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Chapter 2. Linear Spaces 
2.1 Field and Linear Space 

Definition: Field 

 F is a field, if the following axioms hold  

1. + is associative 

Fcba ∈∀ ,,    (a + b) + c = a + (b + c) 

2. O is the neutral element under addition 

Fa ∈∀    a + 0 = 0 + a = a 

3. Every element has an apposite 

)( FbandFa ∈∃∈∀  a + b ≠ b + a = 0 

4. + is commutative 

Fba ∈∀ ,    a + b = b + a 

There fore +;F  is an abelian group. 

5.   •  is associative 

Fcba ∈∀ ,,    a . (b . c) = (a . b) . c 

6. 1 is the neutral element 

Fa ∈∀    a . 1 = 1 . a = a 

7. Every non-zero element has an inverse 

))(0()( FbaFa ∈∃→≠∈∀  a . b = b . a = 1 

8.   •  is commutative 

)( Fab∈∀   abba .. =  

There fore •;F  is an abelian group. 

9. Distributive Laws  

Fcba ∈∀ ,,    Left distributy   .a (b+c) = ab + ac 

    right distributy    (b+c) . a = ab + ac 

Example: IR is the set of real numbers, and  C is the set of complex numbers are fields. 

 

2.2 Definition: Linear space 

Let FFaaVu ,........,,.....,, 21 ∈∈ων  is either IR or C, then V is said to be linear 

space (vector space) if and only if the properties satisfied 
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VS1 – V is closed under scalar multiplication 

Va ∈ν  

VS2 – V is closed under vector addition 

Vu ∈+ ν  

Here, it is required that the properties of vector addition and scalar multiplication.  

I.  Vuuuu ∈++=++ ωνωνω ,,)()(  

II.  uu +=+ νν  

III.  Vuuu ∈=+=+ φφφ ,  

IV. φνν =+=+ uu  if and only if    vu −=  

V.  )()( bauba = u  VuandFba ∈∈,  

VI.  FVuuuu ∈∈=⋅=⋅ 111  

VII. Vvu ∈+  

VIII. Vav ∈  

 

Example: IR3 is a vector space, since it is closed under vector addition and scales 

multiplication together with the properties of vector addition and scales multiplication 

satisfied.  

NOTE:  Closure property can be written as 

Vaua ∈+ ν21  

2.2.1 Definition: Linear Subspace 

Let V be a vector space over a field IR or C. A non-empty subset of W of V is called 

subspace of V if W itself is a vector space.  

 

Lemma (Subspace Criterion): Let V be a vector space a over a field IR or C and let W 

be a non-empty subset of  V. Then W is subspace if and only if 

i) w1 + w2 ∈  W for all w1, w2  ∈  W 

ii) Wwa ∈  for all  WwCaorIRa ∈∈∈ ,  or we can simply say that W is subspace 

of V if and only if 

Wwbwa ∈+ 21  for all w1 , w2 W∈  and IRba ∈,   or    Cba ∈,  

 

 

Closure addition and 
multiplication 
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2.2.2 Definition: Dependency Relation 

Let  v1, v2, ….., vn ∈  V (real or complex vector space) and let Faaa n ∈.......,, 21   

)( CorIRF = . Then the relation  

0.....2211 =+++ nn vavava  

is called a dependency relation for  v1, v2, …..,vn  if the dependence relation is satisfied 

only when  

0.......21 ==== naaa , then v1, v2, ….., vn
  are said to linearly in dependent vector space, 

otherwise  they are said to be linearly dependent.  

 

2.2.3 Definition: Linear Span 

Let W be a subset of V, then we call the set of all possible linear combinations of 

vectors of W by the linear span of W and denote it by < w > 

{ }WwwFaawawaw nnnn ∈∀∈∀++=>< ....,,,.......,:........ 1111  

One also says that < w > in the subspace spanned.  

 

2.2.4 Definition: Basis 

A subset W ⊂  V of    linearly independent vectors is called a basis for V if  

spanW = V ; that is , all the elements of V can be generated by the proper linear 

combinations of the vector of W. 

Example: The set X = { }nxxx ,.....,,,1 2   is a basis for the set of polynomials up to the n 

th order. 

a 0 +a1 x+a 2 x 2 +……..+a n x n  = 0  ⇒  a 0  = a1  = a 2  =……….= a n  = 0 

 

 

2.3 Norm and Normed Vector Space 

 

The idea of the length of a vector is intuitive and can be easily extended to any real 

vector space Rn. Its properties are  

1. a vector always has a strictly positive length. The only exception is the zero vector  

2. Multiplying a vector by a positive number has the same effect on the length.  



 4

3. The triangle inequality holds. The distance from A through B to C is never shorter 

than going directly from A to C 

 

2.3.1 Definition: Norm 

If v is a vector space over a field F (IR or C), a norm on V is a function from V to IR. It 

associates to each vector ν  in V a real number, which is usually denoted v . The norm 

must satisfying the following conditions.  

