5Course Description

5Units: Titles and Times (Approximate)

5Evaluation

6JAVA WORKSHOP 2.0 – A QUICK REVIEW

6Programs In Java

6Variables, Constants And Input Of Data

7Java Primative Data Types

7Use of Constants

7Naming Conventions

8Arithmetic Operations

8Relation Operations
 Equality Operators

8Logical Operators

8More Assignments

9Standard Input And Output

9String Input

9Numeric Input

10Casting

11Formatting Output

11Digits and Decimals

12Using Colour

13Selection

13If/Else Construct

15The Case Construct (Switch)

16Repetition

16Counted Loops

16Conditional Loops

17Do Construct

17Java Looping/Selection Review Assignment (In Class)

17"For" Loops

17"Do/While" Loops

17More Looping/Selection Questions

18The Software Design Process

18Problem Definition

18List of Identifiers (Analysis)

18Algorithm (Design)

18Coding (Implementation)

18Testing and Debugging

18Maintenance

19Structure And Internal Documentation

20Debugging Your Programs

20Intermediate Output

21Code Walkthroughs

21Example # 2

21Program Code

21Code Walkthrough

22Example # 3

22Program Code

22Code Walkthrough

23“Bullet Proofing” Input

25Objects And Classes

26Behaviours And Attributes

26Attributes

26Behaviour

27Creating A Class

29Inheritance, Interfaces, And Packages

29Inheritance

29Interfaces and Packages

30Methods

30Kinds of Methods

30Defining a Procedural Method

31Defining a Functional Method

32Pass by Value

33Overloading Methods

34Method Abstraction

34Recursive Methods

36Method Variables And Object Variables

36The Use of Public and Static

36Java Method Exercises (In Class)

37Implementing Classes

37Using A Main Method Within The Class

37Using An Applet

38Driver Class and the SimpleMath Class in the Same Project

39Packages

41Driver Class and the SimpleMath Class in Different Files

41Subproject

42Main Project

43True Object Oriented Programming

43Objects

44Types of Methods

44Constructors

45Passing Objects to Methods

46Visibility Modifiers and Accessor Methods

47Instance Variables, Class Variables, Constants, and Methods

49The Scope of Variables

49The Keyword this

50Relationships Among Objects

51Objects and Classes Exercises

52Further Examples

52Constructors and Mutators

53Overloading Constructors

55Using Set and Get Methods

58Class Inheritance

58SuperClasses and SubClasses

59Overriding Methods

60The Object Class

60The equals Method

60The toString Method

60The clone Method

61The protected and final Modifiers

61The protected modifier

61The final modifier

62Abstract Classes

66Handling Input (Try/Catch)

66Java Try/Catch Assignment (In Class)

68Arrays

68Syntax

68Array Size

68Writing To An Array

69Reading An Array

69Examples

76Some Other Neat Array Tid-bits

76Copying Arrays

76Passing Arrays as Parameters

77Exercises

80Random Numbers

81Files

81Reading From a File

82Writing To a File

82File Exercises

83Sorting

83Selection Sort

84Bubble Sort

85Modified Bubble Sort

86Insertion Sort

87Sorting Categories

87Exchange Sorting

88Insertion Sorting

88Selection Sorting

89Searching

89Sequential Search

92Binary Search

95Advanced Data Structures

95Records

97Array Stack

100Array Queues

102Array Lists

105The Vector

111Nodes

112Linked Lists

115Reusing Tricks...

118Trees

119Generic Tree

122Comparing Objects

123Binary Search Trees

125Tree Traversals

131Linked Lists (Additional)

131STATIC MEMORY ALLOCATION

131Drawbacks of Static Memory Allocation

131DYNAMIC MEMORY ALLOCATION

132Singly Linked Lists

136Strings Quick Reference Guide

Unionville High School

Computer Studies Department

Grade 12 Computer and Information Science

 (ICS3M)

Teacher:

Course Description
This course helps students examine computer science concepts. Students outline stages in software development, define standard control and data structures, identify on- and off-line resources, explain the functions of basic computer components, and develop programming and problem-solving skills using operating systems and implementing defined practices. As well as identifying careers in computer science, students develop an understanding of the ethical use of computers and the impact of emergent technologies on society.

Units: Titles and Times (Approximate)
	Unit 1
	Working in the Computing Environment
	12 hours

	Unit 2
	Beginning to Program
	25 hours

	 Unit 3
	Problem Solving with Procedures and Functions
	18 hours

	Unit 4
	Information Storage and Related Issues
	12 hours

	 Unit 5
	Using Data Structures
	18 hours

	Unit 6
	Putting It All Together
	25 hours

	
	TOTAL
	110 hours

Students will be responsible for assigned readings from the handouts (usually done outside of class) as well as related questions. These questions will be taken up in class individually or in groups.

Evaluation
Students will be evaluated based on the following:

· Application Exercises / Problem Solving

30%

· Unit Tests and quizzes

40%

· Final Examination

30%

Note: Each of the above sections be assessed as follows:
Knowledge

30%

Application

20%

Communication
10%

TIPS

10%

 JAVA WORKSHOP 2.0 – A QUICK REVIEW
Java WorkShop uses a Project Manager to organize files. Typically you create a portfolio in which to store your work. You may create a new project or portfolio by clicking on the “Project Manger” button.

[image: image4.png]File Edit Build Debug Browse Project

DB &Y 2
A @@ @ K LS

[image: image5.png]

[image: image6.png]

[image: image7.jpg]Stack

A stack is an object consisting of a pile of objects.

Beek

The last object added to the stack is the
first one tobe retrieved.
LIFO: Last In First Out

00 G & 20wt [T —r——— ety o b () 73

A window will pop up, click on File and create your personal portfolio (Store this portfolio on the a:\ drive or on the network drive for security reasons) by clicking “File”(“ New” (“Portfolio”, and type a name. After creating a portfolio, you can create a project by going back to “File”(“New”(“Project”; choosing Standalone or Applet and following the instuctions.
Note: whenever you write a program the project name must be the same name as the class name.

Programs In Java

In Java there are two types of programs; standalone and applets.

Standalone programs can be executed without using an Internet browser

Applets are executed through a network browser and use a GUI class library.

Variables, Constants And Input Of Data

A computer can be thought to have a memory. You can think of a computer’s memory as a series of “mailboxes” into which information can be stored. Each “mailbox,” or location, has its own numeric address.

	54902
	54903
	54904
	54905

	
	
	
	

Rather than having to remember a numeric memory location in Java we identify particular memory location by giving it a name (identifier). Because we can vary the information we can put in a memory location we can think of each location as a variable.

Java actually has three kinds of variables; instance variables, class variables, and local variables.

Instance variables are used to define the attributes of a particular object.

Class variables are similar to instance variables, except their values apply to all that class’s instances (and to the class itself) rather than having different values for each object.

Local variables are declared and used inside method definitions, for example, counters in loops, or to hold values that you need only inside the method definition itself. Note: Java does not have global variables.

Java Primative Data Types

	Type
	Size in bits
	Values
	Default

	boolean
	1
	true or false
	False

	char
	16
	‘\u0000’ to ‘\uFFFF’

(Unicode character set)
	‘\u0000’

	byte
	8
	-128 to +127
	0

	short
	16
	-32,768 to +32,767
	0

	int
	32
	-2,147,483,648 to +2,147,483,647
	0

	long
	64
	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
	0

	float
	32
	-3.40292347E+38 to +3.40292347E+38
	0.0

	double
	64
	-1.79769313486231570E+308 to +1.79769213486231570E+308
	0.0

To declare a variable, you must include a name and a type

type name;

where the name is any valid Java identifier. For example, to set-up an integer variable named number we would have to do the following

int number;

Use of Constants

In a program that requires a constant value in several expressions where we are doing calculations, it is advisable to use a constant. The use of constants help make revising a program easier with less chance for error. To declare a constant we use the final keyword,

final type name = #;

For example to declare a constant of integer type named ROLLS equal to 6, we would do the following

final int ROLLS = 6;

Naming Conventions

Identifiers are names for variables, constants, classes, or methods. They must begin with a letter, and may not be one of the keywords in Java. Underscores may be used.

The Java naming convention: “Variable names begin with a lowercase letter and class names begin with an uppercase letter. If a variable name consists of more than one word, such as isVisible, the words are joined together and each word after the first begins with an uppercase letter.”

Variables: capitalize every word within identifier except the first

Methods: capitalize every word within identifier except the first

Constants: capitalize every letter of the word

Class: capitalize each word within the identifier

Arithmetic Operations

Note that Java follows the BEDMAS system. The following symbols are used in Java.

	OPERATION
	SYMBOL
	EXAMPLE

	Addition
	+
	5 + 3

	Subtraction
	-
	5 – 3

	Multiplication
	*
	5 * 3

	Division
	/
	5/3

	Modulus
	%
	5%3 –displays the remainder of 5/3 = 2

	Brackets
	()
	

Relation Operations

Equality Operators
Less than

<

Equal

==

Less than or equal to

<=

Not Equal

!=

Greater than

>

Greater than or equal to

>=

Logical Operators

And

&&

Or

| |

More Assignments

In Java it is possible to string together assignments, for example:

x = y = z = 0

There are also a number of short cuts available for certain operations.

	Expression
	Meaning

	x += y
	x = x + y

	x -= y
	x = x - y

	x *= y
	x = x * y

	x /= y
	x = x / y

	y = x++
	y = x + 1 (x is incremented after)

	y = ++x
	y = x + 1 (x is incremented before)

Standard Input And Output

String Input

Consider the following example which accepts string input:

// Input/Output a name

// Asks for a name then echoes it back
import java.io.*;

public class EchoName {

static public void main (String args[]) throws IOException {//main method

String name;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println(“Please type your name”);

name = stdin.readLine();

System.out.println(“Your name is\””+name+”\””);

}//end main method

}/* end EchoName class*/

Numeric Input

Numerical data input in Java is more complicated because input is accepted as a string type. In Java the line of characters representing a number must be converted or parsed (in the case of integers) and converted into a numerical value. Consider the following:

// Input integer numerical data
import java.io.*;

public class NumInput1 {

static public void main (String args[]) throws IOException {//main method

String numString;

int square;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Please type a number");

numString = stdin.readLine();

int number = Integer.parseInt (numString); //Change to an integer.

square = number*number;

System.out.println("Your number squared is "+ square);

}//end main method

}/* end NumInput1 class*/

Real number conversion is slightly different, you must create an object and then access a method which converts the string type to a double type. Consider the following program:

// Input double numerical data

import java.io.*;

public class NumInput2 {

 static public void main (String args[]) throws IOException {//main method

String numString;

double number;

double square;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Please type a number");

numString = stdin.readLine();

number = (Double.valueOf (numString)).doubleValue(); //Change string to a double.

square = number*number;

System.out.println("Your number squared is "+ (double) Math.round(square*100)/100);

 }//end main method

}/* end NumInput2 class*/

Casting

Casting means explicitly telling Java to make a conversion. A casting may widen or narrow its argument. To cast, just precede a value with the parenthesized name of the desired type. For example, the following lines of code cast an int to a double:

int i = 5;

double d = (double) i;

Note: This casting is not really necessary because you are widening the type and Java implicitly performs the casting.

Casts are required when you what to perform a narrowing conversion. You must tell the compiler that you really want to narrow the type. Narrowing runs the risk of losing information; the casts tells the compiler that you accept the risk. For example, the following code generates a compiler error:

short s = 259;

byte b = s;

The error message should state “Explicit cast needed to covert short to byte”. This can be fixed by changing the second line to

byte b = (byte) s;

When this code is executed, the number 259 (binary 100000011) must be squeezed into a single byte. This is accomplished by preserving the low order byte of the value and discarding the rest. It might surprise you find that the value of b is now 3!.

The 1 bit in bit position 9 gets discarded, leaving only 3 as shown below:

	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1

[image: image8.wmf]-

£

£

2

5

x

[image: image9.wmf]-

£

£

1

3

y

The are two simple rules that govern casting of primitive types:

You may cast any non – boolean type to any other non-boolean type;

You may NOT cast a boolean type to any other type or vice versa.

Consider the following example that takes in two numbers as double and find the average as an integer.

//Find the integer average of two double numbers

import java.io.*;

 public class AverageTwo {

 static public void main (String args[]) throws IOException {//main method

String num1String, num2String;

double num1, num2;

int average;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Please enter the first number");

num1= Double.valueOf(stdin.readLine()).doubleValue();//Read user input and change string to a double.

System.out.println("Please enter the second number");

num2String = stdin.readLine();

num2 = (Double.valueOf (num2String)).doubleValue(); //Change string to a double.

average = (int) (num1+num2)/2;
//Cast from double to integer

System.out.println("The average of the two numbers entered is "+ average);

 }//end main method

}/* end AverageTwo class*/

Formatting Output

Digits and Decimals

In order to format the number of digits one may use the java.text.DecimalFormat class. Let’s consider the NumInput1 example again:

// Input integer numerical data and format output
import java.io.*;

import java.text.DecimalFormat;

public class NumInput1 {

static public void main (String args[]) throws IOException {//main method

DecimalFormat twoDigits = new DecimalFormat ("00");

String numString;

int square;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Please type a number");

numString = stdin.readLine();

int number = Integer.parseInt (numString); //Change to an integer.

square = number*number;

System.out.println("Your number squared is "+ twoDigits.format (square));

}//end main method

}/* end NumInput1 class*/

We may also specify the number of decimal places using the java.text.DecimalFormat class. Consider the following program:

// Input double numerical data

import java.io.*;

import java.text.DecimalFormat;
public class NumInput2 {

 static public void main (String args[]) throws IOException {//main method

DecimalFormat twoDecimals = new DecimalFormat ("0.00");

String numString;

double number;

double square;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Please type a number");

numString = stdin.readLine();

number = (Double.valueOf (numString)).doubleValue(); //Change string to a double.

square = number*number;

System.out.println("Your number squared is "+ twoDecimals.format (square));

 }//end main method

}/* end NumInput2 class*/

Using Colour

import java.applet.Applet;

import java.awt.*;

public class Colour extends Applet {

 public void init(){

resize(1000,600);
//resizes the applet size

Color green=new Color(204,255,204);

setBackground(green);

 }

 public void paint (Graphics g){

Color blue=new Color(158,217,255);
//creating a colour called 'blue' where the numbers in the

//parameter represents RED, GREEN, BLUE, respectively

Color pink=new Color (222,0,151);

Color black=new Color (0,0,0);

g.drawString("You can highlight a number 2 ways",20,20);

g.drawString("You can highlight the number in a colour filled rectangle, or simply color the text",20,100);

//The following 4 lines highlight the number in a filled rectangle

g.setColor(blue);

//sets the color to whatever 'blue' is defined as

g.fillRect(100,105,50,20);
//draws a rectangle and fills it with color where //g.fillRect(xpos,ypos,Xsize,Ysize)

g.setColor(black);

g.drawString("123456",100,120);

//outputs the string

//The following 2 lines color the text
g.setColor(pink);

g.drawString("123456",100,150);

 }

}

Selection

If/Else Construct

Selection is a method used to make choices based on conditions. Java selection is similar to many other programming languages, involving an if and else statement. Consider the following example:

//The "Bus fare" program

//Read sequence of ages counting

//the number of students, seniors and adults.
import java.io.*;

public class Selection1 {

 static public void main (String args[]) throws IOException{

 DataInputStream stdin = new DataInputStream(System.in);

 final int SENTINEL =-1;

 int student=0, adult=0, senior=0;

 int age;

 String ageString;

 System.out.println("Enter ages, end with "+ SENTINEL);

 ageString = stdin.readLine();

 age = Integer.parseInt (ageString);

 while (age !=SENTINEL) {

 if (age >= 65)

 senior = senior + 1;

 else if (age <= 12)

 student ++;

 else // age is greater than 12 and less than 65.

 adult ++;

 ageString = stdin.readLine();

age = Integer.parseInt (ageString);

 }

 System.out.println("senior=" + senior);

 System.out.println("adult=" + adult);

 System.out.println("student=" + student);

 }

}

In the while loop example on the previous page the condition to be checked occurs at the beginning of the loop. Hence, an initial value for the controlling variable must be input prior to entering the loop, then input again at the end of the loop. There is an alternate form of a conditional loop which uses the if and break statements, thus allowing exit at any point from the loop.

//The "2nd Bus fare" program

//Read sequence of ages counting

//the number of students, seniors and adults.

import java.io.*;

public class Selection2 {

 static public void main (String args[]) throws IOException{

 DataInputStream stdin = new DataInputStream(System.in);

 final int SENTINEL =-1;

 int student=0, adult=0, senior=0;

 int age;

 String ageString;

 System.out.println("Enter ages, end with "+ SENTINEL);

 while (true) {

 ageString =stdin.readLine();

age = Integer.parseInt (ageString);

 //Test exit condition.

 if (age == SENTINEL)

break;

 if (age >= 65)

 senior ++;

 else if (age <= 12)

 student ++;

 else // age is greater than 12 and less than 65.

 adult ++;

 }

 System.out.println("senior=" + senior);

 System.out.println("adult=" + adult);

 System.out.println("student=" + student);

 }

}

The Case Construct (Switch)

//The "Letter Grades" program

//Produce letter grades from marks for test.

import java.io.*;

public class Case1 {

 static public void main (String args[]) throws IOException{

 DataInputStream stdin = new DataInputStream(System.in);

 int A=0, B=0, C=0, D=0, F=0; //Theseare not constants.

 int mark;

 System.out.println ("Enter marks, end with -1");

 String markString = stdin.readLine();

 mark = Integer.parseInt(markString);

 while (mark != -1) {

 switch (mark) {

case 8: case 9: case 10:

 A ++;

 break;

case 7:

 B ++;

 break;

case 6:

 C ++;

 break;

case 5:

 D ++;

 break;

case 0: case 1: case 2: case 3: case 4:

 F ++;

 break;

default:

 System.out.println ("Mark is incorrect, enter again.");

 break;

 }

 markString = stdin.readLine();

 mark = Integer.parseInt(markString);

}

System.out.println("A = " + A);

System.out.println("B = " + B);

System.out.println("C = " + C);

System.out.println("D = " + D);

System.out.println("F = " + F);

 }

}

Repetition

Repetition in Java is similar to any other program language: there are counted, conditional, and infinite loops available.

Counted Loops

Consider the following program:

// Average ten numbers

import java.io.*;

public class Repetition1 {

 static public void main (String args[]) throws IOException {//main method

int mark;

double sum = 0;

double average;

String markString;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Please enter 10 marks <one each line>");

for (byte count = 1;count<=10;count++) {

 markString = stdin.readLine();

 mark = Integer.parseInt (markString); //Change to an integer.

 sum += mark;

}

average = sum/10;

System.out.println();

System.out.print ("The average is ");

System.out.println (average);

 }//end main method

}/* end Repetition1 class*/

Conditional Loops

There are two forms of conditional looping in Java. One is referred to as the while construct and the other is referred to the do construct. Consider the following example of the while construct:

// The while (some condition) conditional loop
import java.io.*;

public class Repetition2 {

 static public void main (String args[]) throws IOException {

DataInputStream stdin = new DataInputStream(System.in);

String word;

final String SENTINEL = "stop";

System.out.println ("Enter a sequence of words, end with " + SENTINEL);

//Words must have at least one letter.

word = stdin.readLine();

while (!word.equals(SENTINEL)) {

System.out.println ("Last letter of " + word + " is " + word.charAt(word.length() -1));

word = stdin.readLine();

 }

System.out.println("This is the end of the sequence.");

 }

}
Do Construct

// The do (some condition) conditional loop
import java.io.*;

public class Repetition3 {

 static public void main (String args[]) throws IOException {

DataInputStream stdin = new DataInputStream(System.in);

String word;

final String SENTINEL = "stop";

System.out.println ("Enter a sequence of words, end with " + SENTINEL);

 //Words must have at least one letter.

do {

word = stdin.readLine();

if (!word.equals (SENTINEL)) {

 System.out.println ("Last letter of " + word + " is " + word.charAt(word.length() -1)); }

 }while (!word.equals(SENTINEL));

 System.out.println("This is the end of the sequence.");

 }

}

Note: In the while construct the condition occurs at the beginning of the loop and hence the user has the choice as to whether to enter the loop at all. In the do construct the condition occurs at the end of the loop, therefore the loop will be executed at least once.

Java Looping/Selection Review Assignment (In Class)

"For" Loops

1. Write a program that finds the average number of characters in 10 strings that have been input. The average must cast to an integer. The program will then find the number of strings that were above, below, or equal to the average.

2. [image: image10.png]| Java WorkShop Project Manager [i[=] E3 |

Fils View Project Help

My Portolios
personal

Checkers

CardFile
JellyBeanExample
PerformanceExample

£ Helloworld java

S Works.

[image: image11.png]RavaorkstiopPavalionsole:

Before creating circle2
cirlet is : radius (1.0) and number of Circle objects (1)

Afte creating circle2 and madifying circle1's radius ta
cirle is : radius (9.0) and number of Circle objects (2)
cirele2 is : radius (5.0) and number of Circle objects (2)

Cear | Close | Help | ¥ Pop up on any output

Generate a table for the expression z = (x2 + y2)/(x-y) for the values

 and

 .

"Do/While" Loops

3. Write a program that will accept double type numbers until the flag “end” is entered then display the sum and average formatted to two decimal places. The program must also determine the largest and smallest numbers input.

4. Write a program that asks for a name followed by 5 marks. The program will calculate the average of the person’s mark and display it rounded to 1 decimal place. The program will end when the flag “end” is entered and the overall average found rounded to 1 decimal place will be displayed. The program will then find the number of individual averages that were above, below, or equal to the overall average.

More Looping/Selection Questions

1) Write a program that determines the sum of all numbers between 91 and 989 that are divisible by 13.

2) Write a program that reads in a number and prints the sum of all the even numbers from 2 to the input value.

3) The Island of Money Question: King Bigfoot, leader of a wealthy island nation in the Arctic circle, was distributing his wealth to the one million natives who lived on the island. He had the entire island population line up in single file starting at the gates to his castle. He gave $1 to the first native. The next two natives got $2 each. The next three natives got $3, and so on. King Bigfoot’s accountant has hired you to write a program in Java to determine what the millionth native received.

The Software Design Process

[image: image12.png]| Java WorkShop Java Console
[hatis the name ofthe il of ngers?

_otear| _cloce | Hep |

Problem Definition

[image: image13.png]in class Car:void main(Sring arov) is not defined
|

Clear | Close | Help | I Pop up on any output

Define the problem in terms of Input, Output, and Processing: What can we expect from the user as input; what should the user anticipate as output (as well as how do we make it easier for the user to supply the input that the program requires); and how do we process the input so that it becomes the required output.

[image: image14.png]Java WorkShop Java Console [_[O1x]
Calling showéts.
This caris green Honda Accord
The engine is off
Starting engine.
[The engine is now on.

Callng showats

his car s 2 areen Honda Accard]
he engine s on

Strting engine

he engine s irzady on

|t 3
Clear | Close | Help | Popup on any output

Example: Calculate the amount of change a person has.

 I : numPennies, numNickels, numDimes, numQuarters, numLoonies
(handful of change)

 O : totalWorth

(how much is it worth)

 P : totalWorth = pennyWorth + nickelWorth + dimeWorth + quarterWorth + loonieWorth

[image: image15.wmf]-

£

£

1

3

y

pennyWorth = numPennies * PENNYVALUE

nickelWorth = numNickels * NICKELVALUE

dimeWorth = numDimes * DIMEVALUE

Continue until

quarterWorth = numQuarters * QUARTERVALUE

everything on the

loonieWorth = numLoonies * LOONIEVALUE

right is either on the

PENNYVALUE = 0.01

input list or a constant.

NICKELVALUE = 0.05

DIMEVALUE = 0.1

QUARTERVALUE = 0.25

LOONIEVALUE = 1

List of Identifiers (Analysis)

Define each identifier in two ways: What does it represent, and how is it used. (If identifier names are chosen well, step one is marginally redundant in many cases, except for the frequent occurrences of multiple identifiers with similar functions.)

Example: numPennies (integer) 1: represents the number of pennies in the handful of change.

 2: used as an input variable to compute the pennyWorth.

