Chapter 2. Linear Spaces
2.1 Field and Linear Space
Definition: Field
F is a field, if the following axioms hold
1. + is associative
VvV ab,c eF (@+b)+c=a+(b+c)
2. O is the neutral element under addition
VaeF at+0=0+a=a
3. Every element has an apposite
(VaeF and dbeF) atbz#b+a=0
4. + is commutative
Vab eF atb=b+a
There fore < F;+> is an abelian group.
5. e isassociative
¥ a,b,c eF a.(b.c)=(a.b).c
6. 1 is the neutral element
VaeF a.l1=1.a=a

7. Every non-zero element has an inverse
(VaeF) (a#0—>(3beF)) a.b=b.a=1

8. e is commutative
(Vab e F) a.b=Db. a
There fore (F;e ) is an abelian group.
9. Distributive Laws
VvV ab,c eF Left distributy a.(btc)=ab+ac

right distributy (btc).a=ab+ac
Example: IR is the set of real numbers, and C is the set of complex numbers are fields.

2.2 Definition: Linear space

Let u,v, w....eV, a,a,..... e F,F is either IR or C, then V is said to be linear

space (vector space) if and only if the properties satisfied



VS1 -V is closed under scalar multiplication

aveV

VS2 -V is closed under vector addition

u+veV

Here, it is required that the properties of vector addition and scalar multiplication.
l. U+ U +w)=U+v)+w uv,oweV

. u+v=v+u

1. U+g=¢g+u=u, geV

V. u+v=v+u=g¢g ifandonlyif u=-v

V. a(bu)=(ab)u a,beF and ueV
VI. l-u=u-1 =u ueV 1leF
VII. u+v eV

Closure addition and
VIIl. aveV multiplication

Example: IR? is a vector space, since it is closed under vector addition and scales
multiplication together with the properties of vector addition and scales multiplication
satisfied.

NOTE: Closure property can be written as

au+a,v eV

2.2.1 Definition: Linear Subspace

Let V be a vector space over a field IR or C. A non-empty subset of W of V is called

subspace of V if W itself is a vector space.

Lemma (Subspace Criterion): Let V be a vector space a over a field IR or C and let W
be a non-empty subset of V. Then W is subspace if and only if

)wi+w, e Wforallw, w, e W

i) aweW forall ae IR or aeC, weW orwe can simply say that W is subspace
of Vif and only if

aw, + bw, eW forallw;,w, e W and a,beIR or a,beC



2.2.2 Definition: Dependency Relation

Let vy, vy, ... , Vn € V (real or complex vector space) and let a,,a,,......a, € F

Vv, +a,V, +...+a,V, =

n-'n
is called a dependency relation for vy, vy, .....,v, if the dependence relation is satisfied
only when
a,=a,=....=a,=0, then vy, vy, ....., v, are said to linearly in dependent vector space,

otherwise they are said to be linearly dependent.

2.2.3 Definition: Linear Span
Let W be a subset of V, then we call the set of all possible linear combinations of
vectors of W by the linear span of W and denote it by <w >

<wW>={a, W, +.cta, W,:  Va,...,a, eF  Yw,.,w eW}

One also says that < w > in the subspace spanned.

2.2.4 Definition: Basis
A subset W — V of linearly independent vectors is called a basis for V if
spanW =V ; that is , all the elements of V can be generated by the proper linear

combinations of the vector of W.

th order.

2 n — — — — — —
agta; X+a, X +........ +ta, X' =0 =>a,=a;,=a, =.......... =a, =0

2.3 Norm and Normed Vector Space

The idea of the length of a vector is intuitive and can be easily extended to any real
vector space R". Its properties are
1. a vector always has a strictly positive length. The only exception is the zero vector

2. Multiplying a vector by a positive number has the same effect on the length.



3. The triangle inequality holds. The distance from A through B to C is never shorter

than going directly from Ato C

2.3.1 Definition: Norm

If v is a vector space over a field F (IR or C), a norm on V is a function from V to IR. It
associates to each vector v in V a real number, which is usually denoted |v|. The norm
must satisfying the following conditions.