For all a in K and all u and v in V 

1. 0≥v  with equality if and only if v = 0 

2. vaav ⋅=  

3. vuvu +≤+  

    vuvu +=+      if  v = a u,  u > 0 

2.3.2 Definition: Normed Vector Space 

A vector space on which a norm is defined is called as normed vector space or only 

normal space.  

 

Example: 

i) Euclidean norm 

On Rn, the intuitive notion of length of vector 

x = (x1, x2, …., xn) is captured by the formula 

2
n

2
2

2
1 x....xxx +++=  

This gives the ordinary distance from the origin to the point x, a consequence of the 

Pythagorean theorem.  

ii) p – norm 

Let p≥ 1 be a real number 
p/1n

1i

p
ip

xx ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

 

Note that for p = 1 we get the Manhattan Norm and p = 2 we get the Euclidean norm.  
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Example: 

i) Sequence space ∞I : the space of all bounded sequences of complex numbers              

v = (x1, x2, …, xi, …) ∈  V, xi ∈  C,  =ix finite,    i
NEi

xsupv
+

=  

ii) Space C [a, b] is defined as the space of real continous functions with a norm 

)(max tvv
It∈

=   [ ]baIt ,∈  

iii) The space of real continous function v (t), ∈t [a,b], 
2/1

2
b

a

dt))t(v(v ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫  is a 

norm for this space; but ∫=
b

a

dt)t(vv  is not  

 

2.4 Metric and Metric Space 

 

2.4.1 Definition: Metric 

A non-negative function d (x,y) describing the distance between neighbourhoods of 

points for a given set. Metric is a generalization of the concept of distance. A metric 

satisfies the axioms below: 

 

i) d (x,y) = 0   iff x = y 

ii) d (x,y) = d (y,x)  , symmetry 

iii) d (x,y) + d (y,z) ≥  d (x,z) , triangle inequality 

 

2.4.2 Definition: Metric Space 

A metric space is a set X together with a function d (called a metric or distance 

function) which assings a real number d (x,y) to every pair x, y ∈X 

 

i) d (x,y) ≥  0   and    d (x,y) = 0   if and only if   x = y  

ii) d (x,y) = d (y,x), symtery 

iii) d (x,y) + d (y,z) ≥  d (x,z)  ,   triangle inequality 

 

Example:The metric on spaces of functions. Let C [0, 1] be the set of all continues real 

valued function on the inter [0, 1]  
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x

1

D
1 d)x(g)x(f)g,f(d −= ∫  

So the distance between function is the area between their graphs.  

 

2.5 Complete Metric Space 

 

2.5.1 Definition: A sequence {vn} converges to the limit u if for all 0∈>  there exist 

N∈IV such that <∈− uvn  for all Nn ≥ . Then {vn} is said to be convergent sequence. 

2.5.2 Definition: A sequence {vn} is a Cauchy sequence if for any 0∈>  there exist 

N∈N such that ∈<− mn vv  for any m,n N≥  

2.5.3 Definition: The point that Cauchy sequence converges is called the limit point (or 

accumulation point). 

2.5.4 Definition: A complete metric space is a metric space in which every Cauchy 

Sequence is convergent. 

  

Example: a metric space in IR 

yx)y,x(d −=  

All Cauchy sequences are bounded and every bounded subset of IR must have a limit 

point.  

Every Cauchy sequences has a limit point in IR 

So, IR is complete. 

Example: a metric space in C 

)(Nm,nZZ mn ε≥ε≤−  

zn = xn + i yn 

{ } { } { } IRy,xz nnn ≤→  

ε<−≤− mnmn zzxx  

ε<−≤− mnmn zzyy  

Let {xn} →  x   and  {yn} →  y 

z = x + i y    yyxxzz nnn −+−≤−  
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0zzlimzzlim0zzlim nnnnnn
=−=−⇒=−

∞→∞→∞→
 

0zlim nn
=

∞→
 

So, C is complete 

 

2.6 Definition: Banach Space 

A complete normed space is called as Banach space.  

Example: IR and C are Banach spaces 

Example: a metric space in Q 

       yx)y,x(d −=  

The infinite sequence 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈⎟
⎠
⎞

⎜
⎝
⎛ + +Nn,

n
11

n

 

Qe,e
n
11lim

n

n
∉=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +

∞→
 

So, Q is not complete.  

The another example of Q is not complete is that xn ∈  Q is infinite sequence that has 

limit point .Q2∉  

Example: Take a space of continuous functions with the metric 

[ ] dx)x(g)x(f)g,f(d 2
1

1

−= ∫
−

 

Consider a sequence of functions 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤<

≤<
+

<≤−

=

1x
n
11

n
1x0

nx1
nx2

0x10

)x(fn  

Then, [ ] dx)x(g)x(fnlim)g,f(dlim 2
1

1
nnn

−= ∫
−

∞→∞→
 

[ ] Cdx)x(g1dx)x(g
nx1

nx2dx)]x(g[lim 2
1

n/1

2n/1

0

2
0

1
n

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎥⎦

⎤
⎢⎣
⎡ −
+

+= ∫∫∫
−

∞→
 

All the integrands are positive. So each term must be zero 
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⎩
⎨
⎧

<<
≤≤−

=
1x01

0x10
)x(g  

It is not complete since the limit is discontinous. 