Algorithm (Design)

“A visual representation of a problem solution”

Possible forms:

i. Flowcharts - very useful for visualizing data and control flow;

ii. SLDs (Structured Line Diagrams) – emphasizes the hierarchy of the control flow;

iii. Pseudocode - useful to produce program comments as the solution is found;

iv. Wernier-Orr Diagrams (Top-down approach) – useful to break problems into subprogram (method or procedure) sized pieces.

Coding (Implementation)

Writing the program.

Testing and Debugging

Checking the program for errors. Initially this means looking for syntax errors (errors in programming language usage) or logic errors (errors in perceiving the problem). (Formal testing of computer programs always includes testing each loop and fragment 0, 1, max-1, and max times. This is because most errors occur on ‘cusps’ : near the first or last time something happens.)

Maintenance

Update the program if necessary.

(More for very large projects)

Structure And Internal Documentation

Internal documentation and structure are used to make programs easier to follow. Consider the following program done with no documentation or structure:

public class I { static public void main (String args[]){for(int p= 1000000,i=1;p>0;p-=i++)System.out.println(i);}}

Unfortunately this program is incredibly difficult to follow and understand. Here is the same program with an appropriate amount of commenting and indenting.

// ==

// Program name

// Author

// Date

// Programming Language, version number

// ==

// Problem Definition
– Required to determine the amount of money given to the millionth native based on the 1st being //

given $1, the next two $2, etc

// ==

// List of Indentifiers
- let money represent the amount of money given the the native

//

- let population represent the native population

// ==
public class IslandOfMoney { //Start of class IslandOfMoney

 static public void main (String args[]){//Main method

for (int population=1000000, money=1; population > 0 ; population -= money++) {

 /*Counted loop:Sets the value of population to 1,000,000. Sets the dollar value the people are receiving. Terminates the program when the population reaches 0. Subtracts the dollar value from the population, because the dollar value is equal to the number of people receiving that amount of money. The number of people that have received money continues to be subtracted as the amount of money increases by one. */

System.out.println("Money = "+ money);

/* Outputs the amount of money handed out */
System.out.println("Population = "+ population);
/* Outputs the value stored in the integer variable population */

 System.out.println();

// Outputs a blank line

} // end counted loop with counter population
 } // method main
} // class IslandOfMoney

Note: in addition to documentation and structure, white space helps to make the program earier to read. Group together like structures, and place white space between them.
Debugging Your Programs

Intermediate Output

If you are having difficulty figuring out why your program isn’t working right, the first thing you should do is a code walkthrough. If you still can’t find the error after completing a code walkthrough, then you might want to try using a technique called “intermediate output”. Intermediate output is accomplished by inserting print lines into our code so we can see the value of variables at certain points in the program. Using this technique in conjunction with a code walkthrough is the most effective method of pinpointing errors or “bugs” inside the program. This allows you to compare what you think the program is doing (code walkthrough) to what the program is actually doing (intermediate output). In the case below we use intermediate output inside the while loop to display the value of “pointer”. The lines in blue have been added as intermediate output.

public class DebugMe {

public static void main (String args[]) {

int pointer = 0;

System.out.println (“Pointer before while loop = ” + pointer);

while (pointer < 15) {

pointer += 3;

System.out.println (“Pointer = ”+ pointer);

}

System.out.println (“Pointer after leaving while loop ” + pointer);

} // method main

} // class DebugMe
Here’s an example using a String type variable.

public class DebugMe2 {

public static void main (String args[]) {

String word = “aeiou”;

System.out.println (“Word before for loop = !” + word + ”!”);

for (int count = 1; count < 5; count ++) {

word += “a ”;

System.out.println (“Word = !”+ word + “!”);

}

System.out.println (“Word after leaving for loop !”+ word +”!”);

} // method main

} // class DebugMe

Why do we add the exclamation marks before and after a String type variable when using intermediate output?

As you become more familiar with this technique, you could start reducing the amount of supporting text you have for each line of intermediate output.

Code Walkthroughs

The first step in correctly debugging your programs is a code walkthrough. A code walkthrough is a chance to role-play the instructions you have given the computer. To correctly use a code walkthrough, you must follow the instructions you have given the computer precisely, writing down the values of all variables and any intermediate steps. Following instructions is not always as easy as it sounds. You have to practice this skill until you know what is happening during every line of the program.

	
	

	
	

	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	

	
	

	
	

	
	

Once we have finished our code walkthrough if we were asked: “What does this program display on the screen?”

Then we would know that this program would display the following to the screen:

10

2 8

Example # 2

Here is our last example, this time one that is using a “do loop”.

	Program Code
	Code Walkthrough

	public class CWDoLoop {
	

	 public static void main (String args[]) {
	

	 int number = 47;
	number

47

	 do {
	Loop #1

	 System.out.println(“Less than 10”)
	“Less than 10”

	 } while (number < 10);
	number

47

	 System.out.println (number)
	number

47

	 } // method main
	

	} // clas CWForLoop
	

Example # 3

Here is another example, this time one that is using a “for loop”.

	Program Code
	Code Walkthrough

	public class CWForLoop {
	

	 public static void main (String args[]) {
	

	 int number = 1;
	Number

1

	 for (int i = 3; i > 0; i --) {
	Loop #1

i = 3
	Loop #2

i = 2
	Loop #3

i = 1
	Loop #4

i = 0

	 number *= i;
	number

3
	number

6
	Number

6
	Not executed

	 }
	

	 System.out.println (number)
	Number

6

	 } // method main
	

	} // clas CWForLoop
	

“Bullet Proofing” Input

Runtime errors occur in programs if input data is not the correct type. There are different levels of protection to avoid runtime errors form bad data. Consider the following program:

// The "LetterGrades" class.

// Produce letter grades from marks for test.

import java.io.*;

public class LetterGrades {

static public void main (String args []) throws IOException {

DataInputStream stdin = new DataInputStream(System.in);

int A = 0, B = 0, C = 0, D = 0, F = 0; //These are not constants.

int mark;

System.out.println ("Enter marks end with -1");

String markString = stdin.readLine();

mark = Integer.parseInt(markString);

while (mark != -1) {

switch (mark) {

case 8:

case 9:

case 10:

A++;

break;

case 7:

B++;

break;

case 6:

C++;

break;

case 5:

 D++;

 break;

case 0:

case 1:

case 2:

case 3:

case 4:

 F++;

 break;

default:

System.out.println ("Mark is incorrect, enter again");

break;

}

 markString = stdin.readLine ();

mark = Integer.parseInt(markString);

}

System.out.println ("A = " + A);

System.out.println ("B = " + B);

System.out.println ("C = " + C);

System.out .println ("D = " + D);

System.out .println ("F = " + F);

 } // main method

} /* LetterGrades class */

The above program checks if the user input is –1, or 1-10. If the user inputs 10 the program will display a message that the data input is invalid. However, the program would end if the user input a letter. To handle this event the input should be read in as a string than converted (parsed) to see if it is an integer or real number.

Consider the following modified LetterGrades class example:

 import java.io.*;

public class LetterGrades2 {

 static public void main (String args []) {

DataInputStream stdin = new DataInputStream(System.in);

int A = 0, B = 0, C = 0, D = 0, F = 0; //These are not constants.

int mark;

System.out.println ("Enter marks end with -1");

while (true) {

try {

String markStr = stdin.readLine (); //read in as a string

mark = Integer.parseInt (markStr); //parse into a number

break;

}

catch (NumberFormatException e) {

System.out.println ("Bad mark, try again");

}

}

while (mark != -1) {

switch (mark) {

case 8:

case 9:

case 10:

A++; break;

case 7:

B++; break;

case 6:

C++; break;

case 5:

D++; break;

case 0:

case 1:

case 2:

case 3:

case 4:

F++; break;

default:

System.out.println ("Mark is incorrect, enter again");

break;

}

markStr = stdin.readLine (); //read in as a string

mark = Integer.parseInt (markStr); //parse into a number

}

System.out.println ("A = " + A);

System.out .println ("B = " + B);

System.out .println ("C = " + C);

System.out.println ("D = " + D);

System.out .println ("F = " + F);

 } // main method

} /* LetterGrades2 class */

Objects And Classes

Object-oriented programming is modelled on how, in the real world, objects are often made up of many kinds of smaller objects. When you write a program in an object-oriented language, you don’t define actual objects. You define classes of objects, where a class is a template for multiple objects with similar features. Classes embody all the features of a particular set of objects. For example, you might have a Tree class that describes the features of all trees (leaves, roots, grows, etc.). Once you have a Tree class you can create lots of different instances (objects) of that Tree.

[image: image16.jpg]Wihere should Jawa WarkShaop store the project saurce files?

(Java WaorkShop will create this directory if it doesmt exist)

Are there files already in that directory that =should be added {o the pro

{ 'Wes (s8R0

[image: image17.wmf]-

£

£

2

5

x

[image: image18.png]% Java WorkShop Java Console [B=%]

Before calling the swap method, num is 1 and numzis 2
Insids the swap method

Before calling the swap method, n1 is 1 and n2 is 2

Afer caling the swap method, 1 is 2 and n2is 1

afer calling the swap method, num1 is 1 and num2 s 2

Clear | Close | Help | ¥ Pop up on any output

Class : Tree

Maple Tree - instance

(abstract)

of a class Tree (concrete)

Palm Tree (instance)

A class is a generic template for a set of objects with similar features.

An instance is a specific concrete representation of a class. Instances and objects are the same thing.

In Java you might create a class for a user interface element called Button. The Button class defines the features of a button (size, appearance, etc.) and how it behaves (does it need a single click or double click, etc.). After you define the Button class, you can then create instances of that class. By creating the Button class, you don’t have to keep rewriting the code for each individual button you create.

Your job as a Java programmer, is to create the right set of classes to accomplish what your program needs to accomplish. Fortunately, you don’t have to start from the very beginning: The Java environment comes with a standard set of classes (called a class library) that implement a lot of the basic behaviour you need (like units in Pascal).

Behaviours And Attributes

Every class you write in Java has two basic features: attributes and behaviour.

Attributes

Attributes are the individual things that differentiate one object from another and determine the appearance, state, or other qualities of that object. For example suppose we created a class called Car. The Car class might include the following attributes:

Attributes

 Values

Colour

red, green, blue

Style

2 door, 4 door

Make

Honda, Toyota

The attributes of an object in a class are defined by a variable, referred to as an instance variable.

Behaviour

A class’s behaviour determines how an instance of that class operates; for example, how it will “react” if asked to do something by another class or object or if its internal state changes. Behaviour is the only way objects can do anything to themselves or have anything done to them. Here are some behaviours the Car class might have:

· Start the engine

· Stop the engine

· Speed up

To define an object’s behaviour, you create methods. Methods look like and behave just like functions in other languages but are define and accessible solely inside a class.

Creating A Class

Lets create a Car class. Open up Java and create a new stand alone project with no GUI called Car. Type the following;

1:
class Car {

// the class definition. Note the class name must start with a

2:

//upper case letter

3:
String make;

//instance variable called make of type String
4:
String colour;

//instance variable called colour of type String
5:
boolean engineState = false;

//instance variable called engineStart of type boolean
6:

//initialized to false

7:
void startEngine() {

//Start of a method called startEngine. Since the method

// does not return a value it’s definition includes void.

8:

if (engineState == true)

9:

System.out.println(“The engine is already on.”);

10:

else {

//Start of else statement

11:

engineState = true;

12:

System.out.println(“The engine is now on.”);

13:

}

//End of else statement

14:
 }

//End of startEngine method

15: }

//End of Car class

Save the program as Car. Let’s add one more method to the Car class called showAtts which be used to print the current values of all the instance variables in an instance of your Car class.

1:
void showAtts() {

2:

System.out.println(“This car is a “ + colour + ” “ + make);

3:

if (engineState == true)

4:

System.out.println(“The engine is on”);

5:

else

6:

System.out.println(“The engine is off”);

7:
}

Save the file and compile it. Now try to run the program. What happens when you try running the program?

You get an error message;

Why? When you run a compiled Java class directly, Java assumes that the class is an application and looks for a main() method. You need to create an applet or application that uses the Car class or add a main () method directly in the Car class. In this case we will simply add a main () method to the Car class.

1:
public static void main (String args[]) {

2:

Car m = new Car ();

//creates a new instance of the Car class and stores

// a reference to it in the variable m.

3:

m.make=”Honda Accord”;

//assigns the instance variable m.make a value

4:

m.colour=”green”;

//assigns the instance variable m.colour a value

5:

System.out.println(“Calling showAtts….”);

6:

m.showAtts();

//calls the showAtts() method

7:

System.out.println(“---------------------”);

8:

System.out.println(“Starting engine….”);

9:

m.startEngine();

//calls the startEngine() method

10:

System.out.println(“---------------------”);

11:

System.out.println(“Calling showAtts….”);

12:

m.showAtts();

//calls the showAtts() method

13:

System.out.println(“---------------------”);

14:

System.out.println(“Starting engine….”);

15:

m.startEngine();

//calls the startEngine() method

16:
}

If you did all of the above correctly you should see the following;

Inheritance, Interfaces, And Packages

Inheritance, interfaces, and packages are all ways to help organize classes and class behaviour.

Inheritance

Classes are arranged in a strict hierarchy. A class may have a class above it (superclass) and each class may have one or more classes below it (subclass). Classes further down in the hierarchy are said to inherit from the classes further up in the hierarchy. The figure below is an example of a hierarchy diagram.

ABSTRACT

CONCRETE

This is extremely useful as the programmer does not have to re-define the attributes and behaviour for each class if the class above contains the required features. At the top of the Java class hierarchy is the object class. The object class is the most general class. As one moves down through the classes each class becomes more tailored to a specific task.

Please note it is possible for a class to have more than one superclass and thus a class can inherit variables and methods from all those classes. This is called multiple inheritance.

Interfaces and Packages

An interface is a collection of methods names, without definitions, that can be added to classes to provide additional behaviour not included with those methods the class defined itself or inherited from its superclass.

Packages in Java are a way of grouping together related classes and interfaces in a single library or collection.

Methods

As programs get bigger it is important to subdivide them into subprograms. In procedural programming this is done by breaking the program into procedures and functions. In object oriented programming, subdivision is accomplished breaking down the program into methods. All Java methods must belong to a class.

The benefits of breaking a programming project into methods include:

· Cleaner code – easier to follow, maintain, and debug

· Reusability – methods can easy be copied and pasted to other programs, or “called” by the calling block

· Data protection – data is protected by allowing access only through certain methods

Kinds of Methods

There are two types of methods in Java:

· Function-type methods (methods that return a value)

· Procedural-type methods (methods that perform an action [do not return a value])

One of the most important facts about methods is it’s header. The header consists of four parts

· modifiers (public, static)

· return type (functional methods only) ***
· signature (name, parameters type list) ***
· throws clause (throws IOException)
***Note: Both 2 and 3 must be included in a method header. 1 and 4 are optional. If you do not include modifiers the default will be “public??”. Part 4 may or may be required depending on the method’s purpose. Can you think of a case where you must specify throws IOException?

A method’s signature includes:

· The method’s name

· Any parameters required. (Parameters RECEIVE data from the calling block method necessary for its execution.)

Defining a Procedural Method

Here is a complete definition of a procedural-type method called stars.

// Method to produce 10 asterisks on the screen
public void stars() {

System.out.println (“**********”);

}// stars method
We call the stars method from our main method, both of these methods are inside our class ‘StarsMethodExample’.

public class StarsMethodExample {

static public void main (String args[]) {

StarsMethodExample sME=new StarsMethodExample();

sME.stars();

} // method main

// Method to produce 10 asterisks on the screen
public void stars() {

System.out.println (“**********”); // Display ten stars

}// method stars
} // class Stars
Defining a Functional Method

Here is a complete definition of a function-type method called square.

// Method to produce the square of an integer

static public int square (int number){

return number*number;

} // square method

Remember to use a method it must be defined as part of a class. The main method can be before or after the other methods in your class. Java does not care in what order you place your methods. For clarity, most programmers either put all methods after the main method, or all methods before the main method. Many procedural languages require all methods to be defined prior to being used in the main method (but not Java).

A complete class which uses the square method is shown below.

// The table of squares program

import java.io.*;

public class FunctionalMethodExample1 {

// Method produces square an integer

static public int square (int number){

return number*number;

} //End square method

static public void main (String args[]) throws IOException {

 for (int value = 1; value<=10; value++) {

System.out.println(“Square of “ + value + “ = “ + square(value));

}

} // method main
} // End FunctionalMethodExample1
In the FunctionalMethodExample1 program a reference between value and number is made. When the program is run the main method’s for loop starts with an initial value of 1. A call to the method creates a reference between value and number in which a value of 1 is sent and number*number is returned.

Pass by Value

When using a method with parameters, a copy of the value of the actual parameter is passed to the method. This is called pass by value. The actual variable outside the method is not affected. Consider the following example;

public class PassByValue {

 public static void main (String args[]) {

int num1=1;

int num2=2;

System.out.println("Before calling the swap method, num1 is "+num1+" and num2 is "+num2);

swap(num1,num2);

System.out.println("After calling the swap method, num1 is "+num1+" and num2 is "+num2);

 }//End of main method

 static void swap (int n1, int n2){

int temp;

System.out.println("Inside the swap method ");

System.out.println("Before calling the swap method, n1 is "+n1+" and n2 is "+n2);

temp=n1;

n1=n2;

n2=temp;

System.out.println("After calling the swap method, n1 is "+n1+" and n2 is "+n2);

 }//end swap method

}//End SumAverage Class

If we run the program we get the following:

Notice the swapping of n1 and n2 do not

affect the value of num1 and num2.

Overloading Methods

The max method below only works for int data types

//Just handles integers(no overloading)

public class TestMax{

 // Main method

 public static void main(String[] args){

 int i = 5;

 int j = 2;

 int k = max(i, j);

 System.out.println("The maximum between " + i +

 " and " + j + " is " + k);

 }

 // A method for finding a max between two numbers

 static int max(int num1, int num2){

 if (num1 > num2)

 return num1;

 else

 return num2;

 }

}

What if you wanted to handle floating-point numbers as well? You could just change parameter values or you could create another method with the same name but different parameters.

Cosider the following program:
// TestMethodOverloading.java: Demonstrate method overloading

public class TestMethodOverloading{

 // Main method

 public static void main(String[] args){

 // Invoke the max method with int parameters

 System.out.println("The maximum between 3 and 4 is "

 + max(3, 4));

 // Invoke the max method with the double parameters

 System.out.println("The maximum between 3.0 and 5.4 is "

 + max(3.0, 5.4));

 // Invoke the max method with three double parameters

 System.out.println("The maximum between 3.0, 5.4, and 10.14 is "

 + max(3.0, 5.4, 10.14));

 }

 // Find the max between two int values

 static int max(int num1, int num2) {

 if (num1 > num2)

 return num1;

 else

 return num2;

 }

 // Find the max between two double values

 static double max(double num1, double num2){

 if (num1 > num2)

 return num1;

 else

 return num2;

 }

 // Find the max among three double values

 static double max(double num1, double num2, double num3){

 return max(max(num1, num2), num3);

 }

}

If you call max with int parameters, the max method with int parameters will be invoked; if you call max with double parameters, the max method with double parameters will be invoked. This is called method overloading. The Java compiler determines which method is to be used based on the method signature.

A method signature consists of the method name and parameters.
Overloading methods should be used for methods that perform closely related tasks.

Method Abstraction

The key to developing software is to apply the concept of abstraction. Method abstraction is defined as separating the use of a method form its implementation. The user can use a method without knowing the coding behind the method and the user cannot change the method signature.

Recursive Methods

Often a procedure or method needs to be called from within itself in order to per form it’s required task. The process of a method calling itself is known as recursion Consider the following example:

public class Recursion1 {

public void noExit(){

 System.out.println(" Hello There ");

 noExit();

}

public static void main(String args[]) {

 Recursion1 r1 = new Recursion1();

 r1.noExit();

}

}

Try running the class and see what happens.

The last statement, noExit, causes the computer to go back to the beginning of the method and start again. Since there is no condition that stops the recursive calls the program goes on forever (or until the computer runs out of memory). This is known as infinite recursion and should be avoided!!!!

To make recursion practical we must provide a way for it to stop. Consider the following example;

public class Recursion2 {

static public void yesExit (int n){

 System.out.println(" Hello There ");

 if (n>1)

yesExit(n-1);

}

public static void main(String args[]) {

 Recursion2 r2 = new Recursion2();

 r2.yesExit(3);

}

}

The above example could easily be written using a loop, so what’s the big deal about recursion? Recursion is more than just looping, it also involves storing information. Consider yet another example;

public class Recursion3 {

public void yesExit (int n){

 System.out.println (" Hello, N="+n);

 if (n>1)

yesExit(n-1);

 System.out.println (" Good-bye, N=" + n);

 }

public static void main(String args[]) {

 Recursion3 r3 = new Recursion3();

 r3.yesExit (3);

}

}

What would the output look like for a call of yesExit(3)?

Hello, N = 3

Hello, N = 2

Hello, N = 1

Good-bye, N =1

Good-bye, N =2

Good-bye, N = 3

How is this possible? The key is that one call generates another call, and the value for n is stored to be retrieved later when the subsequent call terminates. A careful study of this example is crucial to your understanding of recursion. Note that each call to yesExit generates a new, independent, copy of the procedure. Thus when yesExit (3) is called, it calls yesExit (2) which generates a new copy of the procedure whose value of n is 2. This in turn produces a call to yesExit (1) which produces its output and returns control to yesExit (2), yesExit (2) produces the output Good-bye, N =2 and then returns control to yesExit (3) which produces the output Good-bye, N =3. Here is another example to study.

public class Recursion4 {

 float power;

 public float findpower(float base, int exponent){

System.out.println(exponent + " " + base + " " + power);

if (exponent==0)

 power = 1;

else

 power = base * findpower(base,exponent-1);

System.out.println(exponent + " " + base + " " + power);

return power;

 }

 public static void main(String args[]) {

Recursion4 r4 = new Recursion4();

float ba = 2;

int exp = 3;

r4.power = r4.findpower(ba,exp);

System.out.println(r4.power);

 }

}

Method Variables And Object Variables

Method variables exist only within the method – once the method is terminated the variables no longer exist.

As a result method variables cannot be changed from outside the method where they were declared.

Object variables exist within the whole class- once the class is terminated the variables no longer exist.

As a result class variables:

1. if declared private they can be changed by any method within the class, but cannot be changed by any method outside of the class within which they were declared.

2. if declared public they can be changed by any method within the class, and can be changed by any method outside of the class.

The Use of Public and Static
You will note that the keyword public appears in the square and main methods. If a method is to be used outside the class in which it is defined, it must be declared as public in the class.

When a class is never required to be instantiated the class must be labelled as static, and all the methods within the class must also be labelled as static. For example the Math class is never instantiated. To call a method labelled as static, the class name, followed by a dot precedes the method’s name. For example,

double sqrtOfTwo = Math.sqrt(2); //calls the square root method of the Math class

A static method is called a class method

Usually classes and methods are not labelled as static. Before a method of a non-static class can be used it must first be instantiated to create an object of the class. For example, using the println method in the Console class requires a statement such as,

Console c = new Console ();

//creates (instantiates) an object of the Console class

After creating an instance, to use a method within the class requires the object’s name followed by a dot and then the method’s name. For example,

c.println(“Hello there”);

A non-static method is called a object method

Variables can also be labelled as static. Usually, if a variable of a class is not labelled static, when the class is instantiated to create an object, the object has a copy of that variable. Such variables are called object or instance variables.

Java Method Exercises (In Class)

1. Write a method that determines whether an integer is even or odd. If the integer is even it should be passed to a method that determines the sum of all the even numbers entered. If the integer is odd it should be passed to a method that determines the average of all the odd numbers entered.
2. Write a program that will accept integers and determine the most frequently occurring value.
3.
Write a method called power that determines the results of the expression y= bc. Write the method recursively and iteratively.
Implementing Classes

Up till now we have implemented a class by including a main method within the class or creating an applet. There are three other ways to implement a class:

1) Store the class as a package and write a driver class that that imports and uses the methods within the class.

2) In the same project, write a class that performs the required processing and write a driver class that implements (uses) the class.

