) search type. Because the
Paragon Rapid search effort setting is like a conventional
precursor-type search engine, it is possible to achieve nearly
identical search space between the two engines for this
search type as indicated by the listed parameters. Custom
Paragon modification sets were created, removing the major-
ity of features in the much larger set normally used, to allow
exact alignment with Mascot in modifications. All modifica-
tions were variable modifications in all of these 10 searches.
The only point of difference in the Small SS searches is the
mass tolerances as will be discussed later. The second search

type will be referred to as Large Search Space (Large SS)
search type for which Mascot is run with the semitrypsin
digest setting and the Paragon Algorithm is run in its Thor-
ough search effort setting with trypsin specified as the diges-
tion agent. These two searches have been aligned because
they both enable finding peptides that only conform to tryptic
specificity on one end. There is a substantial amount of these
“semitryptic” peptides in the annotation. A few additional

TABLE I
Summary of searches for Paragon-Mascot comparison

Five searches each for Mascot and the Paragon Algorithm are
described. Each row contains a pair of searches that are considered
the same “search type” for the purpose of comparison. In order of
increasing search space, there are three types: Small SS, Large SS,
and No Digest SS. Most of these were run on both medium and large
databases that differed 10-fold in size. The Correct Full 890 columns
give the results of grading the searches against all 890 annotated
spectra. Sensitivity measured by total number of right answers in a
search in any rank is dominated by the allowed search space for that
search, whereas the fraction of those right answers that are ranked as
the first answer is a rough measure of discrimination. The First in
Shared (Sh.) 397 columns give the results of focusing on only the 397
spectra where all 10 searches were able to find a correct answer in
any rank, giving the number of these spectra where the first answer is
right and wrong and the correct percentage. The fraction of these
spectra where the first answer is correct is a very pure measure of
discrimination.
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highly specific modifications have been added as well. The
third search type, referred to as the No Digest Search Space
(No Digest SS) search type, has the same parameters as the
Large SS type except that all digest conformance require-
ments were removed, meaning any sequence in the database
could be returned. The No Digest SS search was not run on
the CDS Combined database because the Mascot search
would have taken over a week to run on the hardware used for
the comparison, and this size exceeds the RAM per process
limitations with 32-bit processing for Paragon, a limitation that

will be addressed in future work. The resulting Mascot Signif-
icance scores for each search are also listed in Table I.

Analysis of Performance on All 890 Annotated Spectra—
The relative performance of the searches in discrimination and
sensitivity on the set of 890 annotated spectra was assessed
by constructing ROC curves as shown in Fig. 2. The same
relative trends were observed separately with both databases
as seen by comparing Swiss-Prot results in Fig. 2A with the
results from searches of the much larger CDS Combined in
Fig. 2B. The goal of a search engine is to report all right

FIG. 2. ROC curve analyses using all
890 annotated spectra. The perform-
ance of the 10 searches in Table I is
evaluated using ROC curves, grading
only the 890 spectra that were annotated
of the 1987 total in the file. The common
legend is presented in the center, ar-
ranged to parallel the searches listed in
Table I. Heavy lines are used for all Par-
agon Algorithm searches, whereas light
lines are used for all Mascot searches.
Color is used to indicate the type of
search: red for the Small SS search type,
green for the Large SS search type, and
blue for the No Digest SS search type.
As indicated by the titles, graphs on the
left are of searches of the UniProtKB/
Swiss-Prot database, and graphs on the
right are searches of the CDS Combined
database. A–C are numerical ROC plots,
measuring the cumulative number of first
answers that are correct versus the cu-
mulative number of first answers that are
graded incorrect as the confidence
threshold is decreased. Note that the
scale is identical in all three graphs to
allow easy comparison. A and B com-
pare Small SS searches with Large SS
searches for the two databases sepa-
rately. C compares the No Digest SS
searches with the Large SS searches for
UniProtKB/Swiss-Prot. D and E are con-
ventional fractional ROC plots where the
fraction of all cumulative correct first an-
swers of the maximal correct first an-
swers is plotted versus the fraction of
cumulative incorrect first answers of the
maximal incorrect first answers. D and E
present these analyses for the searches
of each database separately. All lines in
this type of ROC curve start at (0, 0) and
end at (1, 1). The x axis is enlarged to
focus on the critical top left region.
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answers as the first answer with no wrong answers and to
have high discrimination allowing it to rank spectra more likely
to be correct ahead of spectra less likely to be correct. These
curves are one way of measuring how well a search succeeds
in doing that. Fig. 2, A–C, shows less conventional numerical
ROC curves where the ideal result would be a line that runs
straight up along the y axis to 890, meaning all first reported
peptide answers are correct with no errors. One of the most
difficult aspects of comparing searches and search engines is
separately assessing differences in discrimination (or speci-
ficity) versus differences in sensitivity. Numerical ROC plots
emphasize differences in sensitivity, the absolute number of
right answers. For example, it is clear that the larger search
space for the Large SS type searches yields many more right
answers relative to the Small SS type searches.