Forallain Kandalluand vinV

1. |v[=0 with equality if and only if v =0
2 Jvl-l-b
3 Juvl <l +

|lu+v|=[u] +|v| ifv=au u>0

2.3.2 Definition: Normed Vector Space
A vector space on which a norm is defined is called as normed vector space or only

normal space.

Example:
i) Euclidean norm
On R", the intuitive notion of length of vector

X = (X1, X2, ..., Xn) IS captured by the formula

X|=af” + ot x|

This gives the ordinary distance from the origin to the point X, a consequence of the
Pythagorean theorem.
i) p—norm

Let p>1 be a real number

n 1/p
i, (3 |

Note that for p = 1 we get the Manhattan Norm and p = 2 we get the Euclidean norm.



Example:
1) Sequence space |”: the space of all bounded sequences of complex numbers

V= (X1, Xz, o Xiy o) € V, X € C, |x;|=finite, ||v||:_sEuNQ x|
1

i) Space C [a, b] is defined as the space of real continous functions with a norm

||v||:rrt15alx vt) tel[ab]
b 1/2
iii) The space of real continous function v (t), te[ab], |V| {I (v(t))? dtj is a

b
norm for this space; but ||v||:J'v(t) dt is not

2.4 Metric and Metric Space

2.4.1 Definition: Metric
A non-negative function d (x,y) describing the distance between neighbourhoods of
points for a given set. Metric is a generalization of the concept of distance. A metric

satisfies the axioms below:

Ndxy)=0 iff x=y
i) d (x,y) =d (y,X) , symmetry
i) d (x,y) +d (y,z) > d(x,2), triangle inequality

2.4.2 Definition: Metric Space
A metric space is a set X together with a function d (called a metric or distance

function) which assings a real number d (x,y) to every pair X, y € X

Nd(xy)>0 and d(xy)=0 ifandonlyif x=y

if) d (x,y) = d (y,x), symtery
i) d (x,y) +d(y,z) > d(x,z) , triangle inequality

Example:The metric on spaces of functions. Let C [0, 1] be the set of all continues real

valued function on the inter [0, 1]



1

d,(f.9)=] [f()-g(x)|d,

D

So the distance between function is the area between their graphs.
2.5 Complete Metric Space

2.5.1 Definition: A sequence {vn} converges to the limit u if for all e>0 there exist

Ne IV such that v, —u|<e for all n>N. Then {v,} is said to be convergent sequence.

2.5.2 Definition: A sequence {v,} is a Cauchy sequence if for any >0 there exist
NeN such that v, —v, |<e forany mn> N

2.5.3 Definition: The point that Cauchy sequence converges is called the limit point (or
accumulation point).

2.5.4 Definition: A complete metric space is a metric space in which every Cauchy

Sequence is convergent.

Example: a metric space in IR

d(x,y)=x-y|

All Cauchy sequences are bounded and every bounded subset of IR must have a limit
point.

Every Cauchy sequences has a limit point in IR

So, IR is complete.

Example: a metric space in C
1Z,-Z,]<e n,m=N()

Zn=Xn +1Yn

{z =X b lya < IR

Xy =X <[z, —20|<e

Vo —Yal<lz) —20|<e

Let {x,} —» x and {y.} >V

z=x+iy |z, -Z<[x, =X|+|y, Y|



limz, -z =0= lim |z, -2| =

n—oo n—oo

limz, —z‘ =0

n—ow

lim z, =0

n—oo

So, C is complete

2.6 Definition: Banach Space
A complete normed space is called as Banach space.
Example: IR and C are Banach spaces

Example: a metric space in Q

d(x,y)=x-y|

The infinite sequence {(1+%) , N eN*}

Iim{1+£jn}:e , ezQ
n—oo n

So, Q is not complete.
The another example of Q is not complete is that x, € Q is infinite sequence that has

limit point v2 Q.