3) Write a class that performs the required processing as a sub-project and write a driver class as a project that implements the class. (In this case the processing class is a sub-directory of the driver class)

Note: when you create a class that does not include a main method and it is later instantiated within an other class it is often referred to as a concrete class.

Lets look at a simple class and implement it using a main method, an applet, and each of the 3 ways discussed above:

Using A Main Method Within The Class

Using a main method within the class is the first way we learned how to implement a class. Note an object is created (instantiated) within the main method to allow access to the class instance variables and class methods.

import java.io.*;

public class SimpleMathUsingMain {

int number1, number2;

String Snum1,Snum2;

public int multiply (int num1, int num2){

return num1 * num2;

 }

 static public void main (String args []) throws IOException{

SimpleMathUsingMain s = new SimpleMathUsingMain();

System.out.println ("Enter two integers");

DataInputStream stdin = new DataInputStream(System.in);

s.Snum1 =stdin.readLine ();

s.number1 = Integer.parseInt(s.Snum1);

s.Snum2 =stdin.readLine ();

s.number2 = Integer.parseInt(s.Snum2);

int answer = s.multiply(s.number1, s.number2);

System.out.println ("");

System.out.println (s.number1 + " * " + s.number2 + " = " + answer);

 } // main method

} /* SimpleMath */
Using An Applet

Using an applet is the second way we learned how to implement a class. Note the use of the keyword extends, that allows the class to inherit the behaviours and attributes of the Applet class.

import java.applet.Applet;

import java.awt.*;

public class SimpleMathUsingApplet extends Applet {

 Label prompt1;

 TextField inputnum1;

 Label prompt2;

 TextField inputnum2;

 Label prompt3;

 TextField answer;

 int number1, number2;

 public void init () { // Sets up GUI components.

prompt1 = new Label ("Enter the first number ");

inputnum1 = new TextField (5);

prompt2 = new Label ("Enter the second number then press Return");

inputnum2 = new TextField (5);

prompt3 = new Label ("The two numbers multiplied equals ");

answer = new TextField (5);

add (prompt1);

add (inputnum1);

add (prompt2);

add (inputnum2);

add (prompt3);

add (answer);

 } // init method

 public boolean action (Event e, Object o) { // Respond to action of user's input.

number1 = Integer.parseInt (inputnum1.getText ());

number2 = Integer.parseInt (inputnum2.getText ());

answer.setText (Integer.toString (multiply (number1,number2)));

return true;

 } // action method

 public int multiply (int num1, int num2){ // Method to multiply numbers.

return num1 * num2;

 } // multiply method

}/*class SimpleMathUsingApplet*/

Driver Class and the SimpleMath Class in the Same Project

In this case we include a driver class called SimpleMathOneProject that implements a class called SimpleMathOP. Note the driver class is placed before the processing class being implemented, this could be reversed.

import java.io.*;

public class SimpleMathOneProject {

SimpleMathOP s = new SimpleMathOP();

void inputnumbers () throws IOException {

 System.out.println ("Enter two integers");

 DataInputStream stdin = new DataInputStream(System.in);

 s.Snum1 =stdin.readLine ();

 s.number1 = Integer.parseInt(s.Snum1);

 s.Snum2 =stdin.readLine ();

 s.number2 = Integer.parseInt(s.Snum2);

}

void outputanswer () {

 int answer;

 answer = s.multiply(s.number1, s.number2);

 System.out.println ("");

 System.out.println (s.number1 + " * " + s.number2 + " = " + answer);

}

static public void main (String args []) throws IOException{

 SimpleMathOneProject op = new SimpleMathOneProject();

 op.inputnumbers();

 op.outputanswer();

 } // main method

} // class SimpleMathOneProject

class SimpleMathOP {

int number1, number2;

String Snum1,Snum2;

public int multiply (int num1, int num2){

return num1 * num2;

 }

} /* SimpleMath */

Packages

Sometimes you may find yourself repeating the same coding over and over again, rather than having to copy and paste the coding (or re-typing), it is much more convenient to package the code. In Java a package allows you to store classes in a file structure so you can access the methods within the packaged class by simply using the keyword import followed by the package name. In Java WorkShop2.0 we do the following:

In order to make things more clear we first create a new portfolio. Next we must create the directories in which to store the package files. To do this we use the Project Manger and create a new Project and select the Package radio button. Let’s work through an example.

First create a portfolio called Packages using Project Manger and save the portfolio to g:\Packages.psf. Next create a project called FirstPack making sure you select the Package radio button. Click next and the following dialoge box should appear. Fill in the box as shown below.

[image: image1.jpg]Package name (e.q. sun jws.browse)

[FirstPack

Root directory for this package's class hierarchy

[oipackages

Wihere should Java Workshop store the project source files?

{Java Workshop will create this directory I it dossnt exist

[opackagesiFirsiPack

Are there files alteady in that directory that should be added to the project?

C Yes (8 No

<pack | it | Finish | cancel | Heip |

Click on Finish. This will create the appropriate directories in which to store your class files. You will notice that nothing has changed in the editor, since all you have done is created package directories. Now you must add class files to the package directory. Using the Project Manger create a standalone project called SimpleMath.

Then click Next and a dialogue box will appear in which you should type the entire pathname. This corresponds to the directories created above.

Then click Finish.

Type in the following code:

 package FirstPack;

import java.io.*;

public class SimpleMath {

public double multiply (double num1, double num2){

return num1 * num2;

 }

}

Before compiling, you must specify the root directory where package(s) are found. To do this, select Project>Edit>Build, and type G:\Packages as shown below.

[image: image2.jpg]E dit Projec! mpleM ath

General Build] Denug/Browse | Run |

Jawac options:
-g

Root directory of class hierarchy

qPackages|

Additional classpaths

Click OK, and press compile. You have just created your first package, let’s use it!!!

In order to use the package, let’s create a simple standalone application. Using Project Manger create a new Project called PacTest, and enter the following code:

import java.io.*;

import FirstPack.*;

public class PacTest {

 public static void main(String args[]) throws IOException{

SimpleMath m = new SimpleMath();

System.out.println(m.multiply(2,3));

 }

}

In order to use the imported FirstPack class, you must first enter the Project>Edit>Build area and add the line g:\Packages in the additional classpaths input box. Compile and run the program.

Wow we just created and used our very own package to multiply two numbers…imagine the possibilities!!

Driver Class and the SimpleMath Class in Different Files

So far, for our programs, we have only been able to use classes which exist in the same project or create packages of classes which can be imported, but this is not always the most efficient way to call upon these classes. Instead, we can create a project and subprojects whose classes can be instantiated at anytime in the main project. Thus, all subprojects can communicate with each other and the main project without having to create any packages.

To do this, create any project. Then highlight that project, go to the project manager and enter File -> Add -> Subproject. This adds a mini-project inside the folder of the main project.

[image: image3.jpg]I Java WorkShop Project Manager M [=] B3 |

File View Project Help

_ My Portfoliog

| personal

& Checkers

L Checkersame.java
CardFile

4 JellvBeanEsample

PerformanceExample
pott

Bum.java
test java

Subproject

//This subproject contains a single functional method, which adds two numbers

//and returns their sum.

public class Sum {

 private int total;

 public int summarize (int num1, int num2){

total = num1 + num2;

return total;

 }//end functional method "summarize"

}//End Public Class "Sum"

Main Project

//This program calls a method from the class "Sum" in the subproject "Sum"

import java.io.*;

public class test {

 public static void main (String args []) throws IOException{

 String number1, number2 = " ";

 int answer = 0;

 test t = new test();

 Sum s = new Sum();

 DataInputStream stdin = new DataInputStream(System.in);

 System.out.println ("This is a test of importing classes");

 System.out.println (" ");

 System.out.println ("Please input first number");

 number1 = stdin.readLine();

 System.out.println ("Please input second number");

 number2 = stdin.readLine();

 answer = s.summarize (Integer.parseInt (number1), Integer.parseInt (number2));

 System.out.println (""+ answer);

 }//End main method

}//End Public Class test

Note Under most circumstances this will work, but if you forgot to highlight this project upon creating the subproject, the “Additional Classpaths” will not have been initialized automatically. In order to do this manually, open your main project and go to Project -> Edit -> Build and in the space marked “Additional Classpaths” put G:\test\Sum.

True Object Oriented Programming

The Key to being most productive in OOP is to make each object responsible for carrying out a set of related tasks. If an object relies on a task that isn’t its responsibility, it needs to have access to an object whose responsibilities include that task. The first object than asks the second object to carry out the task by means of a more generalized version of the method call. In OOP jargon, you clients send messages to server objects. In particular, an object should directly manipulate the internal data of another object. All communication should be via messages, that is, messages calls. By designing your objects to handle all appropriate messages and manipulate their data internally, you maximize re-usability and minimize de-bugging time.

Objects

To work with OOP, you should be able to identify three key characteristics of objects.

· What is the object’s behaviour?

· All objects that are instances of the same class share a family resemblance by supporting similar behaviour.

· What is the object’s state?

· Each object stores information about what it currently looks like and how it got to be that way. This is what is called the objects state. An objects state may change over time, but not spontaneously. A change in the state of an object must be a consequence of messages sent to the object.
· What is the object’s identity?

· Each object has a distinct identity. For example, in an order processing system, two orders are distinct even if they request identical items.
Note: Individual objects that are instances of a class always differ in their identity and usually differ in their state.
In a traditional procedure oriented program you start the process at the top. In an object oriented system there is no top: you first find classes and then add methods to each class. A simple rule of thumb in identifying classes is to look for the nouns in the problem. Methods may be found by identifying the verbs in the problem.

As an example, consider an order processing system. Some of the nouns are:

· Item

· Order

· Shipping address

· Payment

· Account

Next, one looks for the verbs.

· Added (items are added to orders)

· Shipped (orders are shipped)

· Cancelled (orders are cancelled)

· Applied (payments are applied to orders)

With each verb, one has to identify the object that has the major responsibility for carrying it out. For example, when adding a new item to an order, the order object should be the one in charge, since it knows how it stores and sorts items. That is, add should be a method of the order class that takes an item object as a parameter.

Types of Methods

There are several specific types of methods used in object oriented programming to accomplished data encapsulation, initialization, access, and modification.

· Constructors

· Accessors

· Mutators

· Finalizers

Constructors

A constructor is a special method that initializes the instance variables of a class object. A class’s constructor method is called automatically when an object of that class is instantiated. It is common to have several constructors for a class; this is accomplished through method overloading, as we will see later. Constructors can receive arguments but cannot return a value. Constructors must have the same name as the class to which they belong.

Consider the following example:

// TestCircleWithConstructors.java: Demonstrate constructors

public class TestCircleWithConstructors{

public static void main(String[] args){ // Main method

Circle myCircle = new Circle(5.0); // Create a Circle with radius 5.0

System.out.println("The area of the circle of radius "+ myCircle.radius + " is " + myCircle.findArea());

Circle yourCircle = new Circle();// Create a Circle with default radius

 System.out.println("The area of the circle of radius "+ yourCircle.radius + " is " + yourCircle.findArea());

}

}

// Circle with two constructors

class Circle {

double radius;

Circle(){
// Default constructor

radius = 1.0;

}

Circle(double r) { // Construct a circle with a specified radius

radius = r;

}

double findArea() {
// Find area of this circle

 return radius*radius*3.14159;

}

} */

A constructor with no parameters is referred to as a default constructor.
Passing Objects to Methods

Just as you can pass the parameters of primitive types to methods, you can also pass the parameters of object types to methods. The following example passes a Circle object and an integer value as an argument to the method printAreas.
// TestPassingObject.java: Demonstrate passing objects to methods

public class TestPassingObject { // Main method

public static void main(String[] args) { // Create a Circle object with default radius 1

 Circle myCircle = new Circle();

// Print areas for radius 1, 2, 3, 4, and 5.

int n = 5;

printAreas(myCircle, n);

// See myCircle.radius and times

System.out.println("\n" + "Radius is " + myCircle.radius);

System.out.println("n is " + n);

}

// Print a table of areas for radius

public static void printAreas(Circle c, int times){

 System.out.println("Radius \t\tArea");

while (times >= 1){

System.out.println(c.radius + "\t\t" + c.findArea());

c.radius++;

times--;

}

}

}
There are important differences between passing the value of variables of primitive data types and passing objects.
· Passing a variable of a primitive types means that the value of the variable is passed to a formal parameter. Changing the value of the local parameter inside the method does not affect the value of the variable outside the method.

· Passing an object means that the reference of the object is passed to the formal parameter. Any changes to the local object that occur inside the method body will affect the original object that was passed as the argument.

Visibility Modifiers and Accessor Methods

The previous example works fine but it is not good to let the user modify the properties directly through the object reference. This can lead to programming errors that are difficult to debug. To prevent this you can declare the property private. Private defines methods and data in such a way that they can be accessed by the declaring class, but not by other classes. The private modifier does not apply to classes.
NOTE: In most cases, the constructor should be public. However, if you want to prohibit the user from creating an instance for a class, you can use a private constructor.
The private data fields cannot be accessed by the object through a direct reference, however you can provide getter (assessor) and setter (mutator) methods to gain access. Consider the following program.
// TestCircleWithPrivateModifier.java: Demonstrate private modifier

public class TestCircleWithPrivateModifier {

 public static void main(String[] args) { // Main method

 // Create a Circle with radius 5.0

 Circle myCircle = new Circle(5.0);

 System.out.println("The area of the circle of radius "

 + myCircle.getRadius() + " is " + myCircle.findArea());

 // Increase myCircle's radius by 10%

 myCircle.setRadius(myCircle.getRadius()*1.1);

 System.out.println("The area of the circle of radius "

 + myCircle.getRadius() + " is " + myCircle.findArea());

 }

}/*

class Circle {// Declare class Circle with private radius and accessor methods
 private double radius;

 public Circle() { // Default constructor
 radius = 1.0;

 }

 public Circle(double r) { // Construct a circle with a specified radius
 radius = r;

 }

 public double getRadius() {// Getter method for radius
 return radius;

 }

 public void setRadius(double newRadius) { // Setter method for radius
 radius = newRadius;

 }

 public double findArea() { // Find the circle area
 return radius*radius*3.14159;

 }

}*/
Accessors

An accessor method (often referred to as a get method) is used to retrieve the values of private instance variables. These methods are typically named with the prefix “get” (for example: getName).

Mutators

A mutator method (often referred to as a set method) is used to modify the values of private instance variables. These methods are typically named with the prefix “set” (for example: setName).

Note: Accessor and mutator methods do not negate the encapsulation of data; by explicitly controlling access to the encapsulated data (instance variables) these method protect the integrity of the data.

Instance Variables, Class Variables, Constants, and Methods
An instance variable is tired to a specific instance of the class and is not shared among objects of the same class. For example, if you created the following objects:

ClassType object1 = new ClassType(4);

ClassType object2 = new ClassType(20);

Changes made to object1 would not affect object2, and vice versa. If you want all the instances of a class to share data, you must use a class variable.
To declare a class variable, put the modifier static in the variable declaration. For example:

static int numObjects;

In the same way we create class and instance variables we may also create class and instance constants or class and instance methods. Consider the following;

public final doublePI=3.14;

//instance constant

public final static doublePI=3.14;
//class constant
public void instanceMethod ()

//instance method

public static void instanceMethod ();
//class method
Consider the following example:
// TestInstanceAndClassVariable.java: Demonstrate using instance and class variables

public class TestInstanceAndClassVariable {

 // Main method

 public static void main(String[] args){

 // Create circle1

 Circle circle1 = new Circle();

 // Display circle1 BEFORE circle2 is created

 System.out.println("Before creating circle2");

 System.out.print("circle1 is : ");

 printCircle(circle1);

 // Create circle2

 Circle circle2 = new Circle(5);

 // Change the radius in circle1

 circle1.setRadius(9);

 // Display circle1 and circle2 AFTER circle2 was created

 System.out.println("\nAfter creating circle2 and modifying " +

 "circle1's radius to 9");

 System.out.print("circle1 is : ");

 printCircle(circle1);

 System.out.print("circle2 is : ");

 printCircle(circle2);

 }

 // Print circle information

 public static void printCircle(Circle c) {

 System.out.println("radius (" + c.getRadius() +

 ") and number of Circle objects (" +

 c.getNumOfObjects() + ")");

 }

}

// Circle.java: Circle class with instance and class variables

class Circle {

 private double radius;

 private static int numOfObjects = 0; // Class variable

 // Default constructor

 public Circle() {

 radius = 1.0;

 numOfObjects++;

 }

 // Construct a circle with a specified radius

 public Circle(double r) {

 radius = r;

 numOfObjects++;

 }

 // Getter method for radius

 public double getRadius() {

 return radius;

 }

 // Setter method for radius

 public void setRadius(double newRadius) {

 radius = newRadius;

 }

 // Getter method for numOfObjects

 public static int getNumOfObjects() {

 return numOfObjects;

 }

 // Find circle area

 public double findArea() {

 return radius*radius*Math.PI;

 }

}
The Scope of Variables

You use an instance variable or class variable to describe the property of an object. These variables are referred to as global variables because they can be accessed by all the methods in the class. A variable declared in a method is referred to as a local variable, since it is only used inside a method locally.

The scope of a variable is the part of the program where the variable can be referenced.

The Keyword this

If a local variable has the same name as an instance or a class variable, the local variable takes precedence and the same instance or class variable is hidden. If you need to reference a hidden instance or class variable in a method you may use the following:

A hidden class variable can be accessed using Classname.classvariable
A hidden instance variable can be accessed using the keyword this
For example:

class SomeThing {

int i=5;

void setI (int i) {

this.i=i;

}

}

The line this.i means “assign argument i to the object’s data field i.”

You can also use this in a constructor. For example:
public class Circle {

 private double radius;
 public Circle(double radius) {

this.radius = radius;

}

public Circle() {

this(1.0);

}

public double findArea() {

return radius*radius*Math.PI;

}

}
Note: Java requires the this statement to appear first in the constructor before any other statements.

Relationships Among Objects

Association – a relationship that describes an activity between two classes.

A student may take any number of the courses, and a faculty teaches at most three courses. A course may have 5 to 60 students, and a course is taught by only one faculty.

Aggregation – a special form of association that represents an ownership relationship between two classes.

A magazine is owned by a publisher, and a consultant may work for several publishers.

Inheritance – models the is-a relationship between two classes.

A student is a person and a faculty is a person.

Objects and Classes Exercises

1.
Write a class named Fan to model fans. The properties are speed, on, radius, and colour. You must use accessor and mutator methods for the properties, and a toString method for returning a string consisting of all string values of all the properties in this class. The fan has three fixed speeds. Use constants 1, 2, and 3 to denote slow, medium, and fast speed. An outline is given below

class Fan
{

 public static int SLOW = 1;

 public static int MEDIUM = 2;

 public static int FAST = 3;

 private int speed = SLOW;

 private boolean on = false;

 private double radius = 5;

 private String color = "white";

 public Fan()

 public int getSpeed()

 public void setSpeed(int speed)

 public boolean isOn()

 public void setOn(boolean trueOrFalse)

 public double getRadius()

 public void setRadius(double radius)

 public String getColor()

 public void setColor(String color)

 public String toString()

}
Further Examples

Constructors and Mutators

The following code is an example of an abstract data type and its accompanying drive class.

import java.text.DecimalFormat;

public class Time1 {

 private int hour;

 private int minute;

 private int second;

 public Time1() {

setTime(0,0,0);

 }

 public void setTime (int h, int m, int s) {

hour = ((h>=0 && h< 24) ? h:0);

minute = ((m>=0 && m< 60) ? m:0);

second = ((s>=0 && s< 60) ? s:0);

 }

 public String toMilitaryString() {

DecimalFormat twoDigits = new DecimalFormat("00");

return twoDigits.format(hour) + twoDigits.format(minute);

 }

 public String toString() {

DecimalFormat twoDigits = new DecimalFormat("00");

return ((hour==12||hour==0) ? 12 : hour % 12) +

":" + twoDigits.format(minute)+

":" + twoDigits.format(second) +

(hour < 12 ? " AM" : " PM");

}

}

import java.awt.Graphics;

import java.applet.Applet;

public class TimeTest extends Applet {

 private Time1 t;

 public void init() {

t = new Time1();

 }

 public void paint(Graphics g) {

g.drawString("The initial military time is: " +t.toMilitaryString(), 25,25);

g.drawString("The initial standard time is: " +t.toString(),25,40);

t.setTime(13,27,6);

g.drawString("Military time after setTime is: " +t.toMilitaryString(),25,70);

g.drawString("Standard time after setTime is: " +t.toString(), 25,85);

t.setTime(99,99,99);

g.drawString("After attempting invalid settings:",25,115);

g.drawString("Military time: " +t.toMilitaryString(), 25,130);

g.drawString("Standard time: " +t.toString(), 25,145);

 }

}

Overloading Constructors

// Time2 class definition

import java.text.DecimalFormat; // used for number formatting

public class Time2 {

private int hour; // 0 - 23

private int minute; // 0 - 59

private int second; // 0 - 59

// Time2 constructor initializes each instance variable

// to zero. Ensures that Time object starts in a consistent state.

public Time2() {

setTime(0, 0, 0);

}

 // Time2 constructor: hour supplied, minute and second defaulted to 0.

public Time2(int h) {

setTime(h, 0, 0);

}

// Time2 constructor: hour and minute supplied, second defaulted to 0.

public Time2(int h, int m) {

setTime(h, m, 0);

}

// Time2 constructor: hour, minute and second supplied.

public Time2(int h, int m, int s) {

setTime(h, m, s);

}

// Set a new Time value using military time. Perform

// validity checks on the data. Set invalid values to zero.

public void setTime(int h, int m, int s) {

hour = ((h >= 0 && h < 24) ? h : 0);

minute = ((m >= 0 && m < 60) ? m : 0);

second = ((s >= 0 && s < 60) ? s : 0);

}

// Convert time to String in military-time format

public String toMilitaryString() {

DecimalFormat twoDigits = new DecimalFormat("00");

return twoDigits.format(hour) + twoDigits.format(minute);

}

// Convert time to String in standard-time format

public String toString() {

DecimalFormat twoDigits = new DecimalFormat("00");

return ((hour == 12 || hour == 0) ? 12 : hour % 12) +

":" + twoDigits.format(minute) +

":" + twoDigits.format(second) +

(hour < 12 ? " AM" : " PM");

}

}

// Using overloaded constructors

import java.awt.Graphics;

import java.applet.Applet;

public class TimeTest extends Applet {

 private Time2 t1, t2, t3, t4, t5;

 public void init() {

 t1 = new Time2();

 t2 = new Time2(2);

 t3 = new Time2(21, 34);

 t4 = new Time2(12, 25, 42);

 t5 = new Time2(27, 74, 99);

 }

 public void paint(Graphics g) {

 g.drawString("Constructed with:", 25, 25);

 g.drawString("all arguments defaulted:", 25, 40);

 g.drawString(" " + t1.toMilitaryString(),25, 55);

 g.drawString(" " + t1.toString(), 25, 70);

 g.drawString("hour specified; minute " + "and second defaulted:", 25, 85);

 g.drawString(" " + t2.toMilitaryString(), 25, 100);

 g.drawString(" " + t2.toString(), 25, 115);

 g.drawString("hour and minute specified; " + "second defaulted:", 25, 130);

 g.drawString(" " + t3.toMilitaryString(), 25, 145);

 g.drawString(" " + t3.toString(), 25, 160);

 g.drawString("hour, miinute, and second specified:" 25, 175);

 g.drawString(" " + t4.toMilitaryString(), 25, 190);

 g.drawString(" " + t4.toString(), 25, 205);

 g.drawString("all invalid values specified:", 25, 220);

 g.drawString(" " + t5.toMilitaryString(), 25, 235);

 g.drawString(" " + t5.toString(), 25, 250);

 }

}

Using Set and Get Methods

// Time3 class definition

import java.text.DecimalFormat; // used for number formatting

public class Time3 {

private int hour; // 0 - 23

private int minute; // 0 - 59

private int second; // 0 - 59

// Time3 constructor initializes each instance variable to zero. Ensures that Time object starts //in a consistent state.

public Time3() {

setTime(0, 0, 0);

}

// Time3 constructor: hour supplied, minute and second defaulted to 0.