The Correct Full 890 columns for each engine in Table I
present the number of spectra with correct first answers, the
total number of spectra with correct answers in any rank, and
the percentage of detected right answers that are ranked first
for each of the searches. The total number of correct answers
in any rank is mostly controlled by the size of search space
and has less to do with discrimination, assuming enough
answers are kept per spectrum. The Small SS searches differ
between the engines in this measure by only 2.4 and 0%,
respectively, for Swiss-Prot and CDS Combined. This means
our effort to achieve identical search space came very close.
The one boundary on search space that could not be made
the same was the mass tolerances. The Mascot Small SS
searches were run with 0.15-Da MS and 0.10-Da MS/MS
tolerances where the tolerances are applied in mass space.
The Paragon Algorithm Small SS uses constant tolerances in
m/z space, meaning the tolerance in mass space is multiplied
by the charge. Given that the totals for detection in the Small
SS searches are within a few percent, this difference has little
impact. If anything, the small gain in sensitivity for Paragon
should come with a relative cost in discrimination. If the
search spaces were identical, the red ROC curves in Fig. 2, A
and B, would report directly on relative discrimination of the
scoring functions between the two search engines. They ap-
pear to show a slight advantage for Paragon. To remove some
of the effects of this slight difference in search space, we also
constructed the more conventional fractional ROC plots, shown
in Fig. 2, D and E, for all searches of the two databases sepa-
rately. In this type of ROC plot, the differences in the number of
spectra with correct first answers are factored out by dividing by
the total for each search separately. This is also done for wrong
first answers, and thus, all lines start at the origin and end at (1,
1). Comparison of the red lines in Fig. 2, D and E, still suggests
there is an advantage in discrimination in the scoring in Para-
gon. This could be the result of the competitive scoring scheme
of Paragon or the use of feature probabilities in scoring. How-
ever, the point of running the Small SS type searches on both
engines was not at all to show an advantage in scoring but
rather to demonstrate that the scoring in the Paragon Algo-

rithm is comparable with that of Mascot and essentially use
this search type as control to study the novel algorithmic
functions in the Thorough mode searches of Paragon.

The most striking aspects of the results in Fig. 2 are in the
comparison of the effects of increasing search space on
each search engine. Fig. 2, A and B, and Table I show that
the Mascot Large SS searches yield more correct answers
than the Small SS searches; however, this comes with some
cost in discrimination. In Fig. 2, A and B, the green lines
start to break from the y axis sooner than the red lines for
Mascot. This same tradeoff, increased sensitivity at the cost
of decreased discrimination, is not observed with Paragon
in going from the Small SS searches to its Large SS
searches. Comparison of the heavy green lines to the heavy
red lines in Fig. 2, A and B, indicates much greater detection
with larger search space without any apparent loss of dis-
crimination. The green lines simultaneously go much higher
and clearly break from the y axis later than the heavy red
lines. Although these differences may be difficult to discern
in Fig. 2, A and B, the differences are stark in Fig. 2, D and
E. There is a clear loss of discrimination between the red
and green lines for Mascot, whereas there is almost no
detectable difference between the red and green lines for
the Paragon Algorithm despite a huge increase in the effec-
tive search space.

Although the sample actually was digested with trypsin, the
No Digest SS searches are another important test case for the
differences in handling large search space, representing the
upper limit in the digestion variable of search space. Table I
shows that both Mascot and Paragon lose a few right answers
relative to the Large SS searches, 742 down to 724 for Par-
agon and 680 down to 671 for Mascot. The answers are “lost”
because the drastically enlarged search space layers so much
statistical noise on top of the signal that the correct answers
no longer fall within the top five and 10 reported answers for
Paragon and Mascot, respectively. The increase in noise also
causes the percentage of right answers in search space that
are ranked first to drop from 97.3 to 93.0% for Paragon and
from 92.5 to 87.0% for Mascot. Fig. 2C indicates the same
trend in considering the whole curves rather than just the end
points in Table I. Although the Paragon Algorithm does take a
hit removing the digest specificity, it is strikingly better than
the No Digest SS search of Mascot. Nearly twice as many
right first answers are reported by Paragon before the lines
begin to break away from the y axis. This means the yield of
highly confident identifications is approximately double with
Paragon for no digest searching. The Paragon No Digest SS
search even outperforms the Large SS search of Mascot in
Fig. 2C and appears to be equal or better in discrimination in
Fig. 2D (heavy blue line versus light green line).