 

2.7 Inner Product and Inner Product Spaces 

Note: Angle Bracket 

An angle bracket is the combination of a bra and ket (bra-ket = braket) which represents 

the inner product of two functions or vectors. In tis notation, a vector is shown by a ket 

. 

2.7.1 Definition: An inner product is a generalization of dot product.  

2.7.2 Definition: Inner Product Space 

An inner product space, with complex scalars C, is a complex vector space V with a 

complex-valued function ⋅⋅ , defined on V x V that has the following properties 

v, w, v1 and v2 ∈V , Ca∈∀  

i) 0≥vv  

if vv     then  v = 0  

iii) vwwv =  

iv) wvwvwvv 2121 +=+  

v) wvawva =  

If wv  is assumed to be real-valued, the complex conjugation is dropped in (iii): 

.v/ww/v =  When (iii) is combined with (iv) and (v) 

,iv ) 2121 vwvwvvw +=+  

v , ) wvaawv =  

 

2.7.3 Definitiıon: The Natural Norm 

The norm of an element V in an inner product spaces is called natural norm and it is 

vvv = . It satisfies all the axioms of inner product. 
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2.7.4 Theorem: The Schwarz Inequality 

wvwv ≤ , and equality holds if and only if one of v and  w is a multiple of other. 

Suppose that neither of v and w is zero 

Let z C∈ . Consider 2zwv−  

z in polar coordinates, r∈IR, z = re θi , and 

let f (r) = 2zwv −  

zwvzwvrf −−=)(  

= zwvzwzwvv −−−  

= zwzwvzwzwvvv +−−  

= wwzvwzwvzvv 2)( +−
−

 

= 222 wzw/vzRe2v +−
−

 

= 222 Re2 wrwverv i +− − θ  

choose =θ 0 so that wvwve i =− θ  

we can write 
222 2)( wrwvrvrf +−=  

If equality holds, then f (r) has zero discriminant. 

So v = 2w and equality holds. 

 

2.7.5 Theorem: An inner product space, with v  ar norm, is indeed a norm space. 

By the definition of inner product space, 

When 222 vvvvC ααααα ==∈  

*** The triangle inequality is an application of Schwarz inequality  
222 Re2 wwvvwv ++=+  

( )222 wvwwv2v +=++≤  
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2.8 Hilbert Space 

2.8.1 Definition: A Hilbert Space is a vector space with inner product space which is 

complete with respect to the norm.  

Finite dimensional inner product spaces are Hilbert Space and Hilbert Spaces are always 

a Banach space, but the converse is not hold.  

 

Example: 

i) Square Summable Sequences of Complex Numbers 
2λ  is the space of sequences of complex numbers 

n
1n
α=α ∑

∞

=

 such that  ∞<α∑
∞

=

2
n

1n
 

It is a Hilbert Space with the inner product 

nn
1n

/ βα=βα
−∞

=
∑  

ii) Square Integrable Functions on IR 

L2 (IR) is the space of complex valued functions such that 

dxgxxf
IR
∫  

iii) Square Integrable Function on IRn 

Let Ω  be an open set in IRn. The space L2 (Ω ) is the set of complex valued function 

such that 

whered)x(f x
2

∫
Ω

     x = (x1, x2, ….., xn) 

dx = dx1, dx2, …., dxn 

It is a Hilbert space with inner product 

dxgxxfgf ∫
Ω

=  

 

 

2.9 Function Space 

2.9.1 Definition: Any f  in a vector space whose basis vectors are >x  and all such 

vectors constitute a vector space called as function space.  
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2.10 Orthogonality 

2.10.1 Definition:  A basis { }.....,e....,,e,eE i21 >>>=  for a vector space V is said 

to be an orthogonal basis if jiee ji ≠= ,0 . 

2.10.2 Definition: The vectors u, v ∈V are said to be orthogonal, if vu  = 0,  

* Orthogonality is symmetric 0== uvvu  

* θ  vector is orthogonal to every v∈V   00 =v  

* if ,0=vu  every scalar multiple of u is also orthogonal to v  

000 =⋅==⇒= kvukvkuvku  

2.10.3 Definition: Consider a set  { }nuuuS ,....,, 21=  of vectors in an inner product 

space     V . S is said to be orthogonal set if each vectors in S are non-zero and if the 

vectors in S are mutually orthogonal.  

jiforuubutuuifei jiji ≠=≠ 00.  

2.10.4 Definition: S is said to be orthonormal if S is orthogonal and if each vectors in S 

have unit length. 

⎭
⎬
⎫

⎩
⎨
⎧

≠
=

==
jiif
jiif

Suu ijji 0
1

 

Normalization of a vector is that 

u
u

uu

u
u

>
=

>
=

0
 

An orthogonal set is linear independent, it is a basis for V Suppose 

{ }>>> nuuu ......,,, 21  is an orthogonal basis for V Then, for any >v  in V 

+>= 1
11

1 u
uu
uv

v  >2
22

2 u
uu
uv

+ ………. + n
nn

n u
uu
uv

 

Since,  ν = k1 u1 + k2 u2 + … + kn un 

Taking the inner product of both sides with u1 yield 
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OkOkuuk

uukuukuuk

ukukukuuu

n

nn

n

+++=

+++=

+++=

.....

...

...

2111

1122111

1211

 

2
1

1

11

1
1

u

uv
uu
uv

k ==  

generalized this result 

2
i

i

ii

i
i

u

uv
uu
uv

k ==  

 

The above scalar k i  is called the component of v along ui or the Fourier Coefficient of v 

with respect to ui. 

 

Suppose v1, v2, …, vn form a basis for a subspace U of an inner product space V. The 

Gramm – Schmidt algorithm(2.10.5) which yield an orthogonal basis (and by 

normalization of an orthonormal basis) of U. 

 

Suppose { }>>> n21 w.....,,w,w  is an orthogonal set of vectors in V 

Set  w1 = v1 

1
11

12
212122 /

/
w

ww
wv

vwkvw
><
><

−=−=  

w3 = v3 – k31w1 – k32w2 

=  2
11

13
3 w

ww
wv

v −  2
22

23 w
ww
wv

−  

 

wn = vn – kn1 w1 – kn2 w2 - …. – kn-1 wn-1 

where 

ii

in
ni ww

wv
k =  

 

The set { }>>> n21 w.....,,w,w  is the required arthogonal basis of U.  
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Ex: L2 (-1,1) is the space of real continous functions with an inner product  

∫
−

=
1

1

)()( dxxgxfgf  

a sequence  1, x, x2, …., xi, …… i∈N+,  x∈[-1,1] 

Identifying xn >→ n  (xn = < x/n >) 

⎪⎩

⎪
⎨
⎧

=+
++

=+
=== +

−−
∫∫ evenmn

mn

oddmn
dxxdxxxmn mnmn

,
1

2
,01

1

1

1

 

⇒  032213010 ====  , others nonzero.  

The sequence is not orthogonal  

Apply the Gram-Schmidt Algorithm for the first few term:  

Take  1, x, x2, x3, …… 

Orthogonalize >2   and >3  

>−>=>
><
><

−>=> 0
3
120

0/0
2/022 0  

⎟
⎠
⎞

⎜
⎝
⎛ −=><−><−⇒>⇒

3
1x0/x

3
12/x

3
1x2 2

0
2

0  

>−>=>
><
><

−>=> 1
5
331

1/1
3/133 0  

x
5
3x3 3

0 −→>⇒  

The orthogonal sequence is then 1, x, x2 ,x
5
3x,

3
1 3 −− ………… 

Normalization of the sequence 

,x
2
3,

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,)1x3(

2
1

2
5 2 ⎟

⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
,)x3x(

2
5

2
7 3 ⎟

⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
…… 

{ }0n In)x(P
2

1n2
>↔

⎭
⎬
⎫

⎩
⎨
⎧ +

→ normalized 

 

Ex:  
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Let V be the vector space of real continous function on the interval  π≤≤π− x  with 

inner product defined 

dx)x(g)x(fg/f ∫
π

π−

=><  

The following set S of functions plays a fundamental role in the theory of Fourier Series 

S = { 1, sinx, cosx, sin2x, cos2x, ….} 

S is orthogonal since for any function f, g ∈S we have  

0dx)x(g)x(fg/f ==>< ∫
π

π−

 

On the other hand S is not orthonormal, since  

For example  π==>< ∫
π

π−

dx)x(g)x(fxcos/xcos  

 Chapter 3. Linear Operators 
3.1 Linear Operators 

Let us first clarify the notion of mapping. A mapping is a transformation of a scalar or a 

vector from some spaces of scalars or vectors.  

 

1) KyKx:f)x(fy ∈→∈=  scalar function 

2) Vy|Kx:f|)x(f|y| >∈→∈>>−>=  vector function; e.g.,  

ĵ)x(fî)x(f)x(f 21 +=
ρ

 

3) KyVx:|f)x(|fy ∈→>∈>=  linear or nonlinear functional;  

e.g., >=<> x|c)x(|f  

4) →>∈→>∈>>>= ?Vy|Vx:|f)x|(f|y| operators 

 

  

( ) xLxfy == which we call as “operator”. The set { x } is called the domain of 

the operator and the set {| y } is called the range of operator.  

An operator can be linear or nonlinear. 