Example: Take a space of continuous functions with the metric

d(f,0)=] [f (x) - g dx

0 -1<x<0
. . 2nx
Consider a sequence of functions f, (x)= O<x<=
1+nx n
1
1 —<x<1
n

Then, lim d(f,,g) = lim j [fn(x) — g(x)]* dx

2nx
1+nx

1/n

=lim ﬁ [9(x)]? dx +1/jn [ —g(x)} dx + j [L-g(x)] de =C

All the integrands are positive. So each term must be zero



()= 0 -1<x<0
g 11 O0<x<l

It is not complete since the limit is discontinous.

2.7 Inner Product and Inner Product Spaces

Note: Angle Bracket

An angle bracket is the combination of a bra and ket (bra-ket = braket) which represents
the inner product of two functions or vectors. In tis notation, a vector is shown by a ket

)

2.7.1 Definition: An inner product is a generalization of dot product.
2.7.2 Definition: Inner Product Space

An inner product space, with complex scalars C, is a complex vector space V with a

complex-valued function <|> defined on V x V that has the following properties
v,w,viandv, eV, VaeC

i) (v[v)=0

if (v|v) then |v)=0

i) {v]w) = (wlv)

iv) <vl +V, |W> = <vl |W>+<V2|W>

) {avlu) = a ()

If <v|w> is assumed to be real-valued, the complex conjugation is dropped in (iii):
(v/w)=(w/v). When (iii) is combined with (iv) and (v)

) (o va)=(oie) + o)

V') <v|aw> =a <v|w>

2.7.3 Definitiion: The Natural Norm

The norm of an element V in an inner product spaces is called natural norm and it is

||v||:1/<v|v> . It satisfies all the axioms of inner product.



2.7.4 Theorem: The Schwarz Inequality

‘ <v|w>‘ < V[ [ and equality holds if and only if one of v and w is a multiple of other.

Suppose that neither of v and w is zero

Let ze C. Consider |v—zw]|’

z in polar coordinates, re IR, z =re'’, and
let f (r) = ||v—zw||2

f (r)=(v—zw|v-2zw)

= (v|v—zw) — (zw|v - zw)

= (v|v) = (v|zw)— (zw|Vv) + (zw|zw)

= (v]v) =@ {v|w)+2{wv)) |2 *(w|w)
=M ~2Rez {v/w) +[2" |w|’
=M - 2rRee™ (v|w) +r*wf’
choose 6= 050 that e (v|w)=|(v|w)
we can write

F(r) =" - 2r [(v]w)f+r? w]"

If equality holds, then f (r) has zero discriminant.
So v = 2w and equality holds.

2.7.5 Theorem: An inner product space, with ||v| ar norm, is indeed a norm space.
By the definition of inner product space,

WhenaeC o] = (ovle)Jaf® o

*** The triangle inequality is an application of Schwarz inequality

-+ w? - +2Re () + o

<M+ 2wl + [w]* = v+ Y



2.8 Hilbert Space

2.8.1 Definition: A Hilbert Space is a vector space with inner product space which is
complete with respect to the norm.

Finite dimensional inner product spaces are Hilbert Space and Hilbert Spaces are always
a Banach space, but the converse is not hold.

Example:
1) Square Summable Sequences of Complex Numbers

\? is the space of sequences of complex numbers
a:i o, suchthat i ot | < o0
n=1 n=1
It is a Hilbert Space with the inner product
<oc/[3> = ni: on B,
ii) Square Integrable Functions on IR
L? (IR) is the space of complex valued functions such that

[ (1) (x]g) dx

IR

iii) Square Integrable Function on IR"

Let QO be an open set in IR". The space L? (Q) is the set of complex valued function
such that

J' |f(x)|2 d, where X = (Xg, X2, +....y Xn)
Q

dx = dxy, dXo, ...., dX,

It is a Hilbert space with inner product

(tlg) =] (t[x){x|g) dx

Q

2.9 Function Space

2.9.1 Definition: Any | ) in a vector space whose basis vectors are |x > and all such

vectors constitute a vector space called as function space.

10



2.10 Orthogonality

2.10.1 Definition: A basis Ezﬂe1 >, ‘ez >, |ei >, } for a vector space V is said
to be an orthogonal basis if <ei ‘ej>=0,i .