Although we eliminated the modification variable as a
source of differences in search space, there are still real
differences in total right answers for the two larger search
space types listed in the Correct Full 890 columns. To under-
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stand what these differences were, we did a detailed exami-
nation of the CDS Combined Large SS searches where Par-
agon found right answers in any rank for 784 spectra
compared with 681 for Mascot. A Venn analysis of these
searches determined that both search engines found right
answers for 677 of the spectra, whereas only Mascot found
right answers for four spectra, two where the correct answer
was ranked first and two where it was not, and only Paragon
found right answers for 107 spectra, 82 of which had correct
first answers. The four spectra where only Mascot reported a
correct answer all had low confidences (E-values of 130, 12,
4, and 4300) and were all semitryptic peptides. For the Para-
gon-specific spectra, we focused on the 82 spectra where the
first answer was correct. One way search space is larger for
Paragon in its Thorough mode is that observed versus theo-
retical peptide delta masses much larger than the tolerances
normally used in precursor-type database searches can be
considered. This allows good identifications to be recovered
when the wrong peak was called as the monoisotopic peak or
when a secondary peptide species present within the precur-
sor isolation window contributes to or even dominates the
observed fragmentation. To our surprise, the large delta pep-
tides did not account for the majority of additional detections
relative to Mascot. 15 of the 82 spectra had delta masses off
by close to 1 Da, whereas another 15 had delta masses off by
2 Da or more. About 40% of these 30 correct “large delta”
cases had confidences greater than 95%. There were two
other differences in search space that could account for some
of the remaining 52 spectra in this set of 82. First the number
of missed cleavages considered by Paragon is not limited to
a fixed value. One peptide had five missed cleavages, ac-
counting for an additional three spectra. Another difference is
that the Paragon Thorough mode search with trypsin set as
the digestion agent can actually find peptides that do not
conform to expected tryptic cleavage on either end, often
referred to as “non-tryptic” peptides. Because these are rare,
we did not expect this to account for many of the spectra, and
accordingly, only six spectra were explained as fully non-
tryptic peptides. All of these were verified manually, belonged
to the top 11 proteins, and had cohort peptides with overlap-
ping sequence, including semitryptic peptides with common
cleavages. In total, differences in search space only ac-
counted for 39 of the 82 spectra, meaning 43 should be in
search space for Mascot. Furthermore of the 82 spectra,
74.4% of the correct answers were actually tryptic, 18.3%
were semitryptic, and 7.3% were fully non-tryptic. Other than
an expected enrichment for non-tryptic peptides, this is es-
sentially the same breakdown as was observed in the whole
set of annotated spectra. We manually inspected a sampling
of the 43 spectra to see what answers Mascot did report. In
many cases, there were so many close alternative sequences
that the 10 peptides Mascot saved per spectrum had very
little sequence diversity. The right answer was effectively be-
ing “pushed below the surface” by the huge amount of wrong

answer noise from large search space. To further test this
theory, we checked the Small SS Mascot search on Swiss-
Prot for these spectra to see whether correct answers could
be found and observed that more than half, 24 spectra, did
have right answers present, and 16 of these were even ranked
first. In other words, the right answers were not being de-
tected for these spectra when searching very large search
space because of poor discrimination, not because of differ-
ential sensitivity because the allowed search space was
different.

Analysis of Performance on the 397 Consensus Spec-
tra—To more rigorously interrogate the relative discrimination
performance of the two engines in different search modes, we
decided to focus on the subset of spectra where the right
answer was within search space for all 10 searches. This
means all these spectra had a simple tryptic peptide as the
right answer. In this mode of examination, the benefit of larger
search space in greater sensitivity (as shown in the study of
the full 890 annotated spectra) could only be detrimental to
discrimination in this focused examination. As described un-
der “Experimental Procedures,” the annotation did contain
more answers derived from the Paragon Algorithm than from
the Mascot algorithm. By focusing on only spectra where both
engines can find the right answer in all modes of search, any
negative effects from unintended bias should be removed. For
this subset of spectra, the right answer is present for all
searches, and thus, comparative analyses report purely on
differences in discrimination, directly measuring the impact of
increasing “noise” going to larger search space. Of the 890
annotated spectra, 805 had a right answer that was found in
at least one of the 10 searches examined, 681 (85% of 805)
had right answers in at least six of the 10 searches, and 397
(49% of 805) had right answers in all 10 searches.

