
Applying Data Applying Data

StructuresStructures

CSCI 133

Yama HabibYama Habib

Prof. Rhys Price Jones

Final Project

Binary-tree visualization of the Yahoo

search engine bot crawling the experimental

website.

My Implementation

• “Snake” – A popular minigame where

the object is to “eat” randomly

appearing objects and grow without

touching walls or other elements of

the Snake.the Snake.

• Implemented as

a grid of icons

whose values

can be “blank”,

“snake”, or

“heart”

Basic Rules

• If “snake” icon and “heart” icon

overlap, the “snake” icon shows and

the Snake ‘grows’ by one unit.

• If a “snake” icon and another

“snake” icon overlap, game over.“snake” icon overlap, game over.

• “heart” icons can only appear on

currently “blank” icons.

• If the a “snake” icon wants to be

drawn off the grid, game over.

• If all icons are “snake” icons

(unlikely!) game won.

Basic Rules

(In pseudo-java)
• If “snake” icon and “heart” icon
overlap, the “snake” icon shows and
the Snake ‘grows’ by one unit.

if(grid[x][y] == heart) if(grid[x][y] == heart)

{

grow();

grid[x][y] = snake;

}

else

move();

Basic Rules

(In pseudo-java)

• If a “snake” icon and another

“snake” icon overlap, game

over.

if(grid[x][y] == snake)

{

gameOver();

}

Basic Rules

(In pseudo-java)
• “heart” icons can only appear on currently “blank”

icons.

void setHeart(int x, int y)

{

if(grid[x][y] != blank)

{ {

setHeart(random(x), random(y)); // recursive!

}

else

grid[x][y] = heart;

}

• Rather tedious, isn’t it? What happens if there
aren’t a lot of blank tiles left??

Basic Rules

(In pseudo-java)

• If the a “snake” icon wants to

be drawn off the grid, game

over.

if(x<0 || y<0 || x>SIZE || y>SIZE)

{

gameOver();

}

Basic Rules

(In pseudo-java)
• If all icons are “snake” icons (unlikely!) game won.

while(x<SIZE && keepