Bryan Adare
Sorting Techniques:

Shell Sort

What is the Shell Sort?

· First diminishing sort developed

· Part of the Insertion Sort family is a variation of the classic Insertion Sort

· Takes bigger steps as it sorts the data, gradually decreasing the step size down to zero
· Performs a basic insertion sort from both ends, inserting data to its approximate position and then optimizing that value to the correct position in subsequent passes

· Cuts the amount of swaps needed to transfer data to its position

Who developed the Shell Sort?

· The shell sort was developed, and named after Donald L. Shell in July 1959
· Originally developed as a high speed sorting technique to sort faster then the insertion sort, which at the time was the fastest sort available

· Originally assembled using the CAGE language, a primitive, non-object language developed and used by General Electric

· Widely used for its stability and speed advantages over insertion sort

How the Shell Sort works
· Sorts data using larger step sizes to move data to its rough position, then move it to its exact position in subsequent passes

· Data is moved along the array far distances

· The increment code keeps track of these movements of data and directs the numbers based on where they are located

· Increments also counts the sort and when increments equals to zero, the sort is killed and ends

Advantages of Shell Sort

· Speed - although not as fast as quick sort, due to its algorithms after fewer passes the items are more likely to be closer to their final position. Thus sorting faster.

· Memory Efficiency - although not as fast as quick sort, it improves on quick sort, as it does away with memory stack space problems. This does away with crashes during sort due to memory overrun.

· Swaps - When the swap occurs, the swap moves the item over a greater distance within the array. This means that in Shell Sort, the items being swapped are more likely to be closer to its final position.
Best Case Performance

· Best case performance is (n0.85)
· Average sort time is (n1.25)
Disadvantages of Shell Sort

Complex - Somewhat complex algorithm leaves room for problems to occur while sorting

Efficiency - not nearly as efficient in process as the Merge, Heap or Quick Sorts. Efficiency also drops dramatically as array size approaches and exceeds 50 000 values.

· Data Comparisons - due to its nature of making having large amounts between steps, there are many comparisons required to calculate where an element will be placed
Worst Case Performance

· Worst case performance is (n1.50)

Code
void shellSort(int numbers[], int array_size) { // init of the shellSort method
 int i, j, increment, temp; // int of the needed values for the method
 increment = 3; // default value for increment is set to 3

 while (increment > 0) { // While loop that ends the sort when increment = 0
 for (i=0; i < array_size; i++) { // loop that counts the array size and moves the

elements down the array
 j = i; // makes j equal to i
 temp = numbers[i]; // sets temp to the new value for i
 while ((j >= increment) && (numbers[j-increment] > temp)) { // while loop
 numbers[j] = numbers[j - increment]; // while condition == true, numbers[j] is set to numbers[j-increment]
 j = j - increment; // j is depleted by increment
 }

 numbers[j] = temp; // numbers[j] is set to temp value
 }

 if (increment/2 != 0) // if loop to set the increment value based on sort num
 increment = increment/2;

 else if (increment == 1)

 increment = 0;

 else

 increment = 1;

 }

}