  

3.1.1 Definition: Linear Operators  
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If an operator L satisfies  

 

i) >+>ν=>+>ν w|L|L)w|(|L  

ii) >=> νν |)|( aLaL  

where Vka ∈>∈ ν|, , then it is called linear. The two linearity conditions can also be 

written in a unique way as wbLaL)wbva(L +ν=+  and they can be extended 

to scalar functions, vector functions and functionals. 

 

Example: Given 2
21 V,21 ∈νν+ν=ν , what is the domain and the range of the 

operator A if 1A
21

1

ν−ν
ν

=ν 2

21

2 V,2 ∈ν
ν−ν

ν
+ . 

{ } 22 VR,K),21(VD =∈α+α=νν−= . Is it linear? (exercise; the answer is NO) 

If A and B are two linear operators in the space of vectors, , then  

i) BA)BA( +=+ ; the sum of two linear operators is again an operator;  

ii) BA)BA( ⋅=⋅ ; the multiplication of two linear operators is again an operator;  

iii) A = B iff BA = ; 

iv) ABBA ⋅≠⋅  in general. 

Since ABBA ⋅≠⋅ in general, 0ABBA ≠⋅−⋅  and ABBA]B,A[ ⋅−⋅=  is called the 

commutator of A and B . If [A, B] = 0, and B are said to be commuting. 

v) The n times multiplication of an operator A by it self is A . A . A . …… A = An . 

vi) A)AO()OA( =+=+ , where O is called the null (or, neutral) operator. 

vii) =I , I is called the identiy operator and for any A, AI = IA = A. 

viii) =ν w)A( =ν w)A( w)A( ν , the operator may act in both ways.  

ix) IAA 1
L =− , the left inverse of ,IAA;A 1

R =− the right inverse of A.  

If both 1
LA − and 1

RA −  exist, 1
LA − )AA( 1

R
− = )AA( 1

L
− 1

RA − ⇒ 1
LA − = 1

RA − 1A −≡ . 

x) wAAw ν=ν+ , A+ is called the “adjoint” of the operator A. 

So, ( ) += AA  is the dual of the vector A . 
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For example, .IIIwwwIwI =⇒ν=ν=ν=ν ++  

One can also show that 

xi) There is very special class of operators, which has remarkable properties: 

An operator is called self – adjoint or Hermitian if it is equal to its own adjoint, H = H+.  

xii) If the inverse of an operator equals to its own adjoint, then it is called unitary, 

U+=U-1
. 

The special Hermitian and Unitary operators are commonly encountered in applications. 

Norm of a Linear Operator and Boundedness: 

Consider a vector 0,V ≠ν∈ν , where V is afinite or infinite dimensional vector 

space and an operator B which acts in this space. The operator is said to be bounded if 

there exists a real constant β  such that νβ≤νB  and the smallest value of this 

constant is called the norm of the operator. Then, the norm of B is defined as 

νν

ν
=

ν

ν
=

B
sup

B
supB , where sup denotes the “least upper bound”. 

3.2 Eigenvalue Equations 

Equations of type νλ=νA  are called eigenvalue equations, where λ  is an arbitrary 

scalar. 

The complex or real scalar λ   is called an eigenvalue of A and ν  is called an 

eigenvector of A. 

Given a particular operator, the solution, if any, to the eigenvalue equation give rise to a 

set of eigenvalues { }nλ  and a set of eigenvectors { }nν , whose number of elements 

dependt on the dimension of the vector space. 

. 
β++ =λ⇒=λ⇒ννλ=νν⇒νλλν=νν⇒νλ=ν⇒νλ=ν i22** e1UUUU

 , where IR∈β  is a free parameter. 

3.2.1 Theorem : All eigenvalues of a Hermitian operator are real and the eigenvectors 

that 

correspond to different eigenvalues are orthogonal. 

Proof: 
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Let 1h  and 2h  be the two eigenvectors for any two eigenvalues  hl≠ h2 respectively. 

Then, 

 

 

 

111 hhhH =  

222 hhhH =  

11111111 hhhhhhhHh ==⇒  

⇒ 11111 hhhhHh = . But, since 11111 hhh(hHh = ) 

= 11111 hhhhHh = 11 hh =⇒ . 

On the other had, 

12111222 hhhhhhhHh ==  and 

⇒== 21222121 hhhhhhhHh 12 hHh = 21221 hhhhHh = = 122 hhh  

0hh0hh)hh( 121221 =⇒=−⇒ , since h1≠ h2. 

Above each eigenvalue there corresponds a single eigenvector. 

But, there are some cases where to a single eigenvalue, there correspond many 

eigenvectors. 

In this case, the particular eigenvalue and the corresponding eigenvectors are called 

degenerate . 

Then, the last equality above does not necessarily imply the orthogonality of the 

eigenvectors. 

However,  by Gramm - Schmidtt process, it is seen that Hermitian operators can 

always admit an orthogonal set as the set of eigenvectors. 