public Time3(int h) {

setTime(h, 0, 0);

}

// Time3 constructor: hour and minute supplied, second defaulted to 0.

public Time3(int h, int m) {

setTime(h, m, 0);

}

// Time3 constructor: hour, minute and second supplied.

public Time3(int h, int m, int s) {

setTime(h, m, s);

}

// Set Methods

// Set a new Time3 value using military time. Perform validity checks on the data. Set invalid //values to zero.

public void setTime(int h, int m, int s) {

setHour(h); // set the hour

setMinute(m); // set the minute

setSecond(s); // set the second

}

// set the hour

public void setHour(int h) {

hour = ((h >= 0 && h < 24) ? h : 0);

}

// set the minute

public void setMinute(int m) {

minute = ((m >= 0 && m < 60) ? m : 0);

}

// set the second

public void setSecond(int s) {

second = ((s >= 0 && s < 60) ? s : 0);

}

// Get Methods

// get the hour

public int getHour() {

return hour;

}

// get the minute

public int getMinute() {

return minute;

}

// get the second

public int getSecond() {

return second;

}

// Convert time to String in military-time format

public String toMilitaryString() {

DecimalFormat twoDigits = new DecimalFormat("00");

return twoDigits.format(hour) + twoDigits.format(minute);

}

// Convert time to String in standard-time format

public String toString() {

DecimalFormat twoDigits = new DecimalFormat("00");

return ((hour == 12 || hour == 0) ? 12 : hour % 12) +

":" + twoDigits.format(minute) + ":" + twoDigits.format(second) +

(hour < 12 ? " AM" : " PM");

}

}

// Driver class demonstrating the Time3 class set and get methods

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class TimeTest extends Applet implements ActionListener {

 private Time3 t;

 private Label hourLabel, minuteLabel, secondLabel;

 private TextField hourField, minuteField, secondField, display;

 private Button tickButton;

 public void init() {

 t = new Time3();

 hourLabel = new Label("Set Hour");

 hourField = new TextField(10);

 hourField.addActionListener(this);

 add(hourLabel);

 add(hourField);

 minuteLabel = new Label("Set minute");

 minuteField = new TextField(10);

 minuteField.addActionListener(this);

 add(minuteLabel);

 add(minuteField);

 secondLabel = new Label("Set Second");

 secondField = new TextField(10);

 secondField.addActionListener(this);

 add(secondLabel);

 add(secondField);

 display = new TextField(30);

 display.setEditable(false);

 add(display);

 tickButton = new Button("Add 1 to Second");

 tickButton.addActionListener(this);

 add(tickButton);

 updateDisplay();

 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == tickButton)

 tick();

 else if (e.getSource() == hourField) {

 t.setHour(Integer.parseInt(e.getActionCommand()));

 hourField.setText("");

 }

 else if (e.getSource() == minuteField) {

 t.setMinute(Integer.parseInt(e.getActionCommand()));

 minuteField.setText("");

 }

 else if (e.getSource() == secondField) {

 t.setSecond(Integer.parseInt(e.getActionCommand()));

 secondField.setText("");

 }

 updateDisplay();

 }

 public void updateDisplay() {

 display.setText("Hour: " + t.getHour() + "; Minute: " + t.getMinute() +

 "; Second: " + t.getSecond());

 showStatus("Standard time is: " + t.toString() + "; Military time is: " + t.toMilitaryString());

 }

 public void tick() {

 t.setSecond((t.getSecond() + 1) % 60);

 if (t.getSecond() == 0) {

 t.setMinute((t.getMinute() + 1) % 60);

 if (t.getMinute() == 0)

 t.setHour((t.getHour() + 1) % 24);

 }

 }

}

Class Inheritance

With object-oriented programming, you can derive new classes from existing classes. This is called inheritance.

SuperClasses and SubClasses

If you create a class from another class the created class is called a subclass (child class, extended class, derived class) and the class used to create the class is called the superclass (parent class, base class).

You can reuse or change the methods defined in the superclasses in the subclass, as well as creating new data and new methods in the subclasses. Subclasses usually have more functionality than their superclasses.

Consider the following example:

class Cylinder extends Circle{ // Cylinder.java: The new cylinder class that extends the circle class

private double length;

public Cylinder(){
// Default constructor

super();

//invoke the default superclass constructor

length = 1.0;

}

public Cylinder(double r, double l) {
// Construct a cylinder with specified radius, and length

super(r);

//invoke the superclass constructor Circle(r)

length = l;

}

public double getLength() {
// Getter method for length

return length;

}

public double findVolume() {
// Find cylinder volume

return findArea()*length;

}

}

public class TestCylinder {
// TestCylinder.java: Use inheritance

public static void main(String[] args) { // Create a Cylinder object and display its properties

Cylinder myCylinder = new Cylinder(5.0, 2.0);

System.out.println("The length is " + myCylinder.getLength());

System.out.println("The radius is " + myCylinder.getRadius());

System.out.println("The volume of the cylinder is " + myCylinder.findVolume());

System.out.println("The area of the circle is " + myCylinder.findArea());

}

}

In the program above the keyword super was used. The super keyword can be used in two ways:

· To call a superclass constructor

super(), super(parameters)

· To call a super class method

super.method(parameters)
Notes:

You must use the keyword super to call the superclass’s constructor, and it must appear first in the calling block.

Constructors are used to construct an instance of the class, and are not inherited by the subclass. They can only be invoked from the subclass’s constructors using the keyword super. If the keyword super is not used explicitly, the superclass’s default constructor is always invoked.

Overriding Methods

A subclass inherits methods from a superclass. Sometimes, it is necessary for the subclass to modify the methods defined in the superclass. This is called method overriding.

Consider the following example:

// TestOverrideMethods.java: Test the Cylinder class that overrides

// its superclass's methods

public class TestOverrideMethods {

 public static void main(String[] args) {

Cylinder myCylinder = new Cylinder(5.0, 2.0);

System.out.println("The length is " + myCylinder.getLength());

System.out.println("The radius is " + myCylinder.getRadius());

System.out.println("The surface area of the cylinder is "+ myCylinder.findArea());

System.out.println("The volume of the cylinder is "+ myCylinder.findVolume());

}

}

// New cylinder class that overrides the findArea() method defined in

// the circle class

class Cylinder extends Circle {

private double length;

public Cylinder() { // Default constructor

super();

 length = 1.0;

}

// Construct a cylinder with specified radius and length

 public Cylinder(double r, double l) {

super(r);

 length = l;

}

 // Getter method for length

public double getLength() {

return length;

}

// Find cylinder surface area

public double findArea() {

return 2*super.findArea()+(2*getRadius()*Math.PI)*length;

}

 // Find cylinder volume

 public double findVolume() {

return super.findArea()*length;

 }

}
The example shows that you can modify a method in the superclass and can use super to access a method in the superclass. The findArea method is defined in the Circle class and is modified in the Cylinder class. Both methods can be used in the Cylinder class. To invoke the findArea method in the Circle class, use super.findArea().

A subclass of the Cylinder class can no longer access the findArea method defined in the Circle class because the findArea method is redefined in the Cylinder class.

The Object Class

Every class in Java is descended from the java.lang.Object class. If no inheritance is specified when a class is defined, the superclass of the class is Object. There are three very useful instance methods in the Object class:

· public boolean equals (Object object)

· public String toString ()

· public Object clone ()

The equals Method
The equals method tests whether two objects are equal. The syntax is:

object1.equals(object2);

The variables object1 and object2 are of the same class.

The toString Method
The toString method returns a string that represents the value of the object. By default, it returns a string consisting of a class name of which the object is an instance, the @ sign, and a number representing the object. For example:

Cylinder c1 = new c1(5.0,2.0);

System.out.println(c1.toString());

The code above will display something like Cylinder@15037e5. Because the message is not very helpful, usually you should overwrite the toString method. For example:

public String toString() {

return “Cylinder length = “ +length;

}

Then System.out.println(c1.toString()) displays something like Cylinder length = 2. Note: If you write System.out.println(c1) you would get the same result.

The clone Method
Sometimes you may need a copy of an object. You would think you could use:

newObject = someObject;

The code above does not create a duplicate object. It just assigns the reference of someObject to newObject. To create a duplicate object with a separate memory space, you must use the clone method. For example:

newObject = someObject.clone();

Not all objects can be cloned; it must be derived form a class that inherits java.lang.Cloneable.

The protected and final Modifiers

The protected modifier

A protected variable or a protected method in a public class can be accessed by any class in the same package or its subclasses, even if the subclasses are in different packages. For example:

The protected modifier can be used to prevent a non-subclass in a different package from accessing the class's data and methods.

The final modifier

You may occasionally want to prevent classes from being extended. To do this place, the modifier final in the class header. The same can be done with methods. A final method cannot be modified (overridden) by a subclass.

Abstract Classes

In the inheritance hierarchy, classes become more specific and concrete with each new subclass. Class design should ensure that a superclass shares features with its subclasses. Sometimes a superclass is so abstract that it cannot be instantiated.

Suppose we wanted to design a class system that modeled geometric shapes. A simple model could include circles, cylinders, and rectangles. Geometric objects would have common properties and behaviours. It would not make sense to instantiate a geometric shape object because the concept is too abstract, however each geometric shape would have an area, perimeter, color, weight, etc.

A model of the class structure is shown below:

Note:
the abstract class name and the abstract methods

Names are italicized in the UML.

The methods findArea and findPerimter cannot be implemented on the GeometricShapes class, because their implementation is dependant on a specific type of geometric shape. Such methods are referred to as abstract methods. Classes that contain abstract methods are referred to as abstract classes. Consider the following program:

// GeometricShape.java: The abstract GeometricShape class

public abstract class GeometricShape{

 protected String color;

 protected double weight;

 protected GeometricShape() { // Default construct
 color = "white";

 weight = 1.0;

 }

 protected GeometricShape(String color, double weight) { // Construct a geometric object
 this.color = color;

 this.weight = weight;

 }

 public String getColor() { // Getter method for color
 return color;

 }

 public void setColor(String color) { // Setter method for color
 this.color = color;

 }

 public double getWeight() { // Getter method for weight
 return weight;

 }

 public void setWeight(double weight) { // Setter method for weight
 this.weight = weight;

 }

 public abstract double findArea();// Abstract method
 public abstract double findPerimeter(); // Abstract method

}

Abstract methods are like regular classes with variables and methods, however you cannot instantiate an object of the class. Inorder to implement the abstract methods contained within the abstract class you must use a subclass. For example:

// Circle.java: The circle class that extends GeometricShape

public class Circle extends GeometricShape{

 protected double radius;

 public Circle() { // Default constructor
 this(1.0, "white", 1.0);

 }

 public Circle(double radius) { // Construct circle with specified radius
 super("white", 1.0);

 this.radius = radius;

 }

 // Construct a circle with specified radius, weight, and color

 public Circle(double radius, String color, double weight) {

 super(color, weight);

 this.radius = radius;

 }

 public double getRadius() {// Getter method for radius
 return radius;

 }

 public void setRadius(double radius) {// Setter method for radius
 this.radius = radius;

 }

 // Implement the findArea method defined in GeometricShape

 public double findArea() {

 return radius*radius*Math.PI;

 }

 // Implement the findPerimeter method defined in GeometricShape

 public double findPerimeter() {

 return 2*radius*Math.PI;

 }

 // Override the equals() method defined in the Object class

 public boolean equals(Circle circle) {

 return this.radius == circle.getRadius();

 }

 // Override the toString() method defined in the Object class

 public String toString() {

 return "[Circle] radius = " + radius;

 }

}
Note:
The data field radius is protected, and therefore cannot be referenced by any subclass of Circle. The methods equals and toString are defined in the GeometricShape class and modified in the Circle class. The abstract methods findArea and findVolume defined in the GeometricShapes class are implemented in the Circle class.

Note:
Java does not allow multiple inheritance. If you use the keyword extends to define a subclass, it only allows one
parent class. However, in many cases multiple inheritance is not necessary. Consider the following:

// Cylinder.java: The new cylinder class that extends the circle

// class

class Cylinder extends Circle{

 private double length;

 public Cylinder() {// Default constructor
 super();

 length = 1.0;

 }

 // Construct a cylinder with specified radius, and length

 public Cylinder(double radius, double length) {

 this(radius, "white", 1.0, length);

 }

 // Construct a cylinder with specified radius, weight, color, and

 // length

 public Cylinder(double radius,

 String color, double weight, double length) {

 super(radius, color, weight);

 this.length = length;

 }

 public double getLength() { // Getter method for length
 return length;

 }

 public void setLength(double length) { // Setter method for length
 this.length = length;

 }

 public double findArea() { // Find cylinder surface area
 return 2*super.findArea()+(2*getRadius()*Math.PI)*length;

 }

 public double findVolume() { // Find cylinder volume
 return super.findArea()*length;

 }

 // Override the equals() method defined in the Object class

 public boolean equals(Cylinder cylinder) {

 return (this.radius == cylinder.getRadius()) &&

 (this.length == cylinder.getLength());

 }

 // Override the toString() method defined in the Object class

 public String toString() {

 return "[Cylinder] radius = " + radius + " and length "

 + length;

 }

}

The Cylinder class is a subclass of the Circle class which is a subclass of the GeometricShapes class. By structuring our classes in this fashsion the need for multiple inheritance is not necessary.

 Handling Input (Try/Catch)

In reading input from a stream or reader, things can go wrong. For example, if the input comes from a disk file, there may be a bad sector on the disk. Whenever the readLine method detects an error it uses an exception to notify the program of the problem. There are a number of ways to deal with the exceptions, the simplist being to catch the exception when it occurs. In order to catch an exception one must first try an operation that could generate a problem. Consider the following program:

// Input double numerical data

import java.io.*;

public class NumInput2 {

 static public void main (String args[]) throws IOException {//main method

String numString;

double number;

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Please type a number");

while(true) {

 try {

numString = stdin.readLine();

number = (Double.valueOf (numString)).doubleValue(); //Change string to a double.

break;

 }

 catch (NumberFormatException e) {

System.out.println("Non-numeric input, try again");

 }

}

System.out.print("Your number squared is ");

System.out.println((double) Math.round(number*number*10000)/10000);

 }//end main method

}/* end NumInput2 class*/

Java Try/Catch Assignment (In Class)

1. Write a standalone that finds the largest number in a list of integers. The program must include the following:

i. A method that returns the largest value input

ii. A method that accepts user input and includes try/catch

iii. A main method that calls methods i and ii

Arrays

Arrays are objects in Java. Since they are objects, arrays can only be referred to with instances. Array elements can be of any primitive data type, as well as any type of object. Arrays can be one dimensional, or multi dimensional. Arrays are a table of values of a fixed size and data type. When an array variable is no longer being referred to, Java will automatically collect the garbage and dispose it. Remember an array can be thought of as a series of boxes (memory locations). For example a 1 dimensional array called oneD capable of holding 14 double number elements can be represented as shown below.

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	oneD
	1.2
	1.23
	24.6
	56.3
	85.45
	12.66
	12.55
	14.23
	75.26
	25.56
	74.65
	42.5
	132
	0.05

Syntax

To declare the array called oneD capable of storing 14 double elements we use the following syntax:

double oneD[] = new double [14];

Note:
1)
The index of the array in Java always starts at 0, therefore the number of elements specified will always be one greater that the upper index value.

2)
Arrays are objects in Java and therefore must be instantiated using the key word new.

The general syntax for creating an array is:

type identifier[] = new type [number of elements];

It is possible to create multi- dimensional arrays, for example, a three dimensional integer array of 3x4x5 size would have a declaration (with memory allocation) like this:

int whatever[] [] [];

whatever = new int [3] [4] [5];

NOTE:
There are actually no multidimensional arrays in Java. The multidimensional arrays declared above (such as the 3x4x5 array) is just an array that contains 3 elements, which is another array of 4 elements, of which contains an array of 5 elements.

Array Size

To find the number of elements in an array, use the method length from the array object. For instance,

for (int i = 0, i < primes.length; i++) {

statements;

}

This statement will run a loop from the first element of the array (which is zero, and not one) to the last element of the array (which is one less than the declared value in the declaration statement of the array).

Writing To An Array
To assign a value to an array, state the array element and use the assignment operator to give it a value. However, the element numbers are one less than the actual element. If the value “35” was to be placed into the third column, the assignment statement would look like this:

double oneD[2] = 35;

If you want to fill an entire array one would use loops. For example to fill the oneD array above with random numbers the following structure could be used:

for(int i = 0; i <oneD.length; i ++) {

oneD[i] = (int)(Math.random()*1000) + 1;

To assign a value to an array, state the array element and use the assignment operator to give it a value. However, the element numbers are one less than the actual element. If the value “35” is placed into the third row, fourth column, and fifth layer of the array “whatever”, the assignment statement would look like this:

whatever [2] [3] [4] = 35;
If you want to fill an entire array one would use loops. For example to fill the whatever array above the following structure could be used:

for(int i = 0; i <= 2; i ++) {

for(int j = 0; j <= 3; j ++) {

for(int k = 0; k <= 4; k ++) {

whatever [i][j][k] = (int)(Math.random()*1000) + 1;

Reading An Array

To read the values in an array, state the array element and use an appropriate method to get at the value. Remember, the element numbers are one less than the actual element. If we wanted the value held in the third row, fourth column, and fifth layer of the array “whatever”, the statement would look like this:

 System.out.println (whatever[2][3][4]);

If you want to read an entire array one would use loops. For example to display all the elements of the whatever array the following structure could be used:

for(int i = 0; i <= 2; i ++) {

for(int j = 0; j <= 3; j ++) {

for(int k = 0; k <= 4; k ++) {

System.out.println (list [i][j][k]);

Examples

Below are several examples showing how to read and write to an array:

1)

import java.io.*;

public class OneDArray {

static public void main (String args[]) throws IOException {//main method

 String numString;

 final int SIZE = 4;

 double list[] = new double[SIZE];

 DataInputStream stdin = new DataInputStream(System.in);

 for(int i = 0; i < SIZE; i ++) {//loop used to read 5 values into the array list

 System.out.println("Please type a number");

 numString = stdin.readLine();

 list [i] = (Double.valueOf (numString)).doubleValue();

 }//end reading loop

 System.out.println("The numbers stored in the 5 element one dimensional array are");

 for (int i = 0; i<= SIZE ; i ++) //loop used to display the stored values in the list array

System.out.println(list[i]);

 } // End Main method

} //End OneDArray class

2)

import java.io.*;

public class OneDArrayAdding {

 static public void main (String args[]) throws IOException {//main method

String numString;

double total = 0;

final int SIZE = 4;

double list[] = new double[SIZE + 1];

DataInputStream stdin = new DataInputStream(System.in);

for(int i = 0; i <= SIZE; i ++) {//loop used to read 5 values into the array list

 System.out.println("Please type a number");

 numString = stdin.readLine();

 list [i] = (Double.valueOf (numString)).doubleValue();

}

for (int i = 0; i<= SIZE; i ++) //loop used to add the stored values in the list array

 total = total + (list[i]);

System.out.println("The numbers stored in the 5 element one dimensional array are");

for (int i = 0; i<= SIZE; i ++) //loop used to display the stored values in the list array

 System.out.println(list[i]);

System.out.println();

System.out.println("The total of the numbers entered is " + total);

 } // End Main method

} /*End OneDArray class*/

3)

import java.io.*;

public class TwoDArray {

 static public void main (String args[]) throws IOException {//main method

String numString;

final int ROWSIZE = 1;//there will be two rows

final int COLSIZE = 2;//there will be three columns

double list[][] = new double[ROWSIZE + 1][COLSIZE + 1];

DataInputStream stdin = new DataInputStream(System.in);

for(int i = 0; i <= ROWSIZE; i ++) {//loop used to keep track of row number

 for(int j = 0; j <= COLSIZE; j ++) {//loop used to keep track of column number

System.out.println("Please type a number for Row " + (i+1) + " Column " + (j+1));

numString = stdin.readLine();

list [i][j] = (Double.valueOf (numString)).doubleValue();

 }//end of column loop

}//end of row loop

System.out.println("The numbers stored in the 6 element two dimensional array are");

for (int i = 0; i<= ROWSIZE; i ++) {//loop used to move through the rows

 for(int j = 0; j <= COLSIZE; j ++){ //loop used to move through the columns

System.out.print(list[i][j] + " ");

 }//end of row loop

 System.out.println();

}//end of column loop

 } // End Main method

} //End OneDArray class

4)
// The "Normalize" class
//Normalize each element in list of 10 random integers

// Divide it by the largest integer in the list.

import java.io.*;

public class Normalize {

 final int SIZE = 9;

 int list[] = new int[SIZE + 1];

 int largest;

 // Generate random value for list.

 void genRand (){

for(int i = 0; i <= SIZE; i ++) {

 list [i] = (int)(Math.random()*1000) + 1;

}

 }

 // Set initial value of largest.

 int setInitVal (){

 return list[0];

 }

 // Find the current largest.

 int currLarge (int number, int biggest){

if (number>biggest)

 biggest = number;

return biggest;

 }

 // Find Largest value in list.

 void findLarge () {

for (int i = 1; i<= SIZE; i ++)

 largest = currLarge (list[i], largest);

 }

 // Output the normalized values.

 void outResults () {

System.out.println("Count Normalized Value");

for (int i = 0; i<= SIZE; i ++) {

 double outdoub = (double)Math.round(((double)list[i]/largest)*100)/100;

 System.out.print(" ");

 System.out.print(i);

 System.out.print(" ");

 System.out.println (outdoub);

}

 }

 static public void main(String args[]) throws IOException {

Normalize n = new Normalize();

n.genRand();

n.largest = n.setInitVal();

n.findLarge();

n.outResults();

} // End Main program

} //End Normalize class

The following program uses the new operator to dynamically allocate an array of ten elements, which are initially zero. String.valueOf method is used to convert each integer to a string that can be displayed on the applet. The variable yPosition is used to determine the vertical position at which the drawstring method outputs on the applet. Note the expression n.length in the for structure to determine he length of the array.

//initializing an array

import java.applet.Applet;

import java.awt.Graphics;

public class InitArray extends Applet {

 int n [];

//declare an array of integers

 public void init() {

n= new int [10];
 //dynamically allocate array

 }

 //paint the applet

 public void paint (Graphics g){

int yPosition=25; //starting y position on applet

g.drawString ("Element", 25, yPosition);

g.drawString("Value",100,yPosition);

for (int i=0; i<n.length; i++) {

 yPosition+=15;

 g.drawString(String.valueOf(i),25,yPosition);

 g.drawString(String.valueOf(n[i]),100,yPosition);

}

 }

}

The elements of an array can be initialized in the array declaration by following the declaration with an equal sign and a comma-separated list (enclosed in braces) of initializers. In this case, the array size is determined by the number of elements in the initializer list.

//initializing an array with a declaration

import java.applet.Applet;

import java.awt.Graphics;

public class InitArray2 extends Applet {

 int n[]= {32,27,64,18,95,14,90,70,60,37};

 //paint the applet

 public void paint(Graphics g){

int yPosition=25;
//starting y position on applet

g.drawString("Element", 25, yPosition);

g.drawString("Value",100,yPosition);

for (int i=0; i<n.length; i++){

 yPosition+=15;

 g.drawString(String.valueOf(i), 25, yPosition);

 g.drawString(String.valueOf(n[i]),100,yPosition);

}

 }

}

The following program initializes the elements of the ten element array to the even integers.

import java.applet.Applet;

import java.awt.Graphics;

public class InitArray3 extends Applet {

 final int ARRAY_SIZE=10;

 int s[];

 //initialize instance variable

 public void init() {

s=new int [ARRAY_SIZE];

//set the values in the array

for (int i=0; i<s.length; i++)

 s[i]=2+2*i;

 }

 //paint the applet

 public void paint (Graphics g){

int yPosition=25;
//starting y position on applet

g.drawString("Element", 25, yPosition);

g.drawString("Value", 100, yPosition);

for (int i=0; i<s.length; i++){

 yPosition+=15;

 g.drawString(String.valueOf(i), 25, yPosition);

 g.drawString(String.valueOf(s[i]), 100, yPosition);

}

 }

}

import java.applet.Applet;

import java.awt.Graphics;

public class FinalTest extends Applet {

 final int x=7;
//intialize constant variable

 public void paint (Graphics g){

g.drawString("The value of x is : " +x,25,25);

 }

}

The following program sums the values contained in the ten-element integer array. It is important to remember that the values being supplied as initializes for the array normally would be read into the program.

//compute the sum of the elements of the array

import java.applet.Applet;

import java.awt.Graphics;

public class SumArray extends Applet {

 int a []= {1,2,3,4,5,6,7,8,9,10};

 int total;

 //initialize instance variables

 public void init(){

total=0;

for (int i=0; i<a.length; i++)

 total +=a[i];

 }

 //paint the applet

 public void paint(Graphics g){

g.drawString("Total of array elements: " +total, 25,25);

 }

}

The following is a typical array processing application. We wish to summarize the number of responses of each type. The array responses is a 40 element integer array of the students’ responses to the survey. We use an eleven –element array frequency to count the number of occurrences of each response. We ignore the first element, frequency [0] , because it is more logical to have the response I increment frequency[1] than frequency [0]. This allows us to use each response directly as a subscript on the frequency array.

import java.applet.Applet;

import java.awt.Graphics;

public class StudentPoll extends Applet {

 int responses []= {1,2,3,4,5,6,7,8,9,10,

1,6,3,8,6,10,3,8,2,7,

6,5,7,6,8,6,7,5,6,6,

5,6,7,5,6,4,8,6,8,10};

 int frequency [];

 //initialize instance variables

 public void init(){

frequency = new int[11];

for (int answer=0; answer<responses.length; answer++)

 ++frequency[responses[answer]];

 }

 //paint the applet

 public void paint (Graphics g){

int yPosition=25;; //starting y position on applet

g.drawString("Rating", 25, yPosition);

g.drawString("Frequency", 100, yPosition);

for (int rating=1; rating<frequency.length; rating++){

 yPosition+=15;

 g.drawString(String.valueOf(rating), 25, yPosition);

 g.drawString(String.valueOf(frequency[rating]), 100, yPosition);

}

 }

}

The following program reads numbers from an array and graphs the information in the form of a bar chart or histogram-each number is printed, and then a bar consisting of that many asterisks is printed beside the number.

import java.applet.Applet;

import java.awt.Graphics;

public class Histogram extends Applet {

 int n[] = {19,3,15,7,11,9,13,5,17,1};

 //paint the applet

 public void paint(Graphics g){

int xPositin;
 //position of * in histogram

int yPosition=25; //veritcal position in applet

g.drawString("Element", 25, yPosition);

g.drawString("Value",100, yPosition);

g.drawString("Histogram",175,yPosition);

for (int i=0; i<n.length; i++){

 yPosition+=15;

 g.drawString(String.valueOf(i),25,yPosition);

 g.drawString(String.valueOf(n[i]),100,yPosition);

 xPosition=175;

 for (int j=1; j<=n[i]; j++) { //print one bar

g.drawString("*", xPosition, yPosition);

xPosition+=7;

 }

}

 }

}

The following program simulates a dice roll of 6000 times

import java.applet.Applet;

import java.awt.Graphics;

public class RollDie extends Applet {

 int face;

 int frequency [];

 //initialize instance variables

 public void init(){

frequency =new int [7];

for (int roll=1; roll<=6000;roll++){

 face = 1+(int)(Math.random()*6);

 ++frequency[face];

}

 }

 //paint the applet

 public void paint(Graphics g){

int yPosition=25;

g.drawString("Face",25,yPosition);

g.drawString("Frequency",100,yPosition);

for (face=1; face<frequency.length; face++){

 yPosition+=15;

 g.drawString(String.valueOf(face),25,yPosition);

 g.drawString(String.valueOf(frequency[face]),100,yPosition);

}

 }

}

Some Other Neat Array Tid-bits

It is possible to assign values to elements within the array. For example, to declare an integer array with the first five prime numbers:

int [] primes = { 2, 3, 5, 7, 11 };

Sometimes, if an array of irregular size is to be created, such as an array containing n + 1 rows in the nth column, this triangular array can be created with these statements.

int [] [] triangleArray = new int [n + 1] [];

for (x = 1; x <= n; x++)

triangleArray [x] = new triangleArray [x + 1];

The elements can be accessed like this:

for (x = 0; x < triangleArray.length; x++)

for (y = 0; y < triangleArray [x].length; y++)

triangleArray [x] [y] = Math.random ();
Copying Arrays

To copy an array from one variable to another, a new variable can be created to refer to the existing array. However, unless each element of the array is assigned separately, the entire array would be a duplicate of the existing array with such a declaration.

int [] array2 = array1;

There is an alternative to copying values from one array to another. From the system class, there is a method called arraycopy. The syntax for this method is

System.arraycopy (old, oldIndex, new, newIndex, count);

where old and new represents the array variables, the indexes represents the beginning element of the arrays to start copying from, and count represents the number of elements from the old array to copy to the new array.

Passing Arrays as Parameters

import java.io.*;

public class PassingArrays {

 final byte R=4;

 final byte C=3;

 int numbers[][]=new int[R][C];

 public void fillArray() throws IOException{

DataInputStream stdin = new DataInputStream(System.in);

System.out.println("Enter 12 numbers");

for (byte row=0;row<R;row++)

 for (byte col=0;col<C;col++)

numbers[row][col]=Integer.parseInt(stdin.readLine());

 }

 public void modifyArray(int arrayParameter[][]) {

for (byte row=0;row<R;row++)

 for (byte col=0;col<C;col++)

arrayParameter[row][col]*=2;

 }

 public void outputArray(int arrayParameter[][]) {

for (int row=0;row<arrayParameter.length;row++)

 for (int col=0;col<arrayParameter[row].length;col++)

System.out.println(arrayParameter[row][col]);

 }

 public static void main(String args[]) throws IOException{

PassingArrays pA = new PassingArrays();

pA.fillArray();

System.out.println("The original numbers entered into the array are");

pA.outputArray(pA.numbers);

pA.modifyArray(pA.numbers);

System.out.println("The original numbers entered into the array are");

pA.outputArray(pA.numbers);

 }

}
Exercises

1. The table of atomic masses is shown below in the form of a one-dimensional array.

	1D
	0 1 2 3 4 ……

	
	6 6.8 -7 12 -1.1 ……

Answer the following:

a) What is the value of 1D[3]?

b) What is the name of the component whose value is -7?

c) What are the indices of the array?

d) Of what type are the indices?

e) Of what type are components?

2. A sequence has terms of the form

tn
=
(n-4)2 , 1<=n<=5

 2
An array called term is to be used to represent the sequence.

a) Draw a diagram of the array.

b) What is the value of term[3].

c) What is the name of the component with index 2?

d) What is the name of the component with value 4?

3. How many elements can be stored in each of the following arrays?

a) double oneD[] = new double [14];

b) double oneD[][] = new double [2][3];

c) double oneD[][][] = new double [5][5][5];

d) double oneD[] = new double [4];

4. Suppose an array named sample has been created using the following declaration.

double sample[] = new double [10];

a) Initialize all elements to zero.

b) Replace the third element by the value 28.

c) Copy the value in the first location into the eight location.

d) Store the sum of the values in the first and second location into the ninth location.

e) Replace each element of the array by twice its current value.

f) Change any negative values to positive values (of equal magnitude).

5. Write a program that will allow the user to input 15 double numbers. The program will then display the numbers input along with the following:

· largest number entered

· smallest number entered

· most frequently occurring number

· the average of the numbers entered

· the number of numbers above the average

· the number of numbers below the average

· the number of numbers equal to the average

6. Write a program that fills a 5x6 2-d array with even random numbers from -10 to 20. Write methods to find the minimum and maximum values, most frequent value, the sum of the rows, and the sum of the columns.

Class average –

7.
Consider the 2-D array: int A[][] = new int [2][4]

The array A is given values by the following block of code.

Determine what will be written by each statement:

8.
Write one or more statements to perform each operation

a) Declare an array containing 3 rows and five columns of integers

b) Set all the elements of the array to zero

c) Find the sum of all the elements in the array and store this sum in a variable called “GrandTotal.”
d) Find the sum of the elements in the second row and store this value in “Row2Sum”
e) Find the sum of the elements in the third column and store this value in Col3Sum
f) Find the sum of all the negative elements in the array and store this value in NegSum.

g) Replace each element by its square.

h) Find the largest value in the array and store this value in “Largest”

9.
A magic square is a two dimesional array in which each row sum, column sum, and diagonal sum are equal. For example:

	2
	2
	2

	2
	2
	2

	2
	2
	2

Write a program to determine if the numbers entered into a 5 by 5 two dimensional array form a magic square.

Random Numbers

Often large amounts of data are required to test programs. Rather than using keyboard input it is possible to generate data randomly using the random method of the Math class.

To generate a random real value between 0 and 1 (but not including 1) the following can be used:

double randomReal;

randonReal = Math.random();

To produce a random integer value between two values the following statements can be used.

int randomInt;

randonInt = (int) (Math.random()*6) +1;
//generates a random integer between 1 and 6

Consider the following example:

// The "DiceData" class.

// Simulate the throw of two dice 300 times

// and store the generated data in file "dice".

import java.io.*;

public class DiceData {

 static public void main (String args []) throws IOException {

int die1, die2, roll;

PrintWriter output;

output = new PrintWriter (new FileWriter ("c:/junk/dice.txt"));

for (int count = 1 ; count <= 300 ; count++)
{

die1 = (int) (Math.random () * 6) + 1;

die2 = (int) (Math.random () * 6) + 1;

roll = die1 + die2;

output.println (roll);

}

output.close ();

System.out.println ("Simulated data of 300 throws now in file 'dice'");

 } // main method

} /* DiceData class */

Files

In many cases rather than getting information directly for the user programs receive input from a file. Files allow permentant storage of data.

Reading From a File

// The "FileAvg" class.

// Input a sequence of integers entered originally one to a line

// from a file whose name is to be read in from the keyboard

// and find their average.

import java.io.*;

public class FileAvg

{

 static public void main (String args []) throws IOException

 {

String fileName, line;

int number;

int sum = 0, count = 0;

System.out.println ("What is the name of the file of integers?");

DataInputStream stdin = new DataInputStream(System.in);

fileName =stdin.readLine ();

BufferedReader input;

input = new BufferedReader (new FileReader (fileName));

line = input.readLine (); //Read a line of characters.

while (line != null) //File is terminated by a null.

{

 number = Integer.parseInt (line); //Change to an integer.

 count++;

 sum += number;

 line = input.readLine (); //Read next line.

}

System.out.println ("Average of " + count + " numbers is " + (double) sum / count);

 } // main method

} /* FileAvg class */

When the program above is run you will see the following:

For the program to complete it’s task you must specify where the file is located.

The file that stores the data can be created in any text editor. Typically the file is saved with a txt or dat extension

(for example: numbers.txt)

Writing To a File

// The "DiceData" class.

// Simulate the throw of two dice 300 times

// and store the generated data in file "dice".

import java.io.*;

public class DiceData {

 static public void main (String args []) throws IOException {

int die1, die2, roll;

PrintWriter output;

output = new PrintWriter (new FileWriter ("c:/junk/dice.txt"));

for (int count = 1 ; count <= 300 ; count++)
{

die1 = (int) (Math.random () * 6) + 1;

die2 = (int) (Math.random () * 6) + 1;

roll = die1 + die2;

output.println (roll);

}

output.close ();
//Note:To avoid losing information, be sure to close your files. This //releases any data temporarily held by DOS in memory.

System.out.println ("Simulated data of 300 throws now in file 'dice'");

 } // main method

} /* DiceData class */

File Exercises

1)
Write a program will read in strings and store them to a file (c:\junk\strings.txt) one per line until the word “stop” is entered. The program will then read the file, output the strings, and output the number of strings stored in the file.

2)
Write a program that will accept 5 strings and write them to a file named c:\junk\file1.txt. The program will then accept another 5 strings and write them to a file called c:\junk\file2.txt. files. A comparison between the strings contained within the two files will be preformed to see if any of the strings are the same. If they are output them, along with the number of words that are the same.
Sorting

Sorting is the process of putting information into order. There are two ways to sort;

1) ascending (i.e. a,b,c...)

2) descending (i.e. z,y,x.....)

Selection Sort

A selection sort involves finding the smallest value and moving it to the front of the list. Suppose we are given the following input:

18
7
36
5
15
28
12

In a selection sort we compare the first two elements. If the second element is smaller than the first we swap them. We now compare the first element with the third element and swap them if the third element is smaller than the first. We continue this process until we have moved the smallest value to the front. We then repeat the whole process to move the second smallest value to the second position.

PASS 1

5
18
36
7
15
28
12

PASS 2

5
7
36
18
15
28
12

PASS 3

5
7
12
36
18
28
15

PASS 4

5
7
12
15
36
28
18

PASS 5

5
7
12
15
18
36
28

PASS 6

5
7
12
15
18
28
36

The following program implements a selection sort on an array filled with 100 randomly generated numbers.

//A program that will sort a 100 random numbers using the selection method

public class SelectionSort {

 private final int NUMELEM = 100;

 private int num[] = new int [NUMELEM];

 private int temp;

 public void input (){

for (int count = 0; count <NUMELEM; count ++)

 num[count] = (int)(Math.random()*1000)+1;

 }

 public void sort (){

for (int i = 0; i < NUMELEM-1; i++){

 for (int j = i+1; j < NUMELEM; j ++){

if (num[j] < num[i]){

 temp = num[i];

 num[i] = num[j];

 num[j] = temp;

}

 }

}

 }

 public void output (){

for (int count = 0; count < NUMELEM; count ++){

 System.out.print (num[count]+"\t");

 if ((count+1)%5 == 0)

System.out.println();

}

 }

 public static void main(String args[]) {

SelectionSort ss = new SelectionSort();

ss.input();

ss.sort();

ss.output();

 }

}

Bubble Sort

A bubble sort involves bubbling a value (largest) to its final position in the list with each pass. Suppose we are given the following input:

18
7
36
5
15
28
12

In a bubble sort we compare the first two elements. If the first element is larger than the second we swap them. We now compare the second element with the third element and swap them if the second element is larger than the third. We continue this process until we have moved the largest value to the end. The whole process is repeated to move the second largest value to the second last position. This process is done until we have moved the second smallest value to the second position in the list.

.

18
7
36
5
15
28
12

PASS 1

7
18
5
15
28
12
36

PASS 2

7
5
15
18
12
28
36

PASS 3

5
7
15
12
18
28
36

PASS 4

5
7
12
15
18
28
36

PASS 5

5
7
12
15
18
36
28

PASS 6

5
7
12
15
18
28
36
//A program that will bubble sort 50 random numbers

public class BubbleSort {

 final int NUMELEM = 50;

 int num[] = new int [NUMELEM];

 int temp;

 public void input (){

 for (byte count = 0; count < NUMELEM; count ++)

 num[count] = (int)(Math.random()*1000)+1;

 }

 public void bubblesorting (){

for (byte count1 = 0; count1 < NUMELEM-1; count1 ++){

 for (byte count2 = 0; count2 < ((NUMELEM-1)-count1); count2++){

 if (num[count2] > num[count2+1]){

temp = num[count2];

num[count2] = num[count2+1];

num[count2+1] = temp;

 }

 }

}

 }

 public void output (){

for (int count = 0; count < NUMELEM; count ++){

 System.out.print (num[count]+"\t");

 if ((count+1)%5 == 0)

System.out.println();

}

 }

 public static void main(String args[]) {

BubbleSort bs = new BubbleSort();

bs.input();

bs.output();

System.out.println("Sorted List");

bs.bubblesorting();

bs.output();

 }

}

Modified Bubble Sort

//A program that will bubble sort 50 random numbers

public class ModBubbleSort {

 final int NUMELEM = 12;

 int num[] = new int [NUMELEM];

 int temp;

 public void input (){

 for (byte count = 0; count < NUMELEM; count ++)

 num[count] = (int)(Math.random()*1000)+1;

 }

 public void modBubbleSorting (){

boolean swap = true;

byte count1 = 0;

while ((swap) && (count1 < NUMELEM-1)){

 swap = false;

 for (byte count2 = 0; count2 < ((NUMELEM-1)-count1); count2++){

 if (num[count2] > num[count2+1]){

temp = num[count2];

num[count2] = num[count2+1];

num[count2+1] = temp;

swap = true;

 } // end if

 } // end for

 count1 ++;

 System.out.println ("List After Pass Number " + count1 + " :");

 output();

} // end while

 } // end modBubbleSorting

 public void output (){

for (int count = 0; count < NUMELEM; count ++){

 System.out.print (num[count]+"\t");

 if ((count+1)%12 == 0)

System.out.println();

}

 }

 public static void main(String args[]) {

ModBubbleSort mbs = new ModBubbleSort();

mbs.input();

System.out.println("Unsorted List");

mbs.output();

mbs.modBubbleSorting();

 }

}

Insertion Sort

A insertion sort involves inserting a value into a sorted position in the list with each pass. Suppose we are given the following input:

18
7
36
5
15
28
12

In an insertion sort we compare the first two elements. If the second element is smaller than the first we insert the second in front of the first. We now compare the first three elements. The third element is compared against the first two elements and inserted into the correct position. We continue this process until we have inserted all the elements into their correct position.

18
7
36
5
15
28
12

PASS 1

7
18
36
5
15
28
12

PASS 2

7
18
36
5
15
28
12

PASS 3

5
7
18
36
15
28
12

PASS 4

5
7
15
18
36
28
12

PASS 5

5
7
15
18
28
36
12

PASS 6

5
7
12
15
18
28
36

// A program that will insertion sort 50 random numbers

public class InsertionSort {

 final int NUMELEM = 50;

 int counter;

 int num[] = new int [NUMELEM];

 int temp;

 public void input (){

for (byte count = 0; count < NUMELEM; count ++)

 num[count] = (int)(Math.random()*1000)+1;

 }

 public void insertion (){

boolean check = false;

for (byte count = 1; count < NUMELEM; count ++){

 temp = num[count];

 counter = count;

 check = num[counter-1] > temp;

 while (check){

num[counter] = num[counter-1];

counter = counter-1;

if (counter == 0)

 check = false;

else

 check = num[counter-1] > temp;

 }

 num[counter] = temp;

}

 }

 public void output (){

for (int count = 0; count < NUMELEM; count ++){

 System.out.print (num[count]+"\t");

 if ((count+1)%5 == 0)

System.out.println();

}

 }

 public static void main(String args[]) {

InsertionSort is = new InsertionSort();

is.input();

is.output();

System.out.println("Sorted List:");

is.insertion();

is.output();

 }

}

Sorting Categories

The number of movements and comparisons made during a sort determine the speed of the sort. There are many other sorting routines that are available besides the ones discussed above, however there are basically three types of sorting categories;

1) Exchange Sorting

2) Insertion Sorting

3) Selection Sorting

Exchange Sorting

Exchange sorting involving swapping elements of a list when an earlier member is found to be higher than a later member. The scan of the file may work from top to bottom or bottom to top, or it may alternate from pass to pass. Examples are;

1) Bubble Sort

2) Modified Bubble Sort

Faster

3) Shaker Sort

4) Quick Sort

	Sort
	Comparisons

(min. max)
	Data Movements
	Description

	Bubble
	N,..N2/2
	N2/2
	bubbles largest value in list to the last position with each pass

	Modified Bubble
	
	
	bubbles largest value in list to the last position with each pass and stops when the list is sorted (potential to cut down on the number of passes)

	Shaker
	
	
	moves the largest item to the end of the list and then reverses and moves smallest item to the beginning of the list (alternates back and forth)

	Quick
	1.1Nlog2N ..

1.4Nlog2N
	hard to find
	divides the list into groups and sorts the smaller groups

Insertion Sorting

Insertion sorting involving inserting elements into a sorted position on a growing list. Examples are;

1) Linear Insertion Sort

2) Binary Insertion Sort

 Faster

3) Shell Sort

	Sort
	Comparisons

(min. max)
	Data Movements
	Description

	Linear
	N,..N2/2
	N2/2
	inserts an item into a sorted position in a growing list

	Binary
	
	
	divides the list into halves and therefore reduces the number of data movements

	Shell
	
	
	see textbook

Selection Sorting

Selection sorting involves finding the smallest value and moving it to the front of the list. Examples are;

1) Linear Selection Sort

2) Heap Sort

 Faster

3) Tree Selection Sort

	Sort
	Comparisons

(min. max)
	Data Movements
	Description

	Linear
	N2
	N transfers
	moves the smallest item in a list to the front

	Heap
	
	
	organized into treed structure and makes a heap

	Tree
	
	
	compares pairs and promotes the higher value up a level

Searching

Sequential Search

A sequential search involves looking at each item in the list, one at a time, until the item is found (or not found). A sequential search is usually done on a list of items that has not been sorted. The basic method to perform a linear search is shown below:

public int linearSearch(int key) {

for (int n = 0; n < a.length; n++)

if (a[n] == key)

System.out.println(“Item found”);

else

System.out.println(“Item not found”);

 }

Consider the following data:

2
8
5
19
3
4
7
12
5
16
-87
25
1
5

If you were to search for the number 12 using the algorithm above each number in the data would be compared against the number you are searching for. If the number matching the search item is encountered “Item found” would be output, while numbers encountered that do not match the search item would output “Item not found”. Note that each item is checked.

If we are looking for one occurrence of the search item we could improve the above algorithm by using a conditional loop and a functional method. Consider the following code:

public int linearSearch(int key) {

boolean found = false;

 int n = 0;

while (! found && n < a.length) {

if (a[n] == key) {

found = true;

return n;

}

n+=1;

}

 return -1;

 }

The modified search above stops when the item being searched for is found, rather than continuing through to the end of the array. The method returns a positive integer corresponding to the position where the item is found or a negative one if the item is not found.

The following class implements a linear search through an array of 20 elements.

// Linear search of an array

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class LinearSearch extends Applet implements ActionListener {

 int a[];

 int index;

 String searchKey;

 Label enterLabel, resultLabel;

 TextField enter, result;

 public void init(){

 a = new int[20];

 for (int i = 0; i < a.length; i++) // create data

 a[i] = 2 * i;

 enterLabel = new Label("Enter integer search key");

 add(enterLabel);

 enter = new TextField(10);

 enter.addActionListener(this);

 add(enter);

 resultLabel = new Label("Result");

 add(resultLabel);

 result = new TextField(25);

 result.setEditable(false);

 add(result);

 }

 public void paint (Graphics g) {

 int x = 25, y = 100;

 g.drawString("The values stored in the array are:",x,y);

 y+=25;

 g.drawString("Index |",x,y);

 x+=40;

 for (int i = 0; i < a.length ; i++){

 g.drawString(String.valueOf(i),x,y);

 x+=20;

 }

 g.drawLine(25,y+3,460,y+3);

 y+=15;

 x=25;

 g.drawString("Value |",x,y);

 x+=40;

 for (int i = 0; i < a.length ; i++) {

 g.drawString(String.valueOf(a[i]),x,y);

 x+=20;

 }

 }

 public int linearSearch(int key) {

 boolean found = false;

 int n = 0;

 while (! found && n < a.length) {

 if (a[n] == key) {

 found = true;

 return n;

 }

 n+=1;

 }

 return -1;

 }

 public void actionPerformed(ActionEvent e){

 searchKey = e.getActionCommand();

 index = linearSearch(Integer.parseInt(searchKey));

 if (index != -1)

 result.setText("Found value at index " + index);

 else

 result.setText("Value not found");

 }

}
Binary Search

A binary search involves dividing the list in two, making a comparison and then searching until the item is found (or not found). A binary search only works on a sorted list of items. Consider the following procedure:

public int binarySearch(int key) {

boolean found=false;

int low = 0; // low subscript

int high = a.length - 1; // high subscript

int middle; // middle subscript

while (low <= high) {

middle = (low + high) / 2;

if (key == a[middle]){ // match

found=true;

System.out.println(“Item found”);

break;

}

else if (key < a[middle])

high = middle - 1; // search low end of array

else

low = middle + 1; // search high end of array

}

if (found=false)

System.out.println(“Item not found”);

 }

The binary search above works by dividing the length of the array in two, and uses the resulting index (middle index) to compare the value at that index to the search valve. If the value at the middle index is lower than the search value we know the item must be in the upper half of the array. We continue this process until the item is either found or we have reached the end of the array. Once again, if we are only searching for one occurrence of a particular item we could include a Boolean variable and modify the while condition so the while loop would be stopped once the value was found.

// Binary search of an array

import java.awt.*;

import java.applet.Applet;

import java.awt.event.*;

public class BinarySearch extends Applet implements ActionListener {

int a[];

int index;

String searchKey;

int xPosition; // applet horizontal drawing position

int yPosition; // applet vertical drawing position

Label enterLabel, resultLabel;

TextField enter, result;

boolean timeToSearch = false;

public void init() {

a = new int[20];

for (int i = 0; i < a.length; i++) // create data

a[i] = 2 * i;

enterLabel = new Label("Enter key");

add(enterLabel);

enter = new TextField(5);

enter.addActionListener(this);

add(enter);

resultLabel = new Label("Result");

add(resultLabel);

result = new TextField(22);

result.setEditable(false);

add(result);

}

public void paint(Graphics g) {

outputarray(g);

if (timeToSearch) { // prevents search when interface is initialized.

index = binarySearch(Integer.parseInt(searchKey), g);

if (index != -1)

result.setText("Found value at index " + index);

else

result.setText("Value not found");

}

}

public void outputarray (Graphics g) {

int x = 25, y = 100;

g.drawString("The values stored in the array are:",x,y);

y+=25;

g.drawString("Index |",x,y);

x+=40;

for (int i = 0; i < a.length ; i++){

g.drawString(String.valueOf(i),x,y);

x+=20;

}

g.drawLine(25,y+3,460,y+3);

y+=15;

x=25;

g.drawString("Value |",x,y);

x+=40;

for (int i = 0; i < a.length ; i++) {

g.drawString(String.valueOf(a[i]),x,y);

x+=20;

}

}

public void actionPerformed(ActionEvent event) {

timeToSearch = true;

xPosition = 25;

yPosition = 200;

searchKey = event.getActionCommand().toString();

repaint(); // call paint to start search and output

}

// Binary search

public int binarySearch(int key, Graphics gg) {

xPosition = 25;

gg.drawString("Portions of array searched", xPosition, yPosition);

yPosition += 15;

int low = 0; // low subscript

int high = a.length - 1; // high subscript

int middle; // middle subscript

while (low <= high) {

middle = (low + high) / 2;

printRow(low, middle, high, gg);

if (key == a[middle]) // match

return middle;

else if (key < a[middle])

high = middle - 1; // search low end of array

else

low = middle + 1; // search high end of array

}

return -1; // searchKey not found

}

// Print one row of output showing the current

// part of the array being processed.

void printRow(int low, int mid, int high, Graphics gg) {

xPosition = 25;

for (int i = 0; i < a.length; i++) {

if (i < low || i > high)

gg.drawString("", xPosition, yPosition);

else if (i == mid) // mark middle value

gg.drawString(String.valueOf(a[i]) + "*", xPosition, yPosition);

else

gg.drawString(String.valueOf(a[i]), xPosition, yPosition);

xPosition += 20;

}

yPosition += 15;

}

}

Advanced Data Structures
Records

Arrays are data structures that store elements of the same type. Records on the other hand are data structures that store elements with potentially different types. In Java objects consist of instance variables and methods that operate on these variables. The instance variables are the fields of the object.

// The "PhoneRecord" class.

public class PhoneRecord

{

 protected String name, phone;

 // Constructor.

 public PhoneRecord (String name, String phone)

 {

this.name = name;

this.phone = phone;

 } // PhoneRecord constructor

 // Method to get name.

 public String getName ()

 {

return name;

 } // getName method

 // Method to get phone.

 public String getPhone ()

 {

return phone;

 } // getPhone method

 // Method to change name.

 public void setName (String newName)

 {

name = newName;

 } // setName method

 // Method to change phone.

 public void setPhone (String newPhone)

 {

phone = newPhone;

 } // setPhone method

} /* PhoneRecord class */

The fields name and phone of the record are the instance variables and are labelled protected. Their values can be set by the methods setName and setPhone, or retrieved with the methods getName and getPhone. To instantiate an object called person of type PhoneRecord and initialize it to the name ‘Bob’ and phone ‘(407) 669-1212’ would require the statement:

PhoneRecord person = new PhoneRecord (“Bob”, “(407) 669-1212”);

In order to output the instance values we would be required to use the dot notation:

System.out.println (person.getName() + “ “ + person.getPhone ());

On the surface this may seem to be complicated, however one of the main points is to protect instance variables from interference by other objects in any way except through the methods of the defining class.

Remember the main idea of object oriented programing is to create classes that perform the required tasks. Once you have created the required classes you may create a “driver” program that implements (uses) the class or classes. On the next page is an example in which the “driver” class Record implements part of the PhoneRecord class.

import java.io.*;

// The "Record" class, *** used as a driver for the PhoneRecord class. ***

public class Record{

 static private int n = 4;

 static private PhoneRecord pr[] = new PhoneRecord [n+1];

 DataInputStream stdin = new DataInputStream(System.in);

 public void inputRecords() throws IOException{

for (int count = 0; count <= n; count ++){

 pr[count] = new PhoneRecord("","");

//Instantiates a new PhoneRecord

 System.out.println("Please write down your name.");

 pr[count].setName(stdin.readLine());

 System.out.println("Please write down your phone number.");

 pr[count].setPhone(stdin.readLine());

}//End for loop

 }//End inputRecords

 public void outputRecords(){

for (int count = 0; count <= n; count ++){

 System.out.print(pr[count].getName()+ " ");

 System.out.println(pr[count].getPhone());

}//End for loop

 }//End outputRecords

 public static void main(String args[])throws IOException {

Record r = new Record();

r.inputRecords();

r.outputRecords();

 }//End Main

}//End Record class

Array Stack
The next and more serious data structure we'll examine is the Stack. A stack is a FILO (First In, Last Out), structure. For now, we'll just deal with the array representation of the stack. Knowing that we'll be using an array, we automatically think of the fact that our stack has to have a maximum size.
A stack has only one point where data enters or leaves. We can't insert or remove elements into or from the middle of the stack.
public class pArrayStackInt{

 protected int head[];

 protected int pointer;

 public pArrayStackInt(int capacity){

 head = new int[capacity];

 pointer = -1;

 }

 public boolean isEmpty(){

 return pointer == -1;

 }

 public void push(int i){

 if(pointer+1 < head.length)

 head[++pointer] = i;

 }

 public int pop(){

 if(isEmpty())

 return 0;

 return head[pointer--];

 }

}

As you can see, that's the stack class. The constructor named pArrayStackInt() accepts an integer. That integer is to initialize the stack to that specific size. If you later try to push() more integers onto the stack than this capacity, it won't work. Nothing is complete without testing, so, lets write a test driver class to test this stack.
import java.io.*;

import pArrayStackInt;

class pArrayStackIntTest{

 public static void main(String[] args){

 pArrayStackInt s = new pArrayStackInt(10);

 int i,j;

 System.out.println("starting...");

 for(i=0;i<10;i++){

 j = (int)(Math.random() * 100);

 s.push(j);

 System.out.println("push: " + j);

 }

 while(!s.isEmpty()){

 System.out.println("pop: " + s.pop());

 }

 System.out.println("Done ;-)");

 }

}

The test driver does nothing special; it inserts ten random numbers onto the stack, and then pops them off; writing to standard output exactly what it's doing. The output from this program is:

starting...

push: 33

push: 66

push: 10

push: 94

push: 67

push: 79

push: 48

push: 7

push: 79

push: 32

pop: 32

pop: 79

pop: 7

pop: 48

pop: 79

pop: 67

pop: 94

pop: 10

pop: 66

pop: 33

Done ;-)
As you can see, the first numbers to be pushed on, are the last ones to be popped off. A perfect example of a FILO structure. The output also assures us that the stack is working properly.

Now that you've had a chance to look at the source, lets look at it more closely.

The pArrayStackInt class is using an array to store it's data. The data is int type (for simplicity). There is a head data member, that's the actual array. Because we're using an array, with limited size, we need to keep track of it's size, so that we don't overflow it; we always look at head.length to check for maximum size.

The second data member is pointer. Pointer, in here, points to the top of the stack. It always has the position which had the last insertion, or -1 if the stack is empty.

The constructor: pArrayStackInt(), accepts the maximum size parameter to set the size of the stack. The rest of the functions is just routine initialization. Notice that pointer is initialized to -1, this makes the next position to be filled in an array, 0.

The isEmpty() function returns true if the stack is empty (pointer is -1), and false otherwise. The return type is boolean.

The push(int) function checks to see if the next insertion will not overflow the array. If no danger from overflow, then it inserts. It first increments the pointer and then inserts into the new location pointed to by the updated pointer. It could easily be modified to actually make the array grow, but then the whole point of "simplicity" of using an array will be lost.

The int pop() function checks to see if stack is not empty, if it is empty, it will return 0. In general, this is a really bad error to pop of something from an empty stack. You may want to do something more sensible than simply returning a 0 (an exception throw would not be a bad choice). I did it this way for the sake of simplicity. Then, it returns the value of the array element currently pointed to by pointer, and it decrements the pointer. This way, it is ready for the next push or pop.

What if we want to store different types? In Java, every object is a descendent of the Object class. So, we can just use the Object class in all of our structures, and later cast it to an appropriate type. Next, we'll write an example that uses this technique inside a generic stack
public class pArrayStackObject{

 protected Object head[];

 protected int pointer;

 public pArrayStackObject(int capacity){

 head = new Object[capacity];

 pointer = -1;

 }

 public boolean isEmpty(){

 return pointer == -1;

 }

 public void push(Object i){

 if(pointer+1 < head.length)

 head[++pointer] = i;

 }

 public Object pop(){

 if(isEmpty())

 return null;

 return head[pointer--];

 }

}

The above is very similar to the int only version, the only things that changed are the int to Object. This stack, allows the push() and pop() of any Object. Lets convert our old test driver to accommodate this new stack. The new test module will be inserting java.lang.Integer objects (not int; not primitive type).
import java.io.*;

import pArrayStackObject;

class pArrayStackObjectTest{

 public static void main(String[] args){

 pArrayStackObject s = new pArrayStackObject(10);

 Integer j = null;

 int i;

 System.out.println("starting...");

 for(i=0;i<10;i++){

 j = new Integer((int)(Math.random() * 100));

 s.push(j);

 System.out.println("push: " + j);

 }

 while(!s.isEmpty()){

 System.out.println("pop: " + ((Integer)s.pop()));

 }

 System.out.println("Done ;-)");

 }

}
Array Queues
A queue is a FIFO (First In, First Out) structure. Anything that's inserted first, will be the first to leave (kind of like the real world queues.) This is totally the opposite of what a stack is. Although that is true, the queue implementation is quite similar to the stack one. It also involves pointers to specific places inside the array.
With a queue, we need to maintain two pointers, the start and the end. We'll determine when the queue is empty if start and end point to the same element. To determine if the queue is full (since it's an array), we'll have a boolean variable named full. To insert, we'll add one to the start, and mod (the % operator) with the size of the array. To remove, we'll add one to the end, and mod (the % operator) with the size of the array.
public class pArrayQueue{

 protected Object[] array;

 protected int start,end;

 protected boolean full;

 public pArrayQueue(int maxsize){

 array = new Object[maxsize];

 start = end = 0;

 full = false;

 }

 public boolean isEmpty(){

 return ((start == end) && !full);

 }

 public void insert(Object o){

 if(!full)

 array[start = (++start % array.length)] = o;

 if(start == end)

 full = true;

 }

 public Object remove(){

 if(full)

 full = false;

 else if(isEmpty())

 return null;

 return array[end = (++end % array.length)];

 }

}
Well, that's the queue class. In it, we have four variables, the array, the start and end, and a boolean full. The constructor pArrayQueue(int maxsize) initializes the queue, and allocates an array for data storage. The isEmpty() method checks to see if start and end are equal; this can only be in two situations: when the queue is empty, and when the queue is full. It later checks the full variable and returns whether this queue is empty or not.

The insert(Object) method, accepts an Object as a parameter, checks whether the queue is not full, and inserts it. The insert works by adding one to start, and doing a mod with array.length (the size of the array), the resulting location is set to the incoming object. We later check to see if this insertion caused the queue to become full, if yes, we note this by setting the full variable to true.

The Object remove() method, doesn't accept any parameters, and returns an Object. It first checks to see if the queue is full, if it is, it sets full to false (since it will not be full after this removal). If it's not full, it checks if the queue is empty, by calling isEmpty(). If it is, the method returns a null, indicating that there's been an error. This is usually a pretty bad bug inside a program, for it to try to remove something from an empty queue, so, you might want to do something more drastic in such a situation (like an exception throw). The method continues by removing the end object from the queue. The removal is done in the same way insertion was done. By adding one to the end, and later mod it with array.length (array size), and that position is returned.

There are other implementations of the same thing, a little re-arrangement can make several if() statements disappear. The reason it's like this is because it's pretty easy to think of it. Upon insertion, you add one to start and mod, and upon removal, you add one to end and mod.

 Well, now that we know how it works, let’s actually test it!
import java.io.*;

import pArrayQueue;

class pArrayQueueTest{

 public static void main(String[] args){

 pArrayQueue q = new pArrayQueue(10);

 Integer j = null;

 int i;

 System.out.println("starting...");

 for(i=0;i<10;i++){

 j = new Integer((int)(Math.random() * 100));

 q.insert(j);

 System.out.println("insert: " + j);

 }

 while(!q.isEmpty()){

 System.out.println("remove: " + ((Integer)q.remove()));

 }

 System.out.println("Done ;-)");

 }

}
As you can see, it inserts ten random java.lang.Integer Objects onto the queue, and later prints them out. The output from the program follows:
starting...

insert: 3

insert: 70

insert: 5

insert: 17

insert: 26

insert: 79

insert: 12

insert: 44

insert: 25

insert: 27

remove: 3

remove: 70

remove: 5

remove: 17

remove: 26

remove: 79

remove: 12

remove: 44

remove: 25

remove: 27

Done ;-)
Array Lists
The next step up in complexity is a list. Most people prefer to implement a list as a linked list (and I'll show how to do that later), but what most people miss, is that lists can also be implemented using arrays. A list has no particular structure; it just has to allow for the insertion and removal of objects from both ends, and some way of looking at the middle elements. A list is kind of a stack combined with a queue; with additional feature of looking at the middle elements. Preferably, a list should also contain the current number of elements. Consider the following:
public class pArrayList{

 protected Object[] array;

 protected int start,end,number;

 public pArrayList(int maxsize){

 array = new Object[maxsize];

 start = end = number = 0;

 }

 public boolean isEmpty(){

 return number == 0;

 }

 public boolean isFull(){

 return number >= array.length;

 }

 public int size(){

 return number;

 }

 public void insert(Object o){

 if(number < array.length){

 array[start = (++start % array.length)] = o;

 number++;

 }

 }

 public void insertEnd(Object o){

 if(number < array.length){

 array[end] = o;

 end = (--end + array.length) % array.length;

 number++;

 }

 }

 public Object remove(){

 if(isEmpty())

 return null;

 number--;

 int i = start;

 start = (--start + array.length) % array.length;

 return array[i];

 }

 public Object removeEnd(){

 if(isEmpty())

 return null;

 number--;

 return array[end = (++end % array.length)];

 }

 public Object peek(int n){

 if(n >= number)

 return null;

 return array[(end + 1 + n) % array.length];

 }

}
The class contains four data elements: array, start, end, and number. The number is the number of elements inside the array.
The start is the starting pointer, and the end is the ending pointer inside the array (kind of like the queue design).

The constructor, pArrayList(), and methods isEmpty(), isFull(), and size(), are pretty much self explanatory. The insert() method works exactly the same way as an equivalent queue method. It just increments the start pointer, does a mod (the % symbol), and inserts into the resulting position.

The insertEnd(Object) method, first checks that there is enough space inside the array. It then inserts the element into the end location. The next trick is to decrement the end pointer, add the array.length, and do a mod with array.length. This had the effect of moving the end pointer backwards (as if we had inserted something at the end).

The Object remove() method works on a very similar principle. First, it checks to see if there are elements to remove, if not, it simply returns a null (no Object). It then decrements number. We're keeping track of this number inside all insertion and removal methods, so that it always contains the current number of elements. We then create a temporary variable to hold the current position of the start pointer. After that, we update the start pointer by first decrementing it, adding array.length to it, and doing a mod with array.length. This gives the appearance of removing an element from the front of the list. We later return the position inside the array, which we've saved earlier inside that temporary variable 'i'.

The Object removeEnd() works similar to the insert() method. It checks to see if there are elements to remove by calling isEmpty() method, if there aren't, it returns null. It then handles the number (number of elements) business, and proceeds with updating the end pointer. It first increments the end pointer, and then does a mod with array.length, and returns the resulting position. Simple?

This next Object peek(int n) method is the most tricky one. It accepts an integer, and we need to return the number which this integer is pointing to. This would be no problem if we were using an array that started at 0, but we're using our own implementation, and the list doesn't necessarily start at array position 0. We start this by checking if the parameter 'n' is not greater than the number of elements, if it is, we return null (since we don't want to go past the bounds of the array). What we do next is add 'n' (the requesting number) to an incremented end pointer, and do a mod array.length. This way, it appears as if this function is referencing the array from 0 (while the actual start is the incremented end pointer).
Let’s write a test driver to test our list class.
import java.io.*;

import pArrayList;

class pArrayListTest{

 public static void main(String[] args){

 pArrayList l = new pArrayList(10);

 Integer j = null;

 int i;

 System.out.println("starting...");

 for(i=0;i<5;i++){

 j = new Integer((int)(Math.random() * 100));

 l.insert(j);

 System.out.println("insert: " + j);

 }

 while(!l.isFull()){

 j = new Integer((int)(Math.random() * 100));

 l.insertEnd(j);

 System.out.println("insertEnd: " + j);

 }

 for(i=0;i<l.size();i++)

 System.out.println("peek "+i+": "+l.peek(i));

 for(i=0;i<5;i++)

 System.out.println("remove: " + ((Integer)l.remove()));

 while(!l.isEmpty())

 System.out.println("removeEnd: " + ((Integer)l.removeEnd()));

 System.out.println("Done ;-)");

 }

}
The test driver is nothing special, it inserts (in front) five random numbers, and the rest into the back (also five). It then prints out the entire list by calling peek() inside a for loop. It then continues with the removal (from front) of five numbers, and later removing the rest (also five). At the end, the program prints "Done" with a cute smiley face ;-)

The output from this test driver is given below. I suggest you examine it thoroughly, and make sure you understand what's going on inside this data structure.
starting...

insert: 14

insert: 72

insert: 71

insert: 11

insert: 27

insertEnd: 28

insertEnd: 67

insertEnd: 36

insertEnd: 19

insertEnd: 45

peek 0: 45

peek 1: 19

peek 2: 36

peek 3: 67

peek 4: 28

peek 5: 14

peek 6: 72

peek 7: 71

peek 8: 11

peek 9: 27

remove: 27

remove: 11

remove: 71

remove: 72

remove: 14

removeEnd: 45

removeEnd: 19

removeEnd: 36

removeEnd: 67

removeEnd: 28

Done ;-)
 Well, if you really understand everything up to this point, there is nothing new anybody can teach you about arrays (since you know all the basics). There are however public tools available to simplify your life. Some are good, some are bad, but one that definitely deserves to have a look at is the java.util.Vector class; and that's what the next section is about!

The Vector
The java.util.Vector class is provided by the Java API, and is one of the most useful array based data storage classes. The information provided here is as far as JDK 1.2 goes, future versions may have other implementations; still, the functionality should remain the same. A vector, is a growing array; as more and more elements are added onto it, the array grows. There is also a possibility of making the array smaller. Vectors are designed to store references (called pointers in other languages) to objects, thus storage of primative data types must use the type-wrapper classes (Integer, Long, Float, Double, Boolean, Character) from the java.lang package to create objects that contain the primative data types

But wait a minute, all this time I've been saying that arrays can't grow or shrink, and it seems Java API has done it. Not quite. The java.util.Vector class doesn't exactly grow, or shrink. When it needs to do these operations, it simply allocates a new array (of appropriate size), and copies the contents of the old array into the new array. Thus, giving the impression that the array has changed size.

All these memory operations can get quite expensive if a Vector is used in a wrong way. Since a Vector has a similar architecture to the array stack we've designed earlier, the best and fastest way to implement a Vector is to do stack operations. Usually, in programs, we need a general data storage class, and don't really care about the order in which things are stored or retrieved; that's where java.util.Vector comes in very useful.

Using a Vector to simulate a queue is very expensive, since every time you insert or remove, the entire array has to be copied (not necessarily reallocated but still involves lots of useless work).

A Vector allows us to view it's insides using an Enumerator; a class to go through objects. It is very useful to first be able to look what you're looking for, and only later decide whether you'd like to remove it or not. A sample program that uses java.util.Vector for it's storage follows.
import java.io.*;

import java.util.*;

class pVectorTest{

 public static void main(String[] args){

 Vector v = new Vector(15);

 Integer j = null;

 int i;

 System.out.println("starting...");

 for(i=0;i<10;i++){

 j = new Integer((int)(Math.random() * 100));

 v.addElement(j);

 System.out.println("addElement: " + j);

 }

 System.out.println("size: "+v.size());

 System.out.println("capacity: "+v.capacity());

 Enumeration enum = v.elements();

 while(enum.hasMoreElements())

 System.out.println("enum: "+(Integer)enum.nextElement());

 System.out.println("Done ;-)");

 }

}
The example above should be self evident (if you paid attention when I showed test programs for the previous data structures). The main key difference is that this one doesn't actually remove objects at the end; we just leave them inside. Removal can be accomplished very easily, and if you'll be doing anything cool with the class, you'll sure to look up the API specs.
Printing is accomplished using an Enumerator; which we use to march through every element printing as we move along. We could also have done the same by doing a for loop, going from 0 to v.size(), doing a v.elementAt(int) every time through the loop. The output from the above program follows:
starting...

addElement: 9

addElement: 5

addElement: 54

addElement: 49

addElement: 60

addElement: 81

addElement: 8

addElement: 91

addElement: 76

addElement: 81

size: 10

capacity: 15

enum: 9

enum: 5

enum: 54

enum: 49

enum: 60

enum: 81

enum: 8

enum: 91

enum: 76

enum: 81

Done ;-)

You should notice that when we print the size and capacity, they're different. The size is the current number of elements inside the Vector, and the capacity, is the maximum possible without reallocation.

.

