LINEAR ALGEBRA


LİNEER CEBİR Lineer denklem sistemleri, Gauss metodu. Homojen Lineer denklem sistemleri, Matrisler, Matris işlemleri, Matrisin tersi, Determinant, Vektör Uzayları, Alt Uzaylar, Lineer bağımsızlık, Baz, Boyut.Lineer Dönüşümler, Çekirdek ve Görüntü kümesi, Rn den Rm’e Lineer Dönüşümler, Lineer Dönüşüm Matrisleri, Benzerlik, Özdeğer ve Özvektörler, Köşegenleştirme, Simetrik Matrisler, Lineer Cebir uygulamaları.

 

LINEAR ALGEBRA:Systems of linear equations. Matrices. Gaussian elimination. Geometry of . Linear independence. Linear transformations. Matrix algebra. Characterization of Inverse. Determinants. Cramer’s rule. Range and null spaces. Eigenvalues and eigenvectors. Factorization. Diagonalization. Similarity. Jordan canonical form.Vector spaces, subspaces, basis, dimension, direct sum and direct product. Linear homomorphisms. Matrix representations. Isomorphism to . Effects of change of basis. Kernel and range. Linear functionals, bilinearity, duality. Bilinear functionals and geometric structures. Symplectic and inner product spaces as examples. Linear operators. Simultaneous diagonalization. Adjoint, Fredholm, nilpotent and cyclic operators as examples

 

numbertheory.org/book/  

numbertheory.org

math.gatech.edu

ltcconline.net

 

 

maths.ox.ac.uk/

seehuhn.de/mathe

jmilne.org

 
 

 

NOT : Dersler hakkındaki bilgiler Yeditepe Üniversitesi internet sitesi Matematik Bölümü ders içeriklerinden alınmıştır.

İLETİŞİM:  yakupari@yahoo.com