The number of linearly independent eigenvectors of a Hermitian operator is 

exactly the dimension of the space.  
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3.3 Linear Differential Operators 

3.3.1 Definition: An operator which acts on a function space as 

)()()()( 1 xax
dx

fdxaxfDfDx nn

n

n
n
x

n
−+=≡ )x(a)x(

dx
fd

2n1n

1n

−−

−

+

)x(f)x(a)x(
dx
df)x(a....)x(

dx
fd

012n

2n

+++−

−

 is called a linear differential operator. In 

L2(a,b),  

∫≡
b

a

n fDx .bxawhere),x(fDdx)x(f,D)xx(dxfxxDx x
''

x
'

b

a

''' <<=−δ= ∫  

Example: Show that D2 f(x) = a1 (x) )x(
dx
df)x(

dx
df + a0 (x) f(x) is not linear.  

).x(gD)x(fD))x(g)x(f()x(a)x(
dx

)gf(d)x(
dx

)gf(d)x(a)]x(g)x(f[D 01
2 +≠++

++
=+  

3.3.2 Adjoint of a Differential Operator  D in L2 (a,b): 

gDffDg)x(a
dx
d)x(aD 01 =→+≡ +  

dxga
dx
dgafdxgxxDxxfgDf

b

a

b

a

b

a

)( 01
*'' +== ∫∫∫ .  

=+∫ dx)ga
dx
dga(f 01

b

a

=+−∫ dx)fga
dx

)af(dg
dx

)gaf(d( 0
1

*
1

*b

a

b
a

*
1

*
0

1
*b

a

)gfa(dx)fa
dx

)af(d
g ++−∫  

Taking the complex conjugate of both sides 

fDg)fga(dx)fa
dx

)fa(d
(ggDf b

a
**

1
*
0

*
1*

b

a

+=++−= ∫  

fa
dx

)fa(dfD *
0

*
1 +−≡⇒ +  

3.3.3 Second Order Linear Differential Operators  

In general, a second order linear differential operator is given by  

)x(a
dx
da

dx
d)x(aD 012

2

2 ++=  with real coefficients.  

Subject to an inner product 
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)x(f)x(gfg *
b

a
∫=  dx, in L2 (a, b); 

its adjoint form is determined by  

fDggDf =+ . But, due to the integration, some integration constants may pop up 

and hence one considers another definition which suits to these cases:  
b
a012

* ))x(a),x(a),x(a),x(g),x(f(IfDggDf +=+ . 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∫ *

0

*

12

*2

2

b

a

fa
dx
dfa

dx
fdadxgfDg ; by partial integration 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫ *

0
*

1
*

1

*

2

*

2

b

a

fgaf)ga(
dx
d)fga(

dx
d

dx
df)ga(

dx
d

dx
dfga

dx
ddxfDg  

*
0

*
122

2
**2

b

a

b
a

*
1

*

2 fgaf)ga(
dx
d)ga(

dx
dff

dx
)ga(d

dx
ddxfga

dx
dfga +−+⎟

⎠
⎞

⎜
⎝
⎛−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∫  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−= ∫ ga)ga(

dx
d)ga(

dx
ddxffgafgaf

dx
)ga(d

dx
dfga 0122

2
*

b

a

b
a

*
2

*
1

*2
*

2

b
a012

* ))x(a),x(a),x(a),x(g)x(f(IgDf += +  

0122

2

a.)a(
dx
d.)a(

dx
dD +−=⇒ +  

b

a

*
1

2**
2

*

2

b

a
012

* fga
dx
da

gf
dx
dgfa

dx
dfga))x(a),x(a),x(a),x(g),x(f(I ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−−=  

3.3.4 Self Adjoint Differential Operators 

A differential operators is said to be self – adjoint if D+ = D. Consider again the second 

order linear differential operator. If it is self – adjoint 

fa)fa(
dx
d)fa(

dx
dfa

dx
dfa

dx
fdaDD 0122

2

012

2

2 +−=++⇒=+  

fa
dx
da

dx
ad

dx
dfa

dx
da

2
dx

fda 0
1

2
2

2

1
2

2

2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟

⎠
⎞

⎜
⎝
⎛ −+=  

00
1

2
2

2

11
2 aa

dx
da

dx
adandaa

dx
da2 =+−=−⇒ . 

∫=⇒= dx)x(a)x(a
dx
daa 12

2
1 . Second equation is the differentiation of the first one.  
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Therefore, the self – adjoint differential operator is given by 

020
2

2

2

2 a
dx
da

dx
da

dx
d

dx
da

dx
daDD +⎟

⎠
⎞

⎜
⎝
⎛=++== + . 

The boundary terms now become 

b

a

*
1

2**
2

*

2
b
a12

* fga
dx
da

gf
dx
dgfa

dx
dfga))x(a),x(a),x(g),x(f(I ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−−=  

b

a

*
*

2 dx
dgf

dx
dfga ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= . 

Precisely talking, 

When I ≠ 0, the differential operator is said to be formally self – adjoint;  

When I = 0, it is said to be totally or completely self – adjoint. 

