Resolution Enhancement of a Left-Handed Material Superlens

C. K. Ong

Centre for Superconducting and Magnetic Materials (CSMM) and Department of Physics, National University of Singapore

X. S. Rao

Temasek Laboratories, National University of Singapore

(ICMAT 2003, Singapore, December 2003)

Outline

- 1. Introduction
- 2. The FDTD Simulation
- 3. Results and Discussions
- 4. Summary

An insight ahead of the time

SOVIET PHYSICS USPEKHI

VOLUME 10, NUMBER 4

JANUARY-FEBRUARY 1968

538,30

THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF ϵ AND μ

V. G. VESELAGO

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Usp. Fiz. Nauk 92, 517-526 (July, 1964)

$$\nabla^{2}\vec{E} - \varepsilon\varepsilon_{0}\mu\mu_{0}\frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0$$

$$\vec{E}(\omega) = \vec{E}_{0}e^{j(\omega t - \vec{k}\cdot\vec{r})}, \ \vec{k}^{2} = \varepsilon\mu\frac{\omega^{2}}{c_{0}}$$

$$\varepsilon < 0, \mu < 0$$

Veselago's results

- > Fundamental physical laws do not rule out the possibility of simultaneous negative ϵ and μ .
- \triangleright EM properties of media with simultaneous negative ϵ and μ are very different from those of the normal materials with positive ϵ and μ .
 - ✓ left-handed
 - √ negative index-of-refraction
 - ✓ reversed Doppler effect
 - √ reversed Cerenkov radiation
 - ✓ focusing through a slab of such a medium

The rise of left-handed metamaterials

UCSD,

PRL 84,4184 (2000);

Science 292, 77 (2001).

PRL **76**,4773 (1996); IEEE MTT **47**, 2075 (1999).

FIG. 3. A transmission experiment for the case of H_{\parallel} . The upper curve (solid line) is that of the SRR array with lattice parameter a=8.0 mm. By adding wires uniformly between split rings, a passband occurs where μ and ε are both negative (dashed curve). The transmitted power of the wires alone is coincident with that of the instrumental noise floor (-52 dB).

Imaging by a LHM slab

Propagating wave: Phase compensation (Veselago 1964)

Evanescent wave : Amplitude reconstruction (Pendry 2000)

"Perfect" lens $\varepsilon_r(\omega) = \mu_r(\omega) = -1$

All geometric details of the source can be reconstructed at the image!

Amplification of evanescent waves?

No!

- Unphysically large field at the 2nd interface
- Breaking square integrability of EM fields if t>d
- Loss transforms amplified wave into decaying one
- >

Methodology

Finite-difference time-domain (FDTD)

- √ full wave
- √ straight-forward
- √ causality guaranteed
- √ dynamical

Diverse FDTD results

- Ziolkovski & Heyman [*PRE* **64**, 056625 (2001)]

 No stable image observed
- Loschialpo *et al.* [PRE **67**, 025602 (2003)]

 stable image but no resolution enhancement observed
- Cummer [APL 82, 1503 (2003)]
 image contains subwavelength components, enhanced resolution
- Karkkainen [cond-mat/0302407 (2003)]

 amplification of evanescent modes in a lossless LHM slab

Generate pure evanescent wave

Normal FDTD simulation involves both propagating and evanescent waves.

- ➤ Difficult to differentiate effects from propagating and evanescent wave.
- ➤ Difficult to study the dependence of the behavior of evanescent wave on different parameters.

How to generate *pure* evanescent wave?

- > Total internal reflection
- Guided mode of a planar dielectric waveguild
- > "Periodic" boundary condition

$$\mathbf{E}(x,y,t) = \mathbf{E}_0 e^{-i(k_x x + k_y y - \omega t)}, \mathbf{H}(x,y,t) = \mathbf{H}_0 e^{-i(k_x x + k_y y - \omega t)}$$
$$k_x^2 = \epsilon \mu \frac{\omega^2}{c^2} - k_y^2$$