2.10.2 Definition: The vectors u, v €V are said to be orthogonal, if (u|v) =0,

* Orthogonality is symmetric (u|v)=(v|u)=0

*  vector is orthogonal to every ve V. (0|v)=0

*if (u|v)=0, every scalar multiple of u is also orthogonal to v

(ku|v)=0=>(ku|v) = k(u|v)=k-0=0

2.10.3 Definition: Consider a set S:{]u1>,|u2>,....,|un>} of vectors in an inner product

space V. S is said to be orthogonal set if each vectors in S are non-zero and if the

vectors in S are mutually orthogonal.
ie it (ufu)z0  but  (ufu)=0 for iz]
2.10.4 Definition: S is said to be orthonormal if S is orthogonal and if each vectors in S

have unit length.

1 =]
<UJ“J:S”:{0 i iij}

Normalization of a vector is that

An orthogonal set is linear independent, it is a basis for V Suppose

ﬂul >, Uy >, e Uy >} is an orthogonal basis for V Then, for any |v > inV
V= vu) lu, > + vus) u, > + ., + vu) u,)
(uy[u) (u, |uy) {uy |uy)

Since, v=kju;+kyus + ... +k,uy

Taking the inner product of both sides with u; yield

11



(ufuy)=(ku, +ku, +...+ku, u,)
=k, (uy |uy )+ Kk, (U, Jug)+...+k, (U, [uy)

)l
STl

generalized this result

) (v
)l

The above scalar k; is called the component of v along u; or the Fourier Coefficient of v

with respect to u;.

Suppose v, Vo, ..., V, form a basis for a subspace U of an inner product space V. The
Gramm - Schmidt algorithm(2.10.5) which yield an orthogonal basis (and by

normalization of an orthonormal basis) of U.

Suppose ﬂwl >,‘W2 > |Wn >} is an orthogonal set of vectors in V

Set wi=vq

W, =V, _k21 W, :|V2> _M |W1>

<w, /w, >
W3 = V3 — k31w — KsoWo
(Vg |w,) {va|w,)

= v, 2w ) — w

) ) oy
Wn = Vi — Knt W1 = Kng Wa - ... — Kng Wit
where
lw)

" |w)

The set ﬂwl >,‘W2 >y |Wn >} is the required arthogonal basis of U.

12



Ex: L? (-1,1) is the space of real continous functions with an inner product
1

(f |g>=j f () g (x) dx
-1

asequence 1, X, X%, ..., X', ...... ieN*, xe[-1,1]
Identifying X" —|n > (X" = <x/n >)
1 1 0 , n+m=odd
<n|m>=j x" X" dx:J. X" dx=4 2
-1

- n+m+1 ’

n+m=even

= (0|1) =(0|3)=(1]2)=(2|3)=0, others nonzero.

The sequence is not orthogonal

Apply the Gram-Schmidt Algorithm for the first few term:
Take 1, %, X% %, ......

Orthogonalize [2> and [3>

_<0/2>
<0/0>

2>,=|2>

|0>:‘2>—%|0>

=

2>, = X° L2 >0—1< x/0>=x?—=
3 3 3

3>,=83>— <1/3> 1>:3>_§ | 1>
<1/1> 5
=[3>, > x° 3y
5
- — Ly 3y
The orthogonal sequence is then 1, x, X" 3’ ERAR

Normalization of the sequence

5 (2P 2] o) (9) )

2n+1
—){ 5 P, (X)} e {In >0}normalized

13



Let V be the vector space of real continous function on the interval —7n <X <w with

inner product defined
<flg >=j f(x)g(x) dx

The following set S of functions plays a fundamental role in the theory of Fourier Series
S ={ 1, sinx, cosx, sin2x, cos2x, ....}

S is orthogonal since for any function f, g € S we have
<flg >=j f(x) g(x) dx =0

On the other hand S is not orthonormal, since

For example <cosx/cosx > = '[ f(x)g(xX)dx ==

-7

Chapter 3. Linear Operators

3.1 Linear Operators
Let us first clarify the notion of mapping. A mapping is a transformation of a scalar or a

vector from some spaces of scalars or vectors.

1) y=f(x) f:x e K-> yeK scalar function

2) |y >4 f(x=)> |f > x e K—>|y>eV vector function; e.g.,
F 0 =£,001+F,00]

Yy y=~f(|x>) f:x>eV —>yeK linear or nonlinear functional;
e.g., f(|x>)=<c|x>

4) |ly>=f(|x>)>T: x>V oly>eV ? — operators

y) =‘ fo>)> = L|x)which we call as “operator”. The set {|x)} is called the domain of

the operator and the set {|| y>} is called the range of operator.

An operator can be linear or nonlinear.

3.1.1 Definition: Linear Operators

14



If an operator L satisfies

)L(v>+|w>)=L|v>+L|w>
i) L(alv>)=aL|v >
where aek,|v>eV, then it is called linear. The two linearity conditions can also be

written in a unique way as L(a‘v )+ b‘w ))=aL|v) +bL|w) and they can be extended

to scalar functions, vector functions and functionals.

Example: Given |v)=v|1)+v,|2),|v) eV?, what is the domain and the range of the

Vi vV,

operator A if Alv)= 1) +

— Vl_V2|2>, |v>eV2.

D=V’ —ﬂv>|v>= o (|1)+]2)), 0 e K}, R=V? . Isit linear? (exercise; the answer is NO)
If A and B are two linear operators in the space of vectors, | > , then

i) (A+B)| )=A| )+B]| ); the sum of two linear operators is again an operator;

i) (A-B)| )=A| )-B| ); the multiplication of two linear operators is again an operator;
i) A=Biff Al )=B| );

iv) A-B=B-A in general.

Since A-B=B-Ain general, A-B-B-A=0 and [A,B]=A-B-B-A is called the
commutator of Aand B . If [A, B] =0, and B are said to be commuting.

v) The n times multiplication of an operator A by itselfisA. A . A....... A= A",
vi) (A+0)| )=(0+A)| )=A| ), where O is called the null (or, neutral) operator.

vii) 1| }=| ), I'is called the identiy operator and for any A, Al = IA = A,

viii) (v)A)w)= (v)A)|w)= (|v)A)|w) , the operator may act in both ways.
ix) ATt A=I, the left inverse of A; AAZ" =1, the right inverse of A.

If both A" and A7 exist, A" (AA)= (A A)AS = A=Al =A",
X) <W‘A+|V>=<V‘A|W> , A" is called the “adjoint” of the operator A.

So, (A| ))=( |A* is the dual of the vector A| ).

15



For example, <v I+|w>=<v‘l|w>=<w|v>:<w‘I|v>:> 1" =1,

One can also show that

xi) There is very special class of operators, which has remarkable properties:

An operator is called self — adjoint or Hermitian if it is equal to its own adjoint, H = H".
xii) If the inverse of an operator equals to its own adjoint, then it is called unitary,
u*=u?!

The special Hermitian and Unitary operators are commonly encountered in applications.
Norm of a Linear Operator and Boundedness:

Consider a vector |v)e VH|v>H¢ 0, where V is afinite or infinite dimensional vector

space and an operator B which acts in this space. The operator is said to be bounded if

there exists a real constant B such that B|v)|<p]|v)| and the smallest value of this

constant is called the norm of the operator. Then, the norm of B is defined as

v, I8l
M

3.2 Eigenvalue Equations

where sup denotes the “least upper bound”.

[B]=sup

Equations of type A|v)=2|v) are called eigenvalue equations, where 2 is an arbitrary

scalar.

The complex or real scalar A is called an eigenvalue of A and |v> is called an
eigenvector of A.

Given a particular operator, the solution, if any, to the eigenvalue equation give rise to a

set of eigenvalues {1, } and a set of eigenvectors {jvn>}, whose number of elements

dependt on the dimension of the vector space.

Ulv) =jv) = (v]u” =2 {v] = (U Ui )= (4l = (W)=l () = P =1 2= e
, Where g < IR is a free parameter.