We repeated ROC curve analyses using only the 397 con-
sensus spectra. Fig. 3, A and B, shows the numerical ROC
curves for Swiss-Prot and CDS Combined searches, respec-
tively. As would be expected, the discrimination is weaker for
any given search on the larger CDS Combined versus the same
search on Swiss-Prot for all searches with both engines. The
First in Shared 397 columns in Table I give the data for the end
points of these lines for each engine, listing the number of first
answers that are right and wrong and the percentage of the 397
that are right. This percentage is one measure of discrimination.

First let us consider the Small SS type searches (red lines).
Because the right answer is present in all 397 spectra and the
searches are nearly identical in search space between the two
algorithms, these curves are reporting directly on differences
in discrimination that are due to the scoring function of each
engine. The slightly larger search space for Paragon that gave
an apparent advantage in Fig. 2, A and B, can only be detri-
mental to performance in Fig. 3, A and B. Nonetheless as was
seen in Fig. 2, D and E, there is still a suggestion that the
Paragon scoring discriminates slightly better. Again this
search type was intended to be a control, and being very
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conservative, this difference could be considered to be the
margin of error of this study. The main conclusion from the
Small SS search comparisons is that the scoring in Paragon is
at least on par with the scoring in Mascot in terms of funda-
mental discrimination.

The most important feature of the ROC results in Fig. 3, A
and B, is the differential impact of increasing search space for
each engine. The loss of discrimination going from Small SS
to Large SS to No Digest SS (red to green to blue lines) for
Mascot is strikingly larger than it is for the same series with the
Paragon Algorithm. There is almost no loss of discrimination
for Paragon between Small SS and Large SS. As was ob-
served in Fig. 2, D and E, Fig. 3A shows that the Paragon No
Digest SS actually discriminates equally if not better com-
pared with Mascot Large SS.

One of the most striking differences between the two en-
gines in analogous cases is the Large SS searches on CDS
Combined seen clearly in both the differences between the
green lines in Fig. 3B and the end point data in Table I.
Because this was the largest difference between the engines
and because it was the largest Mascot search space (having
the highest significance threshold), this pair of searches was

examined in more detail. In the Mascot Large SS search on
CDS Combined, a correct answer that was present in its top
10 hypotheses was not successfully ranked as the first an-
swer for 55 of the 397 spectra (13.9%). For the analogous
search with Paragon, the failure rate was only 7 in 397 (1.8%).
Both engines failed on five of the same spectra, whereas only
Paragon failed on an additional two spectra, and only Mascot
failed on an additional 50 spectra. Believing that the main
difference in performance between the engines should be
because the Paragon Algorithm leverages the additional in-
formation from STVs and feature probabilities to score far
fewer peptides, we theorized that if we took the reported first
answer from the cases where Mascot failed to rank a correct
answer first we should find that Paragon did not even score
this hypothesis for that same spectrum in many cases. This is
exactly what was observed. In 48 of 55 cases, the incorrect
answer Mascot ranked as its first answer was not even among
the top five hypotheses for the same spectrum for Paragon,
meaning it is very likely Paragon did not even score the
peptide.

Searches Using Full Modification Sets—Custom depleted
modification sets were used for Paragon searches to elimi-

FIG. 3. ROC curve analyses using
397 consensus spectra. The formatting
to indicate different searches is the same
as in Fig. 2, but several additional
searches have also been added as listed
by the gold lines in the second legend
table. A and B measure the discrimination
of searches on UniProtKB/Swiss-Prot
and CDS Combined databases, respec-
tively. Because the right answer can be
found in all of the 10 searches in Table I,
the right answer for all of these spectra is
necessarily a tryptic peptide. Focusing on
this subset of spectra measures the effect
of increasing noise from moving toward
larger search space as it impacts the abil-
ity to successfully place the right answer
in first place. The differences in the Small
SS searches report directly on discrimina-
tion differences due to the scoring func-
tions. Considering these differences to be
small, the differences in discrimination be-
tween the engines in the two large search
space types are then entirely due to dif-
ferences in the number of hypotheses
scored. This number is much lower for
Paragon Thorough searches because of
the use of STV and feature probabilities. C
shows that there is almost no impact on
discrimination with 35, 129, and even 502
modifications, numbers of modification
features normally invoked by the settings
in the user interface of the Paragon Algo-
rithm. All three graphs are equivalently
scaled to ease comparison.
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nate the modification variable with respect to Mascot. In
normal operation, the Paragon Algorithm actually uses a
base-line level of 35 workup modifications in all searches with
its Thorough search effort setting and also has user-control-
lable options to additionally consider a set of 94 biological
modifications and/or 376 amino acid substitutions. For clarity,
we chose to eliminate the modification variable in the valida-
tion of the fundamental new ideas in the Paragon Algorithm.
However, as a quick check, Fig. 3C shows the same type of
analysis on the 397 common set to demonstrate that, even
when much larger numbers of modifications are considered,
the discrimination still holds up. The figure shows that when
considering 35, 129, or even 502 modifications (or substitu-
tions) the discrimination barely decreases. Note, however,
that it does change slightly. If the algorithm were using an
iterative, filtering approach that removed spectra from further
search like many second pass approaches, there would be
zero change. However, the separate pass approach in the
Paragon Algorithm is considering additional hypotheses for
these spectra.

