LİNEER CEBİR
Lineer denklem sistemleri, Gauss metodu. Homojen Lineer denklem
sistemleri, Matrisler, Matris işlemleri, Matrisin tersi,
Determinant, Vektör Uzayları, Alt Uzaylar, Lineer bağımsızlık, Baz,
Boyut.Lineer Dönüşümler, Çekirdek ve Görüntü kümesi, Rn den Rm’e
Lineer Dönüşümler, Lineer Dönüşüm Matrisleri, Benzerlik, Özdeğer ve
Özvektörler, Köşegenleştirme, Simetrik Matrisler, Lineer Cebir
uygulamaları.
|
LINEAR ALGEBRA:Systems of
linear equations. Matrices. Gaussian elimination. Geometry of .
Linear independence. Linear transformations. Matrix algebra.
Characterization of Inverse. Determinants. Cramer’s rule. Range and
null spaces. Eigenvalues and eigenvectors. Factorization.
Diagonalization. Similarity. Jordan canonical form.Vector spaces,
subspaces, basis, dimension, direct sum and direct product. Linear
homomorphisms. Matrix representations. Isomorphism to . Effects of
change of basis. Kernel and range. Linear functionals, bilinearity,
duality. Bilinear functionals and geometric structures. Symplectic
and inner product spaces as examples. Linear operators. Simultaneous
diagonalization. Adjoint, Fredholm, nilpotent and cyclic operators
as examples
|