The sample system

plasmonic dispersion

$$\epsilon(\omega) = \mu(\omega) = 1 - \frac{\omega_p^2}{\omega^2 - i\omega\nu_c}$$

z-polarized wave propagates in the *x*-direction

$$E_z(x,y,t) = E_{z0}e^{-i(k_x x + k_y y - \omega t)}$$

$$k_x^2 + k_y^2 = \frac{\omega^2}{c^2}$$

periodic boundary conditions are applied in the transverse y-direction

$$E_z(x,y\pm\Delta y) = E_z(x,y)e^{\mp ik_y\Delta y}$$
 ($k_v^2 > k_0^2$ for evanescent waves)

absorbing boundary conditions are applied at both ends of the x-direction

FDTD details

Yee cell with leapfrog staggered *E* and *H* sublattice

spatial grid
$$\Delta x = \Delta y = 0.3 \text{ mm}$$

total simulation space $4000\Delta x \times 1\Delta y$

time step
$$\Delta t = \Delta x/(2c) = 0.5 \text{ ps}$$

monochromatic EM source [Ziolkovski & Heyman, Phys. Rev. E 64, 056625 (2001)]

$$\omega_0/(2c) \approx 11 \text{ GHz}$$
 $\lambda_0 \approx 566\Delta x$

$$\epsilon(\omega_0) = \mu(\omega_0) = -1 - i \gamma$$

The dispersive ε and μ are handled in time domain using the piecewise-linear recursive convolution (PLRC) method

Dynamic features

small absorption (or large transverse k) → long relaxation time to stable state

Amplification of evanescent waves

Surface polariton

Evanescent wave from near-field source

Surface polariton at the 2nd interface

The 2nd SP is stronger than the 1st SP → Amplification!

Forced vibration and resonance of coupled oscillators

$$\ddot{\phi}_1 + \gamma \dot{\phi}_1 + \omega_0^2 \phi_1 + \Omega_c^2 \phi_2 = F e^{i\omega t},$$

$$\ddot{\phi}_2 + \gamma \dot{\phi}_2 + \omega_0^2 \phi_2 + \Omega_c^2 \phi_1 = 0,$$

$$\phi_1(\omega_0) = \frac{-i\gamma\omega_0 F e^{i\omega_0 t}}{\Omega_c^4 + \gamma^2 \omega_0^2}, \quad \phi_2(\omega_0) = \frac{\Omega_c^2 F e^{i\omega_0 t}}{\Omega_c^4 + \gamma^2 \omega_0^2}.$$

Physical model vs. numerical results

2.0

-■- 1st surface

2nd surface

0.01

Amplitude of E_{z}

$$\phi_1(\omega_0) = \frac{-i\gamma\omega_0 F e^{i\omega_0 t}}{\Omega_c^4 + \gamma^2 \omega_0^2}$$

$$\phi_2(\omega_0) = \frac{\Omega_c^2 F e^{i\omega_0 t}}{\Omega_c^4 + \gamma^2 \omega_0^2}.$$

$$\frac{\partial |\phi_1(\omega_0)|}{\partial \gamma} = \frac{\omega_0 F}{(\Omega_c^4 + \gamma^2 \omega_0^2)^2} (\Omega_c^4 - \omega_0^2 \gamma^2)$$

$$|\phi_1/\phi_2| = \gamma \omega_0/\Omega_c^2$$

$$\Omega_c^2 = Ce^{-\kappa L}, F = De^{-\kappa L/2}$$

0.1

$$\frac{\partial |\phi_1(\omega_0)|}{\partial L} = \frac{\gamma \omega_0 F}{\Omega_c^4 + \gamma^2 \omega_0^2} \frac{\kappa}{2} (3\Omega_c^4 - \omega_0^2 \gamma^2)$$

$$\frac{\partial |\phi_2(\omega_0)|}{\partial L} = \frac{\Omega_c^2 F}{(\Omega_c^4 + \gamma^2 \omega_0^2)^2} \frac{\kappa}{2} (\Omega_c^4 - 3\omega_0^2 \gamma^2)$$

Resolution enhancement

Dependence on γ

Dependence on L

Settle the discrepancies

Ziolkovski & Heyman [PRE 64, 056625 (2001)]

No stable image observed (dipersive nature of LHM?)

- 1. Lossless
- 2. $\gamma \sim 0.001$

Loschialpo et al. [PRE 67, 025602 (2003)]

stable image but no resolution enhancement observed

$$L \sim 3.2 \lambda_0$$

Summary

- ➤ Amplification of evanescent waves can be realized in LHM slab, through excitation of coupled surface polaritons.
- ➤ Stringent constraints apply for the amplification of evanescent waves. Only evanescent waves with limited transverse wave numbers can be amplified in lossy LHM slabs of finite width.
- ➤ Enhanced resolution can be achieved by a LHM superlens. The enhancement is also limited by absorption and finite width of the LHM slab.
- ➤ Stable image can't be obtained in the ideal lossless case, so that "perfect" lens is not realizable.