Trends in Numbers of Peptide Hypotheses Scored and
Search Times—To quantitatively assess differences in the
number of peptides that are scored in each search type, we
added a counter to the Paragon Algorithm scoring function
and exported these data for each spectrum. The median
number of hypotheses scored among all spectra was deter-
mined for each of the five searches as a measure of the actual
search space scored. For Mascot, we determined relative
-fold changes in the number of hypotheses scored using the
changes in significance threshold among the searches. These
results are summarized in Table II. To emphasize the trends
more than the absolute numbers, we normalized all search
space measures to be described as a relative change over the
Swiss-Prot Small SS search for the same engine. Because of
this, attention should generally be focused on the relative
trends between the searches within the same engine rather
than comparing the absolute -fold changes across engines.

The data in Table II show that the -fold increase in hypoth-
eses scored between Swiss-Prot and CDS Combined Small
SS searches within each engine was very close to the 9.64-
fold that is expected based on the difference in database
sizes, 9.05/1.00 and 9.55/1.00 (-fold increase in hypotheses
over Swiss-Prot Small SS for CDS Combined Small SS over
Swiss-Prot Small SS), for Paragon and Mascot, respectively.
However, there is a dramatic difference between the engines
in the -fold increase in number of hypotheses scored in going
from the Small SS to the Large SS searches. For both data-
bases, the Large SS searches necessitate scoring 25-fold
more peptides than the Small SS search for Mascot (25.1/1.00
and 251/10.0), whereas Paragon only scores a very small
number of additional peptides between the two search types,
about 1.2-fold more in the case of both databases (1.21/1.00
and 10.5/9.05). This supports our previously suggested ra-
tionale for the large differences in observed discrimination

between the two search engines in the Large SS searches.
Notice also that the -fold increase in search space with Swiss-
Prot searches from Small SS to No Digest SS for Paragon is
very close to the change for Mascot between Small SS and
Large SS. Both increases in search space are about 20-fold,
which is consistent with our previous observation that the
discrimination in the Paragon Large SS and the Mascot No
Digest SS searches was comparable. Although these two
searches are equal in scored search space size as measured
by the number of hypotheses scored, they are very different in
effective search space size. Because the Mascot MS/MS
search scores all hypotheses within search space, its scored
search space and effective search space are always equal.
The use of STVs and feature probabilities allows the Paragon
Algorithm to judiciously not score most hypotheses that are
allowed in search space, resulting in an actual scored search
space size that is much smaller than the effective search
space.

Fig. 4A estimates the difference between the scored and
effective search space size for each of the search types. By
plotting the -fold increases for each engine on equivalent
searches separately for each search type, we can estimate
this difference from the slopes. The red line for the Small SS
search types yields a slope very close to unity, meaning the
effective and scored search space for Paragon is the same
because it follows the same trend as Mascot. This is what
should be observed because the Paragon Rapid search mode
is essentially the same simple precursor-type search that

TABLE II
Number of hypotheses and search times

The trends in the number of hypotheses scored and the time of
search are indicated relatively by reporting the -fold increase (ratio) of
the number of hypotheses or search time to the corresponding values
for the smallest search space search, Swiss-Prot Small SS, sepa-
rately for each search engine. This emphasizes the trends with in-
creasing search space within each engine rather than the absolute
numbers, which are also given in parentheses when they are known.
The emphasis on the relative trends is particularly important for
search times because the hardware running each search engine was
not the same. The significance of the trends in this table are examined
in Fig. 4.
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makes no use of sequence tags. The green line comparing the
Large SS searches shows a dramatic difference with a slope
of about 24. This means the Paragon Large SS search has a
scored search space that is about 24 times smaller than the
effective search space. This assumes that the effective search
space of Paragon is the same as the scored search space of
Mascot. Because the Paragon search can find fully non-
tryptic peptides, very large mass delta peptides, and many
more missed cleavages than were allowed in the Mascot
search, the Paragon effective search space is actually much
larger than this. Thus, this 24-fold estimate is a very conserv-
ative lower bound. The blue line for the No Digest SS searches
has a slightly softer slope around 10 but still much greater
than unity, also indicating a large difference between scored
and effective search space. The actual scored search space
size for the No Digest SS search cannot be reduced as much
for the Large SS search because, without any expected digest
specificity, all cleavages are treated as equally likely. By con-
trast, in the Large SS search, telling the Paragon Algorithm
that the sample was digested with trypsin invokes a very
complete description of the probabilities of cleavages be-
tween pairs of residues. To a very rough approximation, the
gain from the red to blue lines is due mostly to the use of tags
and STV, whereas the gain from the blue to green line is due
mostly to the use of digest feature probabilities. That is, the
difference between Small SS and Large SS for the Paragon
Algorithm is due to both the use of STV and digest probabil-

