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SUMMARY 
 

 

An anomalous microwave effect in high-temperature superconducting YBa2Cu3O7-δ 

(YBCO) thin films has been observed and studied systematically using high sensitive 

microwave resonator techniques. The so-called anomalous microwave effect is 

characterized by a dc magnetic field-induced reduction in microwave surface 

impedance Zs (= Rs + jXs), especially in microwave surface resistance Rs. While the 

main focus of this study was on understanding the anomalous microwave effect from 

an experimentalist’s point of view, a lot of efforts have also been necessarily put into 

some related topics, including the deposition and characterization of YBCO thin films, 

the design, fabrication and packaging of microwave resonators, the set-up of the 

microwave measurement system and the improvement of microwave measurement 

methods.  

 

The first report of the anomalous microwave effect in high-temperature 

superconducting thin films was in 1997. The observation of field-induced reduction in 

Zs was surprisingly contradictory with the prediction of the prevailing theories, which 

highlighted the theoretical importance of the anomalous microwave effect. And then, 

the potential application of this anomalous effect was also realized. However, due to 

some difficulties, very few experimental results on this anomalous effect have been 

obtained since then. The shortage of experimental data limited the theoretical attempts 

on the anomalous effect and retarded the understanding of the underlying mechanisms. 

 v



The primary motivation of this work was therefore to offer a new body of valuable 

experimental data on the anomalous microwave effect to advance our understanding of 

this effect, both theoretical and practical.  

 

In this thesis, some basic but important features of the anomalous microwave effect, 

such as its dependencies on field alignment, frequency, temperature and microwave 

power, have been revealed through carrying out measurements of the anomalous effect 

under certain conditions. Most of the experimental results achieved in this work were 

reported for the first time in the literature. With a carefully designed experiment, the 

hysteretic properties of Zs(Hdc) have also been examined in dc magnetic fields with 

different strengths. The results directly confirmed that the anomalous microwave effect 

happens in a Meissner state where the dc magnetic field is not strong enough to form 

vortex inside the superconducting thin films. A comparative study of different samples 

demonstrated that there is a strong correlation between the anomalous effect and the 

microstructure of the superconducting thin film samples. It was suggested that the 

grain boundaries, especially the a/c type grain boundaries, in the thin films play 

important roles in the anomalous effect. A phenomenological model, which combines 

the conventional weak link model with an anomalous weak link, was therefore 

proposed to describe the experimental data on the anomalous effect.  The simulation 

results fitted well with the experimental data within some extents.  

 

Several existing theories and models that can predict a magnetic field-induced 

reduction in Zs have been reviewed and compared with the experimental observations. 

Unfortunately, none of them can give a satisfactory explanation for the anomalous 

microwave effect observed in the high-temperature superconducting thin films.  

 vi



 

Though it is still impossible to elucidate the origin of the anomalous microwave effect 

clearly, the experimental data gathered in this work have greatly developed the 

understanding of the anomalous microwave effect, which no doubt will be very helpful 

in determining the underlying physical mechanisms. 
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