Consider the following program:

import java.io.*;

import java.util.*;

public class AssignGradeUsingVector extends MyInput{

 public static void main(String[] args){

 Vector scoreVector = new Vector(); // Vector to hold scores

 double best = 0; // The best score

 char grade; // The grade

 // Read scores and find the best score

 System.out.println("Please enter scores. " +"A negative score terminates input.");

 do {

 System.out.print("Please enter a new score: ");

 double score = MyInput.readDouble();

 if (score < 0) break;

 // Add the score into the vector

 scoreVector.addElement(new Double(score));

 // Find the best score

 if (score > best)

 best = score;

 } while (true);

 System.out.println("There are total " + scoreVector.size() +

 " students ");

 // Assign and display grades

 for (int i=0; i<scoreVector.size(); i++) {

 // Retrieve an element from the vector

 Double doubleObject = (Double)(scoreVector.elementAt(i));

 // Get the score

 double score = doubleObject.doubleValue();

 if (score >= best - 10)

 grade = 'A';

 else if (score >= best - 20)

 grade = 'B';

 else if (score >= best - 30)

 grade = 'C';

 else if (score >= best - 40)

 grade = 'D';

 else

 grade = 'F';

 System.out.println("Student " + i + " score is " + score +

 " and grade is " + grade);

 }

 }

}

// MyInput.java: Contain the methods for reading int, double, and

// string values from the keyboard

class MyInput{

 // Read a string from the keyboard

 public static String readString() {

 BufferedReader br

 = new BufferedReader(new InputStreamReader(System.in), 1);

 // Declare and initialize the string

 String string = "";

 // Get the string from the keyboard

 try {

 string = br.readLine();

 }

 catch (IOException ex) {

 System.out.println(ex);

 }

 // Return the string obtained from the keyboard

 return string;

 }

 // Read an int value from the keyboard

 public static int readInt() {

 return Integer.parseInt(readString());

 }

 // Read a double value from the keyboard

 public static double readDouble() {

 return Double.valueOf(readString()).doubleValue();

 }

 // Read a byte value from the keyboard

 public static byte readByte() {

 return Byte.parseByte(readString());

 }

 // Read a short value from the keyboard

 public static short readShort() {

 return Short.parseShort(readString());

 }

 // Read a long value from the keyboard

 public static long readLong() {

 return Long.parseLong(readString());

 }

 // Read a float value from the keyboard

 public static float readFloat() {

 return Float.valueOf(readString()).floatValue();

 }

}

// Testing the Vector class of the java.util package

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class VectorTest extends Applet implements ActionListener {

 private Vector v;

 // GUI components

 private TextField input;

 private Button addBtn, removeBtn, firstBtn, lastBtn,

 emptyBtn, containsBtn, locationBtn,

 trimBtn, statsBtn, displayBtn;

 public void init() {

 v = new Vector(1);

 add(new Label("Enter a string"));

 input = new TextField(10);

 add(input); // value to add, remove or locate

 addBtn = new Button("Add");

 addBtn.addActionListener(this);

 add(addBtn); // add the input value

 removeBtn = new Button("Remove");

 removeBtn.addActionListener(this);

 add(removeBtn); // remove the input value

 firstBtn = new Button("First");

 firstBtn.addActionListener(this);

 add(firstBtn); // look at the first element

 lastBtn = new Button("Last");

 lastBtn.addActionListener(this);

 add(lastBtn); // look at the last element

 emptyBtn = new Button("Is Empty?");

 emptyBtn.addActionListener(this);

 add(emptyBtn); // check if stack is empty

 containsBtn = new Button("Contains");

 containsBtn.addActionListener(this);

 add(containsBtn); // does vector contain input value?

 locationBtn = new Button("Location");

 locationBtn.addActionListener(this);

 add(locationBtn); // location of input value

 trimBtn = new Button("Trim");

 trimBtn.addActionListener(this);

 add(trimBtn); // trim vector to number of elements

 statsBtn = new Button("Statistics");

 statsBtn.addActionListener(this);

 add(statsBtn); // display statistics

 displayBtn = new Button("Display");

 displayBtn.addActionListener(this);

 add(displayBtn); // display the stack contents

 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == addBtn) {

 v.addElement(input.getText());

 showStatus("Added to end: " + input.getText());

 }

 else if (e.getSource() == removeBtn) {

 if (v.removeElement(input.getText()))

 showStatus("Removed: " + input.getText());

 else

 showStatus(input.getText() + " not in vector");

 }

 else if (e.getSource() == firstBtn) {

 try {

 showStatus("First element: " + v.firstElement());

 }

 catch (NoSuchElementException exception) {

 showStatus(exception.toString());

 }

 }

 else if (e.getSource() == lastBtn) {

 try {

 showStatus("Last element: " + v.lastElement());

 }

 catch (NoSuchElementException exception) {

 showStatus(exception.toString());

 }

 }

 else if (e.getSource() == emptyBtn) {

 showStatus(v.isEmpty() ? "Vector is empty" : "Vector is not empty");

 }

 else if (e.getSource() == containsBtn) {

 String searchKey = input.getText();

 if (v.contains(searchKey))

 showStatus("Vector contains " + searchKey);

 else

 showStatus("Vector does not contain " + searchKey);

 }

 else if (e.getSource() == locationBtn) {

 showStatus("Element is at location " + v.indexOf(input.getText()));

 }

 else if (e.getSource() == trimBtn) {

 v.trimToSize();

 showStatus("Vector trimmed to size");

 }

 else if (e.getSource() == statsBtn) {

 showStatus("Size = " + v.size() + "; capacity = " + v.capacity());

 }

 else if (e.getSource() == displayBtn) {

 Enumeration enum = v.elements();

 StringBuffer buf = new StringBuffer();

 while (enum.hasMoreElements())

 buf.append(enum.nextElement()).append(" ");

 showStatus(buf.toString());

 }

 input.setText("");

 }

}

A trick you can try yourself when playing with the Vector is to have Vectors of Vectors (since Vector is also an Object, there shouldn't be any problems of doing it). Constructs like that can lead to some interesting data structures, and even more confusion. Just try inserting a Vector into a Vector ;-)

Nodes
The other type of data structures are what's called Node based data structures. Instead of storing data in it's raw format, Node based data structures store nodes, which in turn store the data. Think of nodes as being elements, which may have one or more pointers to other nodes.

Yes, I did say the "pointer" word. Many people think that there are no pointers in Java, but just because you don't see them directly, doesn't mean they're not there. In fact, you can treat any object as a pointer.

Thus, the Node structure should have a data element, and a reference to another node (or nodes). Those other nodes which are referenced to, are called child nodes. The node itself is called the parent node (or sometimes a "father" node) in reference to it's children. (nice big happy family)

Well, the best way to visualize a node is to create one, so, lets do it. The node we'll create will be a one child node (it will have only one pointer), and we'll later use it in later sections to build really cool data structures.
The source for our one child node follows:
public class pOneChildNode{

 protected Object data;

 protected pOneChildNode next;

 public pOneChildNode(){

 next = null;

 data = null;

 }

 public pOneChildNode(Object d,pOneChildNode n){

 data = d;

 next = n;

 }

 public void setNext(pOneChildNode n){

 next = n;

 }

 public void setData(Object d){

 data = d;

 }

 public pOneChildNode getNext(){

 return next;

 }

 public Object getData(){

 return data;

 }

 public String toString(){

 return ""+data;

 }

}

Go over the source, notice that it's nothing more than just set and get functions (pretty simple). The two data members are the data and next. The data member holds the data of the node, and next holds the pointer to the next node. Notice that next is of the same type as the class itself; it effectively points to the object of same class!

The String toString() method is the Java's standard way to print things. If an object wants to be printed in a special way, it will define this method, with instructions on how to print this object. In our case, we just want to print the data. Adding data to a bunch of quotation marks automatically converts it to type String (hopefully, our data will also have a toString() method defined on it). Without this method, we get the actual binary representation of the data members of this class (not a pretty nor meaningful printout).

Node based data structures provide for dynamic growing and shrinking, and are the key to some complex algorithms (as you'll see later). Now that we know how to implement a Node, lets get to something cool...

Linked Lists
A linked list is just a chain of nodes, with each subsequent node being a child of the previous one. Many programs rely on linked lists for their storage because these don't have any evident restrictions. For example, the array list we did earlier could not grow or shrink, but node based ones can! This means there is no limit (other than the amount of memory) on the number of elements they can store.
A linked list has just one node, that node, has links to subsequent nodes. So, the entire list can be referenced from that one node. That first node is usually referred to as the head of the list. The last node in the chain of nodes usually has some special feature to let us know that it's last. That feature, most of the time is a null pointer to the next node.
[node0]->[node1]->[node2]->[node3]->[node4]->null
The example above illustrates the node organization inside the list. In it, node0 is the head node, and node4 is the last node, because it's pointer points to null. Well, now that you know how it's done, and what is meant by a linked list, let’s write one.
import pOneChildNode;

public class pLinkedList{

 protected pOneChildNode head;

 protected int number;

 public pLinkedList(){

 head = null;

 number = 0;

 }

 public boolean isEmpty(){

 return head == null;

 }

 public int size(){

 return number;

 }

 public void insert(Object obj){

 head = new pOneChildNode(obj,head);

 number++;

 }

 public Object remove(){

 if(isEmpty())

 return null;

 pOneChildNode tmp = head;

 head = tmp.getNext();

 number--;

 return tmp.getData();

 }

 public void insertEnd(Object obj){

 if(isEmpty())

 insert(obj);

 else{

 pOneChildNode t = head;

 while(t.getNext() != null)

 t=t.getNext();

 pOneChildNode tmp =

 new pOneChildNode(obj,t.getNext());

 t.setNext(tmp);

 number++;

 }

 }

 public Object removeEnd(){

 if(isEmpty())

 return null;

 if(head.getNext() == null)

 return remove();

 pOneChildNode t = head;

 while(t.getNext().getNext() != null)

 t = t.getNext();

 Object obj = t.getNext().getData();

 t.setNext(t.getNext().getNext());

 number--;

 return obj;

 }

 public Object peek(int n){

 pOneChildNode t = head;

 for(int i = 0;i<n && t != null;i++)

 t = t.getNext();

 return t.getData();

 }

}
Before we move on, lets go over the source. There are two data members, one named head, and the other named number. Head is the first node of the list, and number is the total number of nodes in the list. Number is primarily used for the size() method. The constructor, pLinkedList() is self explanatory. The size() and isEmpty() methods are also pretty easy.

Here comes the hard part, the insertion and removal methods. Method insert(Object) creates a new pOneChildNode object with next pointer pointing to the current head, and data the data which is inserted. It then sets the head to that new node. If you think about it, you'll notice that the head is still saved, and the new node points to it.

Method Object remove() works in a very similar fashion, but instead of inserting, it is removing. It first checks to see if the list is isEmpty() or not, if it is, it returns a null. It then saves the current head node, and then changes it to accommodate the removal (think about the logic), decrements the number, and returns the data from the previously saved node.

In the method insertEnd(Object), we're actually inserting at the end of the list. We first check to see if the list is isEmpty(), if it is, we do a regular insertion (since it really doesn't matter which direction we're coming from if the list is empty). We then setup a loop to search for the end. The end is symbolized by the next pointer of the node being null. When we get to the end, we create a new node, and place it at the end location. Incrementing number before we return.

Method Object removeEnd() works in a similar fashion as insertend(Object) method. It also goes through the whole list to look for the end. At the beginning, we check if the list is not isEmpty(), if it is, we return a null. We then check to see if there is only one element in the list, if there is only one, we remove it using regular remove(). We then setup a loop to look for the node who's child is the last node. It is important to realize that if we get to the last node, we won't be able to erase it; we need the last node's parent node. When we find it, we get the data, setup necessary links, decrement number, and return the data.

The Object peek(int) method simply goes through the list until it either reaches the element requested, or the end of the list. If it reaches the end, it should return a null, if not, it should return the correct location inside the list.

Let’s convert our pArrayListTest driver to accommodate this class.
import java.io.*;

import pLinkedList;

class pLinkedListTest{

 public static void main(String[] args){

 pLinkedList l = new pLinkedList();

 Integer j = null;

 int i;

 System.out.println("starting...");

 for(i=0;i<5;i++){

 j = new Integer((int)(Math.random() * 100));

 l.insert(j);

 System.out.println("insert: " + j);

 }

 for(;i<10;i++){

 j = new Integer((int)(Math.random() * 100));

 l.insertEnd(j);

 System.out.println("insertEnd: " + j);

 }

 for(i=0;i<l.size();i++)

 System.out.println("peek "+i+": "+l.peek(i));

 for(i=0;i<5;i++)

 System.out.println("remove: " + ((Integer)l.remove()));

 while(!l.isEmpty())

 System.out.println("removeEnd: " + ((Integer)l.removeEnd()));

 System.out.println("Done ;-)");

 }

}

The test driver is nothing special, it's just a pretty simple conversion of the old test driver, so, I won’t spend any time discussing it. The output follows.
starting...

insert: 65

insert: 78

insert: 21

insert: 73

insert: 62

insertEnd: 82

insertEnd: 63

insertEnd: 6

insertEnd: 95

insertEnd: 57

peek 0: 62

peek 1: 73

peek 2: 21

peek 3: 78

peek 4: 65

peek 5: 82

peek 6: 63

peek 7: 6

peek 8: 95

peek 9: 57

remove: 62

remove: 73

remove: 21

remove: 78

remove: 65

removeEnd: 57

removeEnd: 95

removeEnd: 6

removeEnd: 63

removeEnd: 82

Done ;-)

Look over the output, make sure you understand why you get what you get. Linked lists are one of the most important data structures you'll ever learn, and it really pays to know them well. Don't forget that you can always experiment. One exercise I'd like to leave up to the reader is to create a circular list. In a circular list, the last node is not pointing to null, but to the first node (creating a circle). Sometimes, lists are also implemented using two pointers; and there are many other variations you should consider and try yourself. You can even make it faster by having a "dummy" first node and/or "tail" node. This will eliminate most special cases, making it faster on insertions and deletions.

Reusing Tricks...

We have already written quite a lot of useful stuff, and there might come a time, when you're just too lazy to write something new, and would like to reuse the old source. This section will show you how you can convert some data structures previously devised, to implement a stack and a queue, with almost no creativity (by simply reusing the old source).
Before we start, let’s review the function of a stack. It has to be able to push and pop items of from one end. What structure do we know that can do something similar? A list! Let’s write a list implementation of a stack.
import pLinkedList;

public class pEasyStack{

 protected pLinkedList l;

 public pEasyStack(){

 l = new pLinkedList();

 }

 public boolean isEmpty(){

 return l.isEmpty();

 }

 public void push(Object o){

 l.insert(o);

 }

 public Object pop(){

 return l.remove();

 }

}
See how easily the above code simulates a stack by using a list? It may not be the best implementation, and it's certainly not the fastest, but when you need to get the project compiled and tested, you don't want to spend several unnecessary minutes writing a full blown optimized stack. Test for the stack follows:
import java.io.*;

import pEasyStack;

class pEasyStackTest{

 public static void main(String[] args){

 pEasyStack s = new pEasyStack();

 Integer j = null;

 int i;

 System.out.println("starting...");

 for(i=0;i<10;i++){

 j = new Integer((int)(Math.random() * 100));

 s.push(j);

 System.out.println("push: " + j);

 }

 while(!s.isEmpty()){

 System.out.println("pop: " + ((Integer)s.pop()));

 }

 System.out.println("Done ;-)");

 }

}

The stack test program is exactly the same as for the previous stack version (doesn't really need explanation). For the completion, I'll also include the output.

starting...

push: 23

push: 99

push: 40

push: 78

push: 54

push: 27

push: 52

push: 34

push: 98

push: 89

pop: 89

pop: 98

pop: 34

pop: 52

pop: 27

pop: 54

pop: 78

pop: 40

pop: 99

pop: 23

Done ;-)

You've seen how easily we can make a stack. What about other data structures? Well, we can just as easily implement a queue. One thing though, now instead of just inserting and removing, we'll be removing from the end (the other from the one we're inserting).
import pLinkedList;

public class pEasyQueue{

 protected pLinkedList l;

 public pEasyQueue(){

 l = new pLinkedList();

 }

 public boolean isEmpty(){

 return l.isEmpty();

 }

 public void insert(Object o){

 l.insert(o);

 }

 public Object remove(){

 return l.removeEnd();

 }

}
Here’s the test driver
import java.io.*;

import pEasyQueue;

class pEasyQueueTest{

 public static void main(String[] args){

 pEasyQueue s = new pEasyQueue();

 Integer j = null;

 int i;

 System.out.println("starting...");

 for(i=0;i<10;i++){

 j = new Integer((int)(Math.random() * 100));

 s.insert(j);

 System.out.println("insert: " + j);

 }

 while(!s.isEmpty()){

 System.out.println("remove: " + ((Integer)s.remove()));

 }

 System.out.println("Done ;-)");

 }

}
I guess you get the picture, reusing code may not always be the best choice, but it sure is the easiest! Definitely, if you have time, always write a better implementation; these approaches are only good for the deadline, just to compile and test the code before the actual hard work of optimizing it. For the sake of completeness, the output of the above program follows:
starting...

insert: 77

insert: 79

insert: 63

insert: 59

insert: 22

insert: 62

insert: 54

insert: 58

insert: 79

insert: 25

remove: 77

remove: 79

remove: 63

remove: 59

remove: 22

remove: 62

remove: 54

remove: 58

remove: 79

remove: 25

Done ;-)
Trees
The next major set of data structures belongs to what's called Trees. They are called that, because if you try to visualize the structure, it kind of looks like a tree (root, branches, and leafs). Trees are node based data structures, meaning that they're made out of small parts called nodes. You already know what a node is, and used one to build a linked list. Tree Nodes have two or more child nodes; unlike our list node, which only had one child.

Trees are named by the number of children their nodes have. For example, if a tree node has two children, it is called a binary tree. If it has three children, it is called tertiary tree. If it has four children, it is called a quad tree, and so on. Fortunately, to simplify things, we only need binary trees. With binary trees, we can simulate any tree; so the need for other types of trees only becomes a matter of simplicity for visualization.

Since we'll be working with binary trees, lets write a binary tree node. It's not going to be much different from our pOneChildNode class; actually, it's going to be quite the same, only added support for one more pointer. The source for the follows:
public class pTwoChildNode{

 protected Object data;

 protected pTwoChildNode left,right;

 public pTwoChildNode(){

 data = null;

 left = right = null;

 }

 public pTwoChildNode(Object d){

 data = d;

 left = right = null;

 }

 public void setLeft(pTwoChildNode l){

 left = l;

 }

 public void setRight(pTwoChildNode r){

 right = r;

 }

 public void setData(Object d){

 data = d;

 }

 public pTwoChildNode getLeft(){

 return left;

 }

 public pTwoChildNode getRight(){

 return right;

 }

 public Object getData(){

 return data;

 }

 public String toString(){

 return ""+data;

 }

}
The children of the node are named left and right; these will be the left branch of the node and a right branch. If a node has no children, it is called a leaf node. If a node has no parent (it's the father of every node), it is called the root of the tree.
Some implementations of the tree node, might also have a back pointer to the parent node, but for what we'll be doing with the nodes, it's not necessary. The next section will talk about a generic binary tree which will be later used to create something cool.

Generic Tree
Binary Trees are quite complex, and most of the time, we'd be writing a unique implementation for every specific program. One thing that almost never changes though is the general layout of a binary tree. We will first implement that general layout as an abstract class (a class that can't be used directly), and later write another class which extends our layout class.

Trees have many different algorithms associated with them. The most basic ones are the traversal algorithms. Traversals algorithms are different ways of going through the tree (the order in which you look at it's values). For example, an in-order traversal first looks at the left child, then the data, and then the right child. A pre-order traversal, first looks at the data, then the left child, and then the right; and lastly, the post-order traversal looks at the left child, then right child, and only then data. Different traversal types mean different things for different algorithms and different trees. For example, if it's binary search tree (I'll show how to do one later), then the in-order traversal will print elements in a sorted order.

Well, lets not just talk about the beauties of trees, and start writing one! The code that follows creates an abstract Generic Binary Tree.
import pTwoChildNode;

public abstract class pGenericBinaryTree{

 private pTwoChildNode root;

 protected pTwoChildNode getRoot(){

 return root;

 }

 protected void setRoot(pTwoChildNode r){

 root = r;

 }

 public pGenericBinaryTree(){

 setRoot(null);

 }

 public pGenericBinaryTree(Object o){

 setRoot(new pTwoChildNode(o));

 }

 public boolean isEmpty(){

 return getRoot() == null;

 }

 public Object getData(){

 if(!isEmpty())

 return getRoot().getData();

 return null;

 }

 public pTwoChildNode getLeft(){

 if(!isEmpty())

 return getRoot().getLeft();

 return null;

 }

 public pTwoChildNode getRight(){

 if(!isEmpty())

 return getRoot().getRight();

 return null;

 }

 public void setData(Object o){

 if(!isEmpty())

 getRoot().setData(o);

 }

 public void insertLeft(pTwoChildNode p,Object o){

 if((p != null) && (p.getLeft() == null))

 p.setLeft(new pTwoChildNode(o));

 }

 public void insertRight(pTwoChildNode p,Object o){

 if((p != null) && (p.getRight() == null))

 p.setRight(new pTwoChildNode(o));

 }

 public void print(int mode){

 if(mode == 1) pretrav();

 else if(mode == 2) intrav();

 else if(mode == 3) postrav();

 }

 public void pretrav(){

 pretrav(getRoot());

 }

 protected void pretrav(pTwoChildNode p){

 if(p == null)

 return;

 System.out.print(p.getData()+" ");

 pretrav(p.getLeft());

 pretrav(p.getRight());

 }

 public void intrav(){

 intrav(getRoot());

 }

 protected void intrav(pTwoChildNode p){

 if(p == null)

 return;

 intrav(p.getLeft());

 System.out.print(p.getData()+" ");

 intrav(p.getRight());

 }

 public void postrav(){

 postrav(getRoot());

 }

 protected void postrav(pTwoChildNode p){

 if(p == null)

 return;

 postrav(p.getLeft());

 postrav(p.getRight());

 System.out.print(p.getData()+" ");

 }

}
Now, lets go over it. The pGenericBinaryTree is a fairly large class, with a fair amount of methods. Lets start with the one and only data member, the root! In this abstract class, root is a private head of the entire tree. Actually, all we need is root to access anything (and that's how you'd implement it in other languages). Since we'd like to have access to root from other places though (from derived classes, but not from the "outside," we've also added two methods, named getRoot(), and setRoot() which get and set the value of root respectively.

We have two constructors, one with no arguments (which only sets root to null), and another with one argument (the first element to be inserted on to the tree). Then we have a standard isEmpty() method to find out if the tree is empty. You'll also notice that implementing a counter for the number of elements inside the tree is not a hard thing to do (very similar to the way we did it in a linked list).

The getData() method returns the data of the root node. This may not be particularly useful to us right now, but may be needed in some derived class (so, we stick it in there just for convenience). Throughout data structures, and mostly entire programming world, you'll find that certain things are done solely for convenience. Other "convenient" methods are getLeft(), getRight() and setData().

The two methods we'll be using later (for something useful), are: insertLeft(pTwoChildNode,Object), and insertRight(pTwoChildNode,Object). These provide a nice way to quickly insert something into the left child (sub-tree) of the given node.

The rest are just print methods. The trick about trees are that they can be traversed in many different ways, and these print methods print out the whole tree, in different traversals. All of these are useful, depending on what you're doing, and what type of tree you have. Sometimes, some of them make absolutely no sense, depending on what you're doing.

Printing methods are recursive; a lot of the tree manipulation functions are recursive, since they're described so naturally in recursive structures. A recursive function is a function that calls itself (kind of like pretrav(), intrav(), and postrav() does).

Go over the source, make sure you understand what each function is doing (not a hard task). It's not important for you to understand why we need all these functions at this point (for now, we "just" need them); you'll understand why we need some of them in the next few sections, when we extend this class to create a really cool sorting engine.

Comparing Objects
Comparing Objects in Java can be a daunting task, especially if you have no idea how it's done. In Java, we can only compare variables of native type. These include all but the objects (ex: int, float, double, etc.). To compare Objects, we have to make objects with certain properties; properties that will allow us to compare.

We usually create an interface, and implement it inside the objects we'd like to compare. In our case, we'll call the interface pComparable. Interfaces are easy to write, since they're kind of like abstract classes.
public interface pComparable{

 public int compareTo(Object o);

}

As you can see, there is nothing special to simple interfaces. Now, the trick is to implement it. You might be saying, why am I covering comparing of objects right in the middle of a binary tree discussion... well, we can't have a binary search tree without being able to compare objects. For example, if we'd like to use integers in our binary search tree, we'll have to design our own integer, and let it have a pComparable interface.

Next follows our implementation of pInteger, a number with a pComparable interface. I couldn't just extend the java.lang.Integer, since it's final (cannot be extended) (those geniuses!).
public class pInteger implements pComparable{

 int i;

 public pInteger(){ }

 public pInteger(int j){

 set(j);

 }

 public int get(){

 return i;

 }

 public void set(int j){

 i = j;

 }

 public String toString(){

 return ""+get();

 }

 public int compareTo(Object o){

 if(o instanceof pInteger)

 if(get() > ((pInteger)o).get())

 return 1;

 else if(get() < ((pInteger)o).get())

 return -1;

 return 0;

 }

}
I believe most of the interface is self explanatory, except maybe for the compareTo(Object) method. In the method, we first make sure that the parameter is of type pInteger, and later using casting, and calling methods, we compare the underlying native members of pInteger and return an appropriate result.

A note on JDK 1.2: In the new versions of the JDK, you won't need to implement your own pComparable, or your own pInteger; since it's built in! There is a Comparable interface, and it's already implemented by the built in java.lang.Integer, java.lang.String, and other classes where you might need comparisons. I'm doing it this way only for compatibility with the older versions of JDK. I'll talk about JDK 1.2 features later in this document (hopefully).