3.2.1 Theorem : All eigenvalues of a Hermitian operator are real and the eigenvectors
that
correspond to different eigenvalues are orthogonal.

Proof:

16



Let |h,) and |h,) be the two eigenvectors for any two eigenvalues h;= h; respectively.

Then,

H|h,)=h,[h,)
Hlh,)=h,[h,)

= (n[Hlhy)=(h,Jns ) =h. (nsfn.)

= (h,|Hh,)=h, (h.Jh,). But, since (hyJHIh, ) (= hy (hofn,))
=(hyH[h,)=h, (hyfn,) = h, =h,.

On the other had,

(n,[HIh, )=(h,[n,|h,)=h, (n,[h,) and

(ny|HIh, )=(hy|h | )=h, (hsfh, )= (h,[Hh) = (h,[Hfh, )= h, (hijh, )= h, (h,]h,)
= (h, =h,){h,|h,)=0=>(h,|,)=0, since hy = hy.

Above each eigenvalue there corresponds a single eigenvector.

But, there are some cases where to a single eigenvalue, there correspond many
eigenvectors.

In this case, the particular eigenvalue and the corresponding eigenvectors are called
degenerate .

Then, the last equality above does not necessarily imply the orthogonality of the
eigenvectors.

However, by Gramm - Schmidtt process, it is seen that Hermitian operators can

always admit an orthogonal set as the set of eigenvectors.

The number of linearly independent eigenvectors of a Hermitian operator is

exactly the dimension of the space.

17



3.3 Linear Differential Operators

3.3.1 Definition: An operator which acts on a function space as

<x
d"2f
an72
L(a,b),

L0 dn__l (x)+a, , (%)
X

D”|f>EDX” f(x)=a, (x

X)+....+a, (x)((j—f(x)Jra0 (x)f(x) is called a linear differential operator. In
X

<X‘D”|f>z'b[ <X‘D‘x'><x'|f>dx':i S(x—x)D,,f(x)dx =D, f(x), where a < x < h.

Example: Show that D? f(x) = a; (X) ﬂ(x)—(x) + ap (X) f(X) is not linear.

D2 [ () +g()]=a, (x) U d;g) %) d(fd; 9 (x)+a, () (F(x) + g(x)) = DF(x) + Dg(x).

3.3.2 Adjoint of a Differential Operator D in L? (a,b):

'If)=(f[Dk)

< |D|x ><x|g>dx:_[ f (a +aog)dx

a

d (f 19) d(f a,)
dx

Dzal(x)dix+ao<x)»<g

(10ig)-f |«

D —y T

dg
fla +aog)dx_j (

_d(f'a,)

+a,fg)dx=

|
|

Taking the complex conjugate of both sides

b f1 X
(flplg)=] o' (- =22 = (glD")
:D*fz——d(jif)+a;f

3.3.3 Second Order Linear Differential Operators

In general, a second order linear differential operator is given by
d? d ith real coeffici
D=a, (x)dX—ZJral&H;l0 (x) with real coefficients.

Subject to an inner product

18



<g|f>:.tf 9" (x)f (x) dx, in L?(a, b);

its adjoint form is determined by

(f

and hence one considers another definition which suits to these cases:

(f|D*]g)=(a[DIf)

d-f
D
oir)f oxa[a, 1

g9)=(g|D|f). But, due to the integration, some integration constants may pop up

+al(jjl+a0f*]; by partial integration
X
b

d df d « d . .