ities, whereas the change from its Large SS to No Digest SS
is due to the removal of digest feature probabilities. Because
the modifications are constant in the two larger search space
search types, the difference between the blue and green lines
reflects the value of having the digest information over not
having it.

Up to this point, we have focused entirely on the quality of
results in discrimination and detection. Reducing the number
of hypotheses scored also yields a large advantage in search
time. Table II also presents search times for the 10 searches
and scales these relative to the Swiss-Prot Small SS search
time within each engine as was done with the number of
hypotheses scored. This was particularly necessary for the
search times to normalize for differences in the hardware that
was running each search engine. Again the point is the relative
trends among search types within each engine, not the ab-
solute search times. Fig. 4B shows the similarity between the
trends in actual scored search space size and the trends in
search time. All Mascot searches fall along the diagonal slope
of unity through the center of the graph, meaning the increase
in search time is directly proportional to the increase in the
amount of scoring. Whereas the Paragon Small SS line in red
falls right on top of the Mascot Small SS line, there is a large
difference between the green lines for the two engines. The
Paragon Large SS searches have effective search space con-
siderably greater than that of those for Mascot, yet the scored
search space, as measured by the number of hypotheses

FIG. 4. Relative trends in number of hypotheses scored and search times. A and B visualize the data in Table II to emphasize the trends
with increasing search space comparatively between the two search engines. A compares the relative increase in the scored search space size
for each engine as measured by the -fold increase in median number of hypotheses scored over the Swiss-Prot Small SS search for the same
engine. The analogous results for the three search types are plotted versus each other, and the trend for each type is roughly indicated by fitting
a line to y � m(x). The slopes resulting from these fits are shown on the plots. The slopes indicate the relative burden of that search type
comparatively between Paragon and Mascot where a slope of less than 1 would indicate the search type costs more work in hypotheses
scored for the Paragon Algorithm, whereas a slope of greater than 1 indicates a greater cost for Mascot. The Small SS search type is seen to
have a slope of about 1 indicating equal cost, whereas the No Digest SS type costs Mascot �10-fold more in scored search space size than
Paragon, and the Large SS type costs Mascot about 24-fold more than Paragon. B connects these effects to the resulting search times. The
Small SS searches for the two engines, as indicated by the red lines, fall in the same regime of time and scored search space as expected.
The Large SS searches, as indicated by the green lines, fall in completely different regimes of both scored search space size and search time
cost. The single No Digest SS measures are also shifted by an order of magnitude in both axes.
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scored, is more than an order of magnitude smaller as shown
in 4A. This comes with a nearly proportional drop in search
time as well as shown in 4B. The Paragon Large SS searches
take only 2.8- and 1.8-fold more time than the corresponding
Small SS searches of the same database for Swiss-Prot and
CDS Combined, respectively. The same comparison with
Mascot finds a difference of about 17-fold between these two
search types for both databases. The reason for the slight
vertical shift of the Paragon green and blue points in Fig. 4B is
the additional overhead in calling sequence tags, calculating
STVs, etc. Based on the improvements in discrimination, sen-
sitivity, and search time that allow the exploration of much larger
search spaces, it seems clear this is an overhead worth paying.

DISCUSSION

The central concept put forth with this new search engine is
the expansion of search space commensurate with the de-
gree that a segment of the sequence database is implicated
by sequence tag evidence. To our knowledge, this is the first
example of an algorithm that searches different areas of a
database to different degrees on a continuum during the
search of a single spectrum. That is, the allowed search space
can be different for each sequence segment.

The Paragon Algorithm assesses this degree of implication
on a continuous scale that is conceptually referred to as a
Sequence Temperature Value. This value is derived by calling
many small sequence tags for an MS/MS spectrum with as-
sociated estimates of correctness and determining their net
effect for each region of the database. The corresponding
modulation of search space is accomplished using feature
probabilities. Thus, for a segment in the database that is hot
for a particular spectrum, i.e. strongly implicated by the tag
set called for that spectrum, the algorithm will consider pep-
tides with rare modifications, unexpected cleavages, less
likely substitutions, and large delta masses. At the other limit
for a search of the same spectrum with the same set of tags,
a different segment in the database may be very “cold,” i.e.
not at all implicated by the tags, and the algorithm will only
consider the mostly likely features or lack of features, for
example, only tryptic peptides and the expected cysteine
alkylation modification but not its absence or any side
reactions.