The operator D, by definition, acts on L2 (a, b). 

The procedure can be carried to 2
wL (a, b) in the following way:  

Inner product for 2
wL  (a, b) is given by 

,dx)x(w)x(f)x(gfg *
b

a
∫=  where w(x)>0. Then, the adjoint of the second order linear 

differenti al operators are given by 
b
a012

* ))x(a),x(a),x(a),x(g),x(f(IfDggDf +=+  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= ∫∫ *

0

*

12

*2

2

b

a

*
0

*

12

*2

2

b

a

f)wa(
dx
df)wa(

dx
fd)wa(dxgfa

dx
dfa

dx
fdadxwg  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∫ *

0

*

12

*2

2

b

a

fb
dx
dfb

dx
fdbdxg ; similar calculation ns give 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−= ∫ gb)gb(

dx
d)gb(

dx
d

w
1dxwfgf

dx
db

fgbf
dx

)gb(d
dx
dfgb 0122

2
*

b

a

b

a

*2*
1

*2
*

2  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⇒ +

0122

2

b).b(
dx
d.)b(

dx
d

w
1D , 

 
b

a

*2*
1

*2
*

2
b
a012

* df
dx
dbfgbf

dx
)gb(d

dx
dfgb))x(a),x(a),x(a),x(g),x(f(I ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−= , 

where 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=++= 012

2

2012

2

2 b
dx
db

dx
db

w
1a

dx
da

dx
daD . 

The self – adjoint operator is obtained via D+ = D as 

w
b

dx
db

dx
d

w
1DD 0

2 +⎟
⎠
⎞

⎜
⎝
⎛==+ together with  

b

a

*
2

*

2
b
a2

*

dx
dgfb

dx
dfgb))x(b),x(g),x(f(I ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

3.4 Sturm – Liouville Operators  

The completely self – adjoint ( I=0) second order linear differential operators are called 

to be the Sturm – Liouville operators.  

3.4.1 Sturm – Liouville Equation 

Since Sturm – Liouville operators are used commonly in applications, it is better to use 

a particular notation for convenience: 

w
q

dx
dp

dx
d

w
1SS +⎟

⎠
⎞

⎜
⎝
⎛==+ . The Sturm – Liouville Equation is the eigenvalue equation 

given by   λλ Ψλ=ΨS .  

Given two arbitrary eigenvalues 1λ  and 2λ , 

the eigenvectors are subject to the boundary conditions below: 

b

a

*
*b

a
*

dx
d

p
dx

d
p))x(p,,(I 1

2

2

121 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ψ
Ψ−

Ψ
Ψ=ΨΨ λ

λ
λ

λλλ = 0. 

Since the Sturm - Liouville operators are self - adjoint (Hermitian), 

all the properties of the Hermitian operators discussed in our previous lectures are also 

valid for them: 

1. The eigenvalues of the Sturm - Liouville operators are all real; 

2. Eigenvectors that correspond to different eigenvalues are orthogonal; 

3. The eigenvectors of the Sturm - Liouville operators form a basis for L2
w (a, b). 

3.4.2 Boundary Conditions :The boundary conditions for the SL equation are satisfied 

for the well known types: 

1) 0)b()a( =Ψ=Ψ λλ  (Dirichlet conditions) 

2) =
Ψλ

adx
)x(d

=
Ψλ

bdx
)x(d

0 (Neumann conditions) 
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3) ),b()a( λλ Ψ=Ψ =
Ψλ

adx
)x(d

 
bdx

)x(d λΨ
 (Periodic boundary conditions) 

4) −Ψα λ )a(  =
Ψλ

adx
)x(d

−Ψβ λ )b(
bdx

)x(d λΨ
 (General unmixed conditions)  

These boundary conditions are implied directly by applications one studies. 

As an example consider the wave equation 2

2

2
2

tc
1

∂
Ψ∂

−Ψ∇ = 0. By separation of 

variables 

;k
dt

Td
T
1

c
1

X
X)t(T)x(X)t,x( 2

2

2

2

2

−==
∇

⇒=Ψ
→→

 

1) kc,0T
dt

Td 2
2

2

=ω=ω+ (Harmonic Oscillator);                                

2) 0XkX 22 =+∇ (Helmholtz Equation). 

Let us study now the solutions to the wave equation for some particular boundary 

conditions. 

Example: 

i) Harmonic Oscillator: .,g.e,0,T
dt

Td 2
2

2

ω<ω−= ω
ω  with boundary conditions 

0)l(T)0(T == ωω  

The boundary conditions above are of Dirichlet type.  

This is of SL type with identification 0Iand1w,,0q,1p l
0

2 ==ω−=λ==  

The general solution is )t(Tω = .tASinω  The boundary conditions imply that 

,.......3,2,1,0n,0
1

n0lSin +±+±=>
π

=ω⇒=ω  

 

So, the eigenfunctions ⎟
⎠
⎞

⎜
⎝
⎛ π

=
l
tnASin)x(Tn  form a basis for )l,0(L2 and real continous 

functions can be expanded in [0,l] in terms of these. The basis is orthogonal since 

∫
⎪⎩

⎪
⎨
⎧

=

≠
==

l

0
2n

*
mnm and,

nm,A
2
l

nm,0
TdtTTT one can make it orthonormal  
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by choosing A = 
l
2  

.
l

tmSin
1
2)t(Tm ⎟

⎠
⎞

⎜
⎝
⎛ π

=→  

∑ ∑
∞

=

∞

=

==
1n 1n

nnnn )t(Ta)t(forTaf  

∑ ∑ ∫ ∑
∞

=

∞

=

∞

=

α=δ=⎟
⎠
⎞

⎜
⎝
⎛ π

==
1n 1n

l

0 1n
mmnnnnmnm a

l
tmSin

1
2dtaTTafT  

∫ ⎟
⎠
⎞

⎜
⎝
⎛ π

==α
l

0
nn dt

l
tnSin)t(f

1
2fT or making a redefinition nn b

1
2a =  

∑ ∫
∞

=
⎟
⎠
⎞

⎜
⎝
⎛ π

=⎟
⎠
⎞

⎜
⎝
⎛ π

=⇒
1n

l

0
nn l

tnSin)t(f
l
2b;

1
tnSinb)t(f dt, which is the Finite Fourier Sine 

Series.  

 

In Practice, the interaction of two fields in this space given by 

gh  can now be calculated in terms of their Fourier modes  

∫ ∑∑
∞

=

∞

=
⎟
⎠
⎞

⎜
⎝
⎛ π

⎟
⎠
⎞

⎜
⎝
⎛ π

=
l

0 1m
m

1n
n l

tmSind
l

tnSincdtgh  

∑ ∑∑ ∫
∞

=

∞

=

∞

=

=δ=⎟
⎠
⎞

⎜
⎝
⎛ π

⎟
⎠
⎞

⎜
⎝
⎛ π

=
1m,n 1n

nnnmmn
1m,n

l

0
mn dc

2
1

2
1dc

l
tmSin

l
tndtSindc  

 

 

ii) Helmholtz Equation: 0XkX 22 =+∇ . In spherical coordinates, by separation of 

variables )()()r(R),,r(X φΦθ⊕=φθ  

2

2

d
d1
φ
Φ

Φ
⇒ =cons tant t π<φ≤=Φ⇒−≡ φ± 20,e)typeSL(m im2 , (fundamental 

solutions); these span the space )2,0(L2 π  which we have discussed extensively.  

;1x1,0
x1

m)1n(n
dx
dx2

dx
d)x1(0,Cosx 2

2

2

2
2 ≤≤−=⊕⎥

⎦

⎤
⎢
⎣

⎡
−

−++
⊕

−
⊕

−⇒π≤θ≤θ≡  

associated Legendre equation (Exercise: This is again of SL type (w=?, etc.).) 
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whose fundemental solutions are  

),x(Qand)x(P m
n

m
n=⊕ the associated Legendre functions and these span L2 (-1,1). 

When m=0, it turns out to be the case we have studied previously. The orthogonality of 

the associated Legendre functions can be seen via the product  

 

∫
−

δ
+−

+
=

l

1
'nıı

m
'n

m
n 1n2)!mn(

2)!mn()x(P)x(dxP  

,0B
r

2
1n

k
dr
dB

r
1

dr
Bdr/)r(B)r(R 2

2

2
2

2

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−++⇒≡  Bessel’s equation; (SL type: 

exercise) 

)kr(Yand)kr(J)r(B
2
1n

2
1n ++

=→ , Bessel’s functions.  

 

Any function on the interval 0<r<ro can be expanded in terms of  
2
1n

J
+

(kr) and the 

corresponding series is called the Bessel or Fourier-Bessel series. So, these span 

.r)r(wwhere),r,0(L o
2
w =  

∫ ∫
∞ ∞

++
==

0 0 2
1n

2
1n

).kr(J)r(rdrf)k(F),kr(J)k(kdkF)r(f  

 

 

Consuquently, if a differential operator is of SL type 

,
w
q

dx
dp

dx
d

w
1SS +⎟

⎠
⎞

⎜
⎝
⎛==+  

then, the eigenfunctions λψ to the Sturm-Liouville Eigenvalue Equation given by 

λλ λψ=ψS  together with the boundary conditions 

0
a

b

dx
d

p
dx

d
p))x(p,,(I

*
*b

a
* 1

2

2

121
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ψ
ψ−

ψ
ψ=ψψ λ

λ
λ

λλλ  
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constitute a basis for )b,a(L2
w  and real continous functions can be expanded in terms of 

these eigenfunctions in the given interval.  

∑
∫

∫∞

= ψψ

ψ
=αψα=

0n
b

a

*
nn

b

a

*
n

nnn

dx)x(w)x()x(

dx)x(w)x()x(f
),x()x(f  

 

 

 

 