(glDIr)=] [d (gaz o ] C DR OIX(gem‘ )= @0 +gaof]
df” «

=|ga, —+ga,f" |
'

=[ga df” _d(ga,)
dx

b 2
d d(ga,) - . d d . .
+£ dx( P £ |+f W(gaz)—&(alg)f +ga,f

f"+ga,f’ —gazf*j

¢ d? d
o[ dxf [d7(azg>—d—x(alg>+aog]

2 dx
=(f|D7|g)
., d? d
=D =W(a2')_&(al')+a0

b

L(7(x),9(x),a,(x),a,(x),a,(x))

dx dx

a

:(ga2 df a,f == dg ~f g(ijiJrgaf J

3.3.4 Self Adjoint Differential Operators
A differential operators is said to be self — adjoint if D" = D. Consider again the second

order linear differential operator. If it is self — adjoint

) a2 df 42 d
D :D2a2d7+ald—x+a0f:d7(a2f)—d—x(alf)+a0f
2 2
:azd—:+ Zda—z—al £+ d a22 —&-Fao f
dx dx dx | dx dx

d’a, da,
S ———+8,=4a,.
dx dx

:>2(1|i—al:al and
X

a, =(:;LX2:> az(x):J'a1 (x)dx . Second equation is the differentiation of the first one.

19



Therefore, the self — adjoint differential operator is given by

d> da, d d d
D=D"=a,—+—%—+a a +a,.
2dx?  dx dx  ° dx[zdj 0

The boundary terms now become

df” «d . da
:(azgd—x—azf 4 fgd—2+gaf ]

b

I(F7(x),9(x),a,(x).a,(x))|;

df” _.dg)]’
{ Z(g dx o|xﬂa

Precisely talking,

dx

a

When | =0, the differential operator is said to be formally self — adjoint;
When | =0, it is said to be totally or completely self — adjoint.
The operator D, by definition, acts on L? (a, b).

The procedure can be carried to L2, (a, b) in the following way:

Inner product for L2, (a, b) is given by
b
(g |f>=j g” (X)F(x)w(x)dx, where w(x)>0. Then, the adjoint of the second order linear

differenti al operators are given by

(f|D*|g)=(9[D[f)

*

d’f" _ df” D)8 d*f” df .
_j dxwg( Vﬁ-al&-ﬁ-aof ]z! dxg((waz)WJr (Wal)& +(wa,)f j

" d’ " df” o . :
:J. dxg| b, —5+b, —+b,f" | ; similar calculation ns give
' dx dx

~ df " d(gb,) ;- db, b % L 1( d? d
—(gbzd—X ™ gbf—d—gfja+£ b |~ (b,0) = (0,0)+byg

D=1 [dz (b 2)——(b )+bo],

’
a

df” d(gbz)f*+gbf* dbzdf
2 dx dx ! dx

where
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d? d 1 d? d
D:az 7+ald—x+ao :W(bz dX—2+bld—X+bO].

The self — adjoint operator is obtained via D* = D as

D= D=ii(b2 i}L&together with
w dx dx ) w

df*  ..dg
>~ g —b,f 2
(b0l o %

3.4 Sturm - Liouville Operators

b

L(F"(x),9(x), b, (x))

a

The completely self — adjoint ( 1=0) second order linear differential operators are called
to be the Sturm — Liouville operators.

3.4.1 Sturm — Liouville Equation

Since Sturm — Liouville operators are used commonly in applications, it is better to use

a particular notation for convenience:

S* :S=ii(p1j+&. The Sturm — Liouville Equation is the eigenvalue equation
wdx\ dx) w

givenby SY, =AY, .
Given two arbitrary eigenvalues A, and A,,
the eigenvectors are subject to the boundary conditions below:

- dv,, v d‘P; b—o
a_px1 dx pxz dx a_.

I(¥,,. ¥, (X))

Since the Sturm - Liouville operators are self - adjoint (Hermitian),

all the properties of the Hermitian operators discussed in our previous lectures are also
valid for them:

1. The eigenvalues of the Sturm - Liouville operators are all real;

2. Eigenvectors that correspond to different eigenvalues are orthogonal,

3. The eigenvectors of the Sturm - Liouville operators form a basis for L2, (a, b).

3.4.2 Boundary Conditions :The boundary conditions for the SL equation are satisfied
for the well known types:

1) ¥, (a)="Y, (b)=0 (Dirichlet conditions)

d, (x)
dx

_d¥, (%)

2
) dx

= 0 (Neumann conditions)
b

a
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3) v, ()=, (b), T2 B0 o iodic boundary conditions)
dx |, dx |,

4) oV, (a)— ¥} _ = BY, (b)- le () (General unmixed conditions)
a b

These boundary conditions are implied directly by applications one studies.