Binary Search Trees
And now, back to the show, or shall I say Binary Trees! A binary tree we'll be designing in this section will be what's known as binary search tree. The reason it's called this is that it can be used to sort numbers (or objects) in a way, that makes it very easy to search them; traverse them. Remember how I've said that traversals only make sense in some specific context, well, in binary search tree, only the in-traversal makes sense; in which numbers (objects) are printed in a sorted fashion. Although I'll show all traversals just for the fun of it.

A binary search tree will extend our pGenericBinaryTree, and will add on a few methods. One that we definitely need is the insert() method; to insert objects into a tree with binary search in mind. Well, instead of just talking about it, lets write the source!
import pComparable;

public class pBinarySearchTree extends pGenericBinaryTree{

 public pBinarySearchTree(){

 super();

 }

 public pBinarySearchTree(Object o){

 super(o);

 }

 public void print(){

 print(2);

 }

 public void insert(pComparable o){

 pTwoChildNode t,q;

 for(q = null, t = getRoot();

 t != null && o.compareTo(t.getData()) != 0;

 q = t,t = o.compareTo(t.getData()) < 0

 ? t.getLeft():t.getRight());

 if(t != null)

 return;

 else if(q == null)

 setRoot(new pTwoChildNode(o));

 else if(o.compareTo(q.getData()) < 0)

 insertLeft(q,o);

 else

 insertRight(q,o);

 }

}
As you can obviously see, the insert(pComparable) method is definitely the key to the whole thing. The method starts out by declaring two variables, 't', and 'q'. It then falls into a for loop. The condition inside the for loop is that 't' does not equal to null (since it was initially set to getRoot(), which effectively returns the value of root), and while the object we're trying to insert does not equal to the object already inside the tree.

 Usually, a binary search tree does not allow duplicate insertions, since they're kind of useless; that's why we're attempting to catch the case where we're trying to insert a duplicate. Inside the for loop, we set 'q' to the value of the next node to be examined. We do this by first comparing the data we're inserting with the data in the current node, if it's greater, we set 't' to the right node, if less, we set it to the left node (all this is cleverly disguised inside that for statement).

We later check the value of 't' to make sure we've gotten to the end (or leaf) of the tree. If 't' is not null, that means we've encountered a duplicate, and we simply return. We then check to see if the tree is empty (didn't have a root), if it didn't, we create a new root by calling setRoot() with a newly created node holding the inserted data.

If all else fails, simply insert the object into the left or the right child of the leaf node depending on the value of the data. And that's that!

Understanding binary search trees is not easy, but it is the key to some very interesting algorithms. So, if you miss out on the main point here, I suggest you read it again, or get a more formal reference (where I doubt you'll learn more).

Anyway, as it was with our stacks and queues, we always had to test everything, so, lets test it! Below, I give you the test module for the tree.
import java.io.*;

import pInteger;

import pBinarySearchTree;

class pBinarySearchTreeTest{

 public static void main(String[] args){

 pBinarySearchTree tree = new pBinarySearchTree();

 pInteger n;

 int i;

 System.out.println("Numbers inserted:");

 for(i=0;i<10;i++){

 tree.insert(n=new pInteger((int)(Math.random()*1000)));

 System.out.print(n+" ");

 }

 System.out.println("\nPre-order:");

 tree.print(1);

 System.out.println("\nIn-order:");

 tree.print();

 System.out.println("\nPost-order:");

 tree.print(3);

 }

}

As you can see, it's pretty simple (and similar to our previous tests). It first inserts ten pInteger (pComparable) objects in to the tree, and then traverses the tree in different orders. These different orders print out the whole tree. Since we know it's a binary search tree, the in-order traversal should produce an ordered output. So, lets take a look at the output!

Numbers inserted:

500 315 219 359 259 816 304 902 681 334

Pre-order:

500 315 219 259 304 359 334 816 681 902

In-order:

219 259 304 315 334 359 500 681 816 902

Post-order:

304 259 219 334 359 315 681 902 816 500

Well, our prediction is confirmed! The in-order traversal did produce sorted results. There is really nothing more I can say about this particular binary search tree, except that it's worth knowing. This is definitely not the fastest (nor was speed an issue), and not necessarily the most useful class, but it sure may proof useful in teaching you how to use trees.

And now, onto something completely different! NOT! We're going to be doing trees for a while... I want to make sure you really understand what they are, and how to use them. (and to show you several tricks other books try to avoid (<especially Java books>)

Tree Traversals

There are two major traversal algorithms, the depth-first, and breadth-first.

So far, we've only looked at depth-first. Pre-traversal, in-traversal, and post-traversal are subsets of depth-first traversals. The reason it's named depth-first, is because we eventually end up going to the deepest node inside the tree, while still having unseen nodes closer to the root (it's hard to explain, and even harder to understand). Tracing a traversal surely helps; and you can trace that traversal from the previous section (it's only ten numbers!).

The other type of traversal is more intuitive; more "human like." Breadth-first traversal goes through the tree top to bottom, left to right. Lets say you were given a tree to read (sorry, don't have a non-copyrighted picture I can include), you'd surely read it top to bottom, left to right (just like a page of text, or something).

Think of a way you visualize a tree... With the root node on top, and all the rest extending downward. What Breadth-First allows us to do is to trace the tree from top to bottom as you see it. It will visit each node at a given tree depth, before moving onto the the next depth.

A lot of the algorithms are centered around Breadth-First method. Like the search tree for a Chess game. In chess, the tree can be very deep, so, doing a Depth-First traversal (search) would be costly, if not impossible. With Breadth-First as applied in Chess, the program only looks at several moves ahead, without looking too many moves ahead.

The Breadth-First traversal is usually from left to right, but that's usually personal preference. Because the standard consul does not allow graphics, the output may be hard to correlate to the actual tree, but I will show how it's done.

As with previous examples, I will provide some modified source that will show you how it's done. An extended pBinarySearchTree is shown below:
import pTwoChildNode;

import pBinarySearchTree;

import pEasyQueue;

public class pBreadthFirstTraversal extends pBinarySearchTree{

 public void breadth_first(){

 pEasyQueue q = new pEasyQueue();

 pTwoChildNode tmp;

 q.insert(getRoot());

 while(!q.isEmpty()){

 tmp = (pTwoChildNode)q.remove();

 if(tmp.getLeft() != null)

 q.insert(tmp.getLeft());

 if(tmp.getRight() != null)

 q.insert(tmp.getRight());

 System.out.print(tmp.getData()+" ");

 }

 }

}

As you can see, the class is pretty simple (only one function). In this demo, we're also using pEasyQueue, developed earlier in this document. Since breadth first traversal is not like depth first, we can't use recursion, or stack based methods, we need a queue. Any recursive method can be easily simulated using a stack, not so with breadth first, here, we definitely need a queue.

As you can see, we start by first inserting the root node on to the queue, and loop while the queue is not isEmpty(). If we have a left node in the node being examined, we insert it in to the queue, etc. (same goes for the right node). Eventually, the nodes inserted in to the queue, get removed, and subsequently, have their left children examined. The process continues until we've traversed the entire tree, from top to bottom, left to right order.

Now, lets test it. The code below is pretty much the same code used to test the tree, with one minor addition; the one to test the breadth-first traversal!
import java.io.*;

import pInteger;

import pBinarySearchTree;

class pBreadthFirstTraversalTest{

 public static void main(String[] args){

 pBreadthFirstTraversal tree = new pBreadthFirstTraversal();

 pInteger n;

 int i;

 System.out.println("Numbers inserted:");

 for(i=0;i<10;i++){

 tree.insert(n=new pInteger((int)(Math.random()*1000)));

 System.out.print(n+" ");

 }

 System.out.println("\nPre-order:");

 tree.print(1);

 System.out.println("\nIn-order:");

 tree.print();

 System.out.println("\nPost-order:");

 tree.print(3);

 System.out.println("\nBreadth-First:");

 tree.breadth_first();

 }

}

As you can see, nothing too hard. Next, goes the output of the above program, and you and I will have to spend some time on the output.

Numbers inserted:

890 474 296 425 433 555 42 286 724 88

Pre-order:

890 474 296 42 286 88 425 433 555 724

In-order:

42 88 286 296 425 433 474 555 724 890

Post-order:

88 286 42 433 425 296 724 555 474 890

Breadth-First:

890 474 296 555 42 425 724 286 433 88

 Looking at the output in this format is very abstract and is not very intuitive. Lets just say we have some sort of a tree, containing these numbers above. We were looking at the root node. Now, looking at the output of this program, can you guess what the root node is? Well, it's the first number in breadth-first: 890. The left child of the root is: 474. Basically, the tree looks like:

 |--[890]

 |

 |--[474]--|

 | |

 |--[296]--| [555]--|

 | | |

[42]--| [425]--| [724]

 | |

 |--[286] [433]

 |

[88]

What you can also see is that if you read the tree form left to right, top to bottom, you end up with the breadth first traversal. Actually, this is a good opportunity for you to go over all traversals, and see how they do it, and if they make sense.
Linked Lists (Additional)
STATIC MEMORY ALLOCATION

When you declare variables the compiler knows exactly how much storage they require. The compiler allocates storage for global variables and constants in the form of a data segment - an area of contiguous memory.

For local variables and parameters storage is allocated as needed during program execution. However, the compiler sets aside a chunk of memory (the stack segment). The size of the stack segment is fixed, and is determined at compile time.

The stack grows downward from the highest to the lowest address of the stack segment. When a routine finishes executing, any parts of the stack used for the routine’s local environment are returned for reuse. If your program needs more memory then is available, it will crash with a stack overflow error.

Both the data and stack segments are examples of static memory allocation.

Drawbacks of Static Memory Allocation

1) Restricted to a maximum.

2) Use up memory when not needed.

DYNAMIC MEMORY ALLOCATION

In dynamic memory allocation, storage is not set aside until your program requests it while running. Storage is allocated from a pool of available memory known as the heap. Linked lists are examples of dynamic memory allocation. The list can grow and shrink as required. Links are frequently used when a number of records form a data structure. In an array of records, there is an implicit structure to the way that the records are stored in the array. The index of the array is used to find the next element in the list. When a linked list is used, however, the individual elements have no such spatial relationship. Instead, each record contains a field that provides a link to the next record in the list. Consider the following example:

First Record

 Second Record

name
 link
name
link

Suppose we had a self-referential class called LinkListRecord (coding shown on the next page) . Here are the statements that would set up the above pictorially represented linked list:

first = new LinkListRecord (“alpha”);

second = new LinkListRecord (“beta”);

first.setNext (second);

second.setNext(null);

Here is the LinkListRecord class. This definition is a recursive definition, since the definition of the record type LinkListRecord defines the Link with a reference to the record type LinkListRecord. It is self-referential.

// The "LinkListRecord" class.

// A class for creating self-referential records.

public class LinkListRecord {

 protected String data;

 protected LinkListRecord next;

 // Constructor that initializes name but sets next to null.

 public LinkListRecord (String name) {

data = name;

next = null;

 } // LinkListRecord constructor

 // Constructor that initializes name and nextNode.

 public LinkListRecord (String name, LinkListRecord nextNode) {

data = name;

next = nextNode;

 } // LinkListRecord constructor

 // Method to get data in node.

 public String getData ()

 {

return data;

 } // getData method

 // Method to get next in node.

 public LinkListRecord getNext ()

 {

return next;

 } // getNext method

 // Method to set data in node.

 public void setData (String data)

 {

this.data = data;

 } // setData method

 // Method to set next in node.

 public void setNext (LinkListRecord next)

 {

this.next = next;

 } // setNext method

} /* LinkListRecord class */

Singly Linked Lists

In a simple linked list each record contains a link to the next element in the list. The last element contains a null value link. Consider the following example that adds new elements to the end of the list.

// The "TestLinkListRecord" class.

// Show names inserted in linked list

// then print them in reverse order.

import java.io.*;

public class TestLinkListRecord

{

 static public void main (String args [])

 {

String name;

String newName;

// Start with an empty list.

LinkListRecord last = null;

System.out.println ("Enter names one to a line");

while (true)

{

 System.out.println ("Enter new name, end with q");

DataInputStream stdin = new DataInputStream(System.in);

newName = stdin.readLine();

 if (newName.equals ("q"))

break;

 LinkListRecord p;

 p = new LinkListRecord (newName, last); // Allocate new record.

 last = p; // Set last to point to new record.

}

// Print list is reverse order.

System.out.println ("Here is the list in reverse order");

while (last != null)

{

 System.out.println (last.getData ());

 LinkListRecord p; // Declare a link.

 p = last; // Locate record to remove from list.

 last = p.getNext (); // Change last to point to next record.

}

 } // main method

} /* TestLinkListRecord class */

Here’s the two classes put together into one working class:

1 // The "LinkListTest" class.

2 // A class for creating self-referential records.

3 import java.io.*;

4 ;

5 public class LinkListTest

6 {

7 protected String data;

8 protected LinkListTest next;

9 static LinkListTest first,second;

10 // Constructor that initializes name but sets next to null.

11 public LinkListTest (String name)

12 {

13
data = name;

14
next = null;

15 } // LinkListTest constructor

16 // Constructor that initializes name and nextNode.

17 public LinkListTest (String name, LinkListTest nextNode)

18 {

19
data = name;

20
next = nextNode;

21 } // LinkListTest constructor

22 // Method to get data in node.

23 public String getData ()

24 {

25
return data;

26 } // getData method

27 // Method to get next in node.

28 public LinkListTest getNext ()

29 {

30
return next;

31 } // getNext method

32 // Method to set data in node.

33 public void setData (String data)

34 {

35
this.data = data;

36 } // setData method

37 // Method to set next in node.

38 public void setNext (LinkListTest next)

39 {

40
this.next = next;

41 } // setNext method

42 // The Main Method.

43 // Show names inserted in linked list

44 // then print them in reverse order.

45 static public void main (String args []) throws IOException

46 {

47
// The "TestLinkListTest" class.

48
// Show names inserted in linked list

49
// then print them in reverse order.

50
String name;

51
String newName;

52
// Start with an empty list.

53
LinkListTest last = null;

54
System.out.println ("Enter the first name <q to quit>");

55
while (true)

56
{

57
DataInputStream stdin = new DataInputStream(System.in);

58
newName = stdin.readLine();

59
 if (newName.equals ("q"))

60

break;

61
 LinkListTest p;

62
 p = new LinkListTest (newName, last); // Allocate new record

63
 last = p; // Set last to point to new record.

64
 System.out.println ("Enter new name, end with q");

65
}

66
// Print list is reverse order.

67
System.out.println ("Here is the list in reverse order");

68
while (last != null)

69
{

70
 System.out.println (last.getData ());

71
 LinkListTest p; // Declare a link.

72
 p = last; // Locate record to remove from list.

73
 last = p.getNext (); // Change last to point to next record.

74
}

75 } // main method

76 } /* LinkListTest class */

Suppose we are given the following input:

Poul

Leon

Brian

Carl

Jeff

q

Let’s trace the data through this program, O.K.?

last

When line 53 is executed an object called last is created which points

to a special memory location called null.

Data
Link

p

In response to line 54’s prompt the user would input Poul.

The value of newName is not equal to “q” therefore a new LinkListTest

named p would be declared in line 61.

Line 62 does two things:
1) it allocates memory

2) it assigns values to the data and next fields

Specifically the data field is assigned the value “Poul” and next points to what the LinkListTest object last is pointing to.

p
last

Line 63 re-assigns the pointer of last to point to p. (This means that p now points to what last was pointing to.)

last
p

The program then prompts for new input, to which the user responds: “Leon”. The program loops back to line 57 and a new object p is declared in line 61.

p

Again Line 62 does two things:
1) it allocates memory

2) it assigns values to the data and next fields

Specifically the data field is assigned the value “Leon” and next points to what the LinkListTest object last was pointing to.

p
last

Line 63 re-assigns the pointer of last to point to p. (This means that p now points to what last was pointing to.)

last
p

This process continues until q is entered, at which point the linked lisk looks like this:

last
p

At this point, line 67 will output the message “Here is the list in reverse order”. Line 70

Strings Quick Reference Guide

This code shows you some of the basic operations you can perform on strings:

//Creating Strings

String s = “Now”;

//String object have a special literal syntax

String t = s + “is the time.”;

// Concatenate strings with + operators

String t1 = s + “ “ + 23.4;

// + converts other values to strings

t1 =String.valueOf(‘c’);

// Get string corresponding to char value

t1 =String.valueOf(42);

// Get string version of integer or any value

t1 = Object.toString(c);

// Convert object string value with toString();

//String length

int len = t.length();

// Number of characters in the string: 16

//Substrings of a String

String sub = t.substring(4);

// Returns char 4 to end: “is the time.”

sub = t.substring(4,6);

// Returns char 4 and 5: “is”;

sub = t.substring(0,3);

// Returns char 0 through 2: “Now”

sub = t.substring(x,y);

// Returns chars between pos x and y-1

int numchars = sub.length

// Length of substring is always (y-x)

//Extracting characters from a string

char c = t.charAt(2);

// Get the 3rd character of t: w

char[] ca = t.toCharArray();

// Convert string to an array of characters

t.getChars(0,3,ca,1);

// Put 1st 3 chars of s into ca[1] – ca[3]

//Case Conversion

String caps = t.toUpperCase();

// Convert to uppercase

String lower = t.toLowerCase();

// Convert to lowercase

// Comparing String

boolean b1 = t.equals(“hello”);

// Returns false: string not equal

boolean b2 = t.equalsIgnoreCase(caps);
//Case-insensitive compare:true

boolean b3 = t.startsWith(“Now”);

// Returns true

boolean b4 = t.endWith(“time.”);

// Returns true

int r1= s.compareTo(“Pow”);

// Returns < 0: s comes before “Pow”

int r2= s.compareTo(“Now”);

// Returns 0: strings are equal

int r3= s.compareTo(“Mow”);

// Returns > 0: s comes after “Mow”

r1 = s.compareToIgnoreCase(“pow”);
// Returns < 0 (Java 1.2 and later)

//Searching for characters and substrings

int pos = t.indexOf(‘i’);

// Position of first ‘i’: 4

pos = t.indexOf(‘i’, pos+1);

// Position of the next ‘i’: 12

pos = t.indexOf(‘i’, pos+1);

// No more ‘i’s in the string, returns –1

pos = t.lastIndexOf(‘i’);

//Position of last ‘i’ in string: 12

pos = t.lastIndexOf(‘i’, pos-1);

// Search backwards for ‘i’ from char 11

pos = t.indexOf(“is”);

// Search for substring: return 4

pos = t.indexOf(“is”, pos+1);

// Only appears once: returns –1

pos = t.lastIndexOf(“the “);

// Search backwards for a string

String noun = t.substring(pos + 4);

// Extract word following “the”

Since String objects are immutable (once a String object has been created, there is no way to modify the string of text it represents), you cannot manipulate the characters of a String in place. If you need to do this, use a java.lang.StringBuffer instead. The StringBuffer in java is a data buffer that allows you to change the necessary characters in a string. Ex. Auto correct in Microsoft Word, Renaming folder or files, etc.

// Create a string buffer from a string

StringBuffer b = new StringBuffer(“Mow”);

// Get and set individual characters of the StringBuffer

char c = b.charAt(0);

// Returns ‘M’: just like String.charAt();

b.setChartAt(0,’N’);

// b holds “Now”: can’t do that with a String!

//Append to a StringBuffer

b.append(‘ ‘);

// Append a character

b.append (“is the time.”);

// Append a string

b.append(23);

// Apped an integer or any other value

//Insert Strings or other values into a StringBuffer

b.insert(6,”n’t”);

// b now holds: “Now isn’t the time.23”

// Replace a range of characters with a string (Java 1.2 and later)

b.replace(4,9,”is”);

// Back to “Now is the time.23”

//Delete Characters

b.delete(16,18);

// Delete a range: “Now is the time”

b.deleteCharAt(2);

// Delete 2nd character: “No is the time”

b.setLenght(5);

// Truncate by setting the length: “No is”

//Other useful operations

b.reverse();

// Reverse characters: “si oN”

b.setLenght(0);

// Erase buffer; now it is ready for reuse

public class C4

package p2

Person

aggregation

assciation

1

Employed By

Owned by

Consultant

Publisher

Magazine

1

0..3

5..60

Teach

alpha

beta

Poul

Poul

Poul

Leon

Poul

Leon

Carl

Jeff

Brian

Poul

Leon

insert

remove

Take

Faculty

Course

List is sorted however computer can’t tell, so process continues

Student

Teacher

Pass by reference (for object type)

c

n

myCirle

radius=1

Pass by value

myCircle:Circle

printArea

5

5

main

N

1

low

high

middle

Same idea as above for the last element.

If the vector is empty then showStatus will display the caught NoSuchElementException message.

If the vector contains even one element then the showStatus method will output the first value on the status bar.

Uses Vector method removeElement to step through the Vector and remove the first occurance of the specified value. It also returns a Boolean value indicating whether the search argument was found.

Uses Vector method addElement to add its argument to the end of the vector.

Creates the vector with an initial capacity of one element. This vector will double in size each time it reaches it’s capacity. (This default growth rate can be modified.)

protected int x

public class C1

C1 c1;

C1.x can be read or modified

public class C3

package p1

Student

Faculty

� EMBED PBrush ���

Select the Project Manager button from the menu bar on the top of the screen.

b = (byte) s

0�
0�
0�
0�
0�
0�
1�
1�
�

Internal

External

Call for method 'square'

Data passed to square method = 'value'. The 'square' method variable 'number' has a reference to the data 'value'.

'return' is the keyword to send data back to calling location. What follows is the data being sent.

This method accepts a integer parameter. The variable 'number' contains a reference to the data passed to the array.

Functinoal methods return data, in this case we are returning an integer.

There are no parameters to this method.

Procedural methods return nothing or ‘void’

Index

Element (Value)

Array identifier

int k=0;

for (int i=0; i<2; i++) {

	for (int j=0; j<4; j++) {

		k=k+1;

		A[i][j] = k;

	}

}

b) for (int i=1; i>=0; i --) {

	 for (int j=3; j>=0; j--){

 	 System.out.println(A[i][j]);

 }

 }

a) for (int i=0; i<2; i++) {

	 for (int j=3; j>=0; j--){

 	 System.out.println(A[i][j]);

 }

 }

c) for (int i=0; i<4; i++) {

	 for (int j=0; j<2; j++){

 	 System.out.println(A[j][i]);

 }

 }

d) for (int j=3; j>=0; j --){

	 for (int i=0; i<2; i++){

 	 System.out.println(A[i][j]);

 }

 }

Expert

Objects instantiated with increasing argument specification.

Overloaded Constuctors

Driver Class

Abstract

Class

Mutator Method – used to set the time (if illegal values input the default values are used).

Constructor – used to set the initial state of the object.

Calls the method “summarize” in the subproject “Sum”

Instantiating the class “Sum” in the subproject “Sum”

The main project test

The subproject Sum

This means that all the classes and methods contained within the subproject “Sum” can be used in the main project “test”. This is an example of hierarchy.

*We say that Sum is subservient to test because it is contained within test.

Package name (used for importing and compiling).

Root directory where FirstPack (and any other packages are stored).

Basically useless but needed for Java WorkShop 2.0.

Class B

Class C

Class D

Class E

Class A

�

�

� INCLUDEPICTURE "http://www.cs.ualberta.ca/~zaiane/courses/cmput102/slides/Topic1/img073.jpg" * MERGEFORMATINET ���

+getLength

+setLength

+findVolume

+getwidth

+setwidth

+getLength

+setLength

Rectangle

-width

-length

Cylinder

-length

-radius

+getradius

+setRadius

Circle

+getcolor

+setcolor

+getweight

+setweight

+findArea

+findPerimeter

-color

-weight

GeometricShape

Object

x can be read or modified in C2

public class C2 extends C1

C1 c1;

C1.x cannot be read or modified

� EMBED Equation.CWEE2 ���

� EMBED Equation.CWEE2 ���

Page # 50
Back to Table of Contents

_1156579903.unknown

_1156579954.unknown

_1053854722