An alternate way to state the fundamental Paragon concept
would be to say that peptide features should be considered
such that unlikely peptides are only considered when there is
a compensating amount of fragmentation evidence that could
substantiate an otherwise improbable answer. One limitation
of the Paragon Algorithm is that it may fail to find some
peptides that are both low frequency types of peptides (atyp-
ical) and have poor fragmentation. This is a deliberate sacri-
fice to gain the speed and discrimination that has been dem-
onstrated under “Results.” The detailed examination of the
answers found by only one of the two search engines for the
CDS Combined Large SS searches showed a good example

of this effect. The four spectra where Mascot found the right
answer and the Paragon Algorithm did not all fit this pattern;
the right answers were all lower probability semitryptic pep-
tides, and the spectra had poor fragmentation. Peptide iden-
tifications of this kind have limited value for protein identifica-
tion or as peptide results because they are both improbable
and lack the spectral information that would be needed to
substantiate an improbable answer. They are essentially just
peptide mass mapping results.

The results in this study demonstrate that the Thorough
search mode of the Paragon Algorithm, which invokes the
novel functionality described here, achieves a large increase
in search space without the detrimental effects that are typi-
cally associated with it. The identification rate is greatly in-
creased, yet discrimination is maintained at almost the same
level as small search space. This is possible because there is
only a very modest increase in the number of additional pep-
tide hypotheses that are scored relative to small search
space, 1.2-fold in the case of searching with tryptic specificity
and 20-fold when searching without digest specificity. By
contrast, Mascot searches chosen to mimic similar large
search spaces showed increases in numbers of hypotheses
scored of 25-fold and 200-fold, respectively, for semitryptic
and no enzyme specificity searches. Considering the three
fundamental concerns for an identification algorithm, sensi-
tivity (search space), discrimination (specificity), and speed,
the Paragon Algorithm is not an alternate balancing of these
concerns. It yields large gains in all three.

Although the problem of poor discrimination in large search
space is theoretically solvable with advanced scoring tech-
niques that introduce feature probabilities during ion scoring,
the cost in additional computational time would be large. The
Paragon Algorithm STV tag method provides a shortcut to
approximately the same solution without paying a high com-
putational price.

To limit the scope of this study, the issue of searching for
large numbers of modifications was intentionally avoided.
Thus, Paragon custom modification sets were made that
would allow exactly equal modifications to be searched, re-
ducing differences in search space with respect to Mascot to
only digestion and precursor mass tolerance variables. Nor-
mal Thorough searching with the Paragon Algorithm invokes
much larger sets of modifications, which can yield identifica-
tions of less common and even rare modifications and sub-
stitutions. A future publication will explore the identification of
atypical peptides and its impact on increasing the fraction of
spectra explained. However, it has at least been demon-
strated here that these searches have virtually no impact on
the discrimination in spectra where typical peptides are the
best answer. Searching with the normal Paragon modifica-
tions sets considering 35, 129, and 503 modifications and
substitutions in Fig. 3C showed almost no change in discrim-
ination. However, the fact that the results are not exactly
identical proves that the algorithm is not filtering out spectra

The Paragon Algorithm: Method Validation

1652 Molecular & Cellular Proteomics 6.9

 at A
P

P
LIE

D
 B

IO
S

Y
S

T
E

M
S

 on S
eptem

ber 13, 2007 
w

w
w

.m
cponline.org

D
ow

nloaded from
 

http://www.mcponline.org


that match tryptic peptides as is used in many second pass
approaches. The separate pass Taglet search is still consid-
ering new answers for these spectra, meaning better answers
can still be found, yet there is essentially no cost in discrim-
ination. As with the smaller modification sets, this is because
the use of sequence tags to determine STVs and the use of
feature probabilities allow the algorithm to be extremely judi-
cious about what additional answers it considers for scoring.

One of the most compelling advances the Paragon Algo-
rithm offers over existing approaches is searching without
digestion specificity, an extreme in large search space. Here a
somewhat artificial situation was examined where the sample
was actually digested with trypsin, but this is a very good test
case to measure the performance because it is easy to de-
termine what the right answers should be. The increase in
both speed and discrimination over Mascot is large enough
that this may open up certain areas of research that have not
been tractable for lack of a good analysis method. This may
include the search for biomarkers in endogenous peptide or
“peptidome” samples (6–9), study of neuropeptides (5), and
immunology research (10).