2
As an example consider the wave equation VZT—L%TT- 0. By separation of
C

variables

d?

O )=X ()T (H)= X =i2

__k2.
X 1

l
=

d’T
1
) dt?

+0°T=0,0=kc (Harmonic Oscillator);

2) VX +k?X=0(Helmholtz Equation).
Let us study now the solutions to the wave equation for some particular boundary
conditions.

Example:

i) Harmonic Oscillator: ddt-l;m =-0’T,,0<meg., with boundary conditions
T,0=T,(H=0

The boundary conditions above are of Dirichlet type.

This is of SL type with identification p =1, =0,1 = -o’,w =landl|,=

The general solution is T (t) = ASinot. The boundary conditions imply that

Sinml=0= o= ”—l" S 0N=0+1++243. ...

So, the eigenfunctions T, (X) = ASm( I j form a basis for L?(0,1) and real continous

functions can be expanded in [0,1] in terms of these. The basis is orthogonal since

Oom=n

(Ta|To) jdtT T, =11 ,and one can make it orthonormal
EA{m:n
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by choosing A = \/Iz

_ [2g[(mt
—>Tm(t)_\/:S|n( I j
£)=3"a,|T,)orf()=3a,T, 1)
<Tm|f>=§an<Tm|Tn>=ianid \fs. [m_ntj:z

n=1 n=1 =1
nmt . L 2
o, =(T,|f) \/7J.f(t)8m[Tjdtor making a redefinition an\/;: b,
=f(t) = Zb Sin (mlﬂj =_.|'f(t)S ( thdt, which is the Finite Fourier Sine

Series.

In Practice, the interaction of two fields in this space given by

(h|g) can now be calculated in terms of their Fourier modes
(n|g) jdtzc Sm( jZd Sin [m“tj
- Z c.d. IdtSln[nthSm(antj: i Cndm%Snm :%chdn

n,m=1 n,m=1

ii) Helmholtz Equation: V?X+k?X =0. In spherical coordinates, by separation of
variables X(r,0,¢) = R(r) ® (0)@(¢)

2
1d ? =cons tant t =-m?(SLtype)= d=e"™0<¢p<2n, (fundamental

dd

solutions); these span the space L?(0,2r) which we have discussed extensively.

2 2
d —2xd—@+[n(n+1)— m
dx 1

x=C0s0,0<0<nt= (1-X )

2}@20,—1SXS1;

associated Legendre equation (Exercise: This is again of SL type (w="?, etc.).)
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whose fundemental solutions are
® =P, (x)and Q] (x), the associated Legendre functions and these span L? (-1,1).

When m=0, it turns out to be the case we have studied previously. The orthogonality of

the associated Legendre functions can be seen via the product

(n+m)!2

Jo®T ()PF 00= e O

2
d’B 1dB (mzj
+ o kP

B =0, Bessel’s equation; (SL type:
dr? rdr r? q L typ

R(r) = B(r)/r =

exercise)

—B(r)=J ,(kr)andY ,(kr), Bessel’s functions.
n+E n+E

Any function on the interval 0<r<r, can be expanded in terms of J , (kr) and the
n+5

corresponding series is called the Bessel or Fourier-Bessel series. So, these span

L% (O,r,),wherew(r) =r.

f(r) = TkolkF(k)Jn+1 (kr), F(k) = Trolrf(r)Jn+1 (kr).

Consuquently, if a differential operator is of SL type

S+ ::S::.jguji_(p.ji_j4_11”
dx /) w

then, the eigenfunctions , to the Sturm-Liouville Eigenvalue Equation given by

Sy, =y, together with the boundary conditions

1y, v, POO) s =(pw§1
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constitute a basis for L’ (a,b) and real continous functions can be expanded in terms of

these eigenfunctions in the given interval.
b
[0, (Ow(x)dx

()= ey, (X), 0, = 5
[, 00w Qw(x) dx
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