It is important to note that, although the No Digest SS
search type has been included in this study as a test for
validation, you would never run a Paragon Algorithm no digest
search unless there was really no regular digestion in the
sample. This is counter to the use of conventional search
approaches where iterative or filtering approaches often me-
thodically relax digest constraints to identify more peptides in
a sample that actually was treated with a digestion agent like
trypsin. The Thorough search effort of Paragon with trypsin
indicated as the digestion agent finds all cleavage variants
directly without the typical costs in loss of discrimination and
without the complexity of creating a multistep search.

Paragon offers a number of advantages over a class of
methods commonly referred to as “second pass searching,”
which have become a popular solution for increasing the
fraction of spectra identified. There are many different variants
of this approach, and they are not necessarily limited to two
passes. What all of them have in common is an initial search
followed by the application of a filter to remove the great
majority of proteins from consideration in subsequent
round(s) of the search where search space is then increased
by various means such as increasing the number of modifi-
cations considered and missed cleavages allowed and relax-
ing the requirement of conformance to the expected digestion
pattern. The Mascot error-tolerant search (37) allows the se-
lection of only a handful of proteins that are assumed to be
correct after the first pass, whereas Phenyx (23) can be ap-
plied to a full list of proteins identified in a first round. X!Tan-
dem (21, 38) can perform multiple rounds of refinement, and
tools like the Mascot Daemon (Matrix Science) allow the user
to define complex iterative strategies to do things like filter
spectra that have been identified with sufficiently high confi-
dence and search multiple databases.

There are several problems with these approaches, the
largest of which is the sensitivity to the protein threshold used
after the first stage. If the threshold is too high, then valid
proteins (and additional peptides from those proteins) are lost.
If the threshold is too low, then false proteins are included in
subsequent passes. Searching false proteins and allowing for
many modifications and other atypical features can only in-
troduce false peptide identifications. A more subtle risk of
applying protein thresholds arises from protein inference
complexities stemming from the presence of equivalent or
nearly equivalent protein entries in databases. Some of this
redundancy is purely informatic, arising from redundant en-
tries and errors in entries, but there is also true biological
complexity in protein homologs, splice variants, mutations,
etc. Overly aggressive filtering of nearly redundant proteins in
the first stage can preclude the detection of additional variant
forms or refinement of which form is being detected. By
contrast, Paragon does not set a protein threshold; rather it
uses continuous probabilities to describe what is learned from
an initial search, thereby circumventing all of the problems
discussed above.

The second major problem with second pass approaches is
that they are not applicable as a strategy for efficient search to
cases where it is not possible to do a fast initial search. This
is true of samples of endogenous peptides, which lack a
regular digest pattern, for example. The first pass search of
this type of sample must be done in no enzyme or No Digest
SS mode, and thus, the first pass with conventional software
is neither fast nor highly discriminating. Paragon addresses
this problem by performing a tag-based search (Taglet com-
ponent) rather than a precursor-filtered search as the initial
search.

Finally second pass approaches involve multiple steps and
thus are very user-guided and inherently harder to use regard-
less of the user’s level of expertise. The average biologist who
is not an expert in informatics cannot develop valid complex
methods. Minimally the results across multiple users will be
highly variable and hard to validate or judge. For experts, the
flexibility and large number of parameters for these tools allow
rapid prototyping of different search strategies, but for non-
experts this becomes a burden, and the heuristic rules they
invent are likely to offset the elegance in the fundamental
scoring algorithm of the tool. It must be recognized that
virtually all of the tools used in this field today are sufficiently
difficult for non-experts in informatics or mass spectrometry
and that this is one of the main factors inhibiting the growth of
mass spectrometry-based proteomics. The dual use of fea-
ture probabilities for both algorithmic purposes and the sim-
plification of the user interface achieves extensive identifica-
tion like multipass approaches but with a great reduction in
the complexity of operation.

Although this work has used only QqTOF data, our experi-
ences so far indicate that the benefits of the algorithm are
quite general to other types of tandem mass spectral data,
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and accordingly the software also supports the analysis of
data from other instruments such as TOF-TOF and ion traps.

In conclusion, the Paragon Algorithm is shown to represent
a substantial advance for protein identification by mass spec-
trometry. The performance advances enable searching large
search space as common practice and may popularize some
less traveled work flows such as the study of endogenous
peptides. Although the advances in the ease of use may be
less interesting to mass spectrometry gurus, it should be
recognized that software must be easier to use for proteomics
to transition from the realm of gurus to the laboratories of
biologists. The Paragon Algorithm can be a solid step in this
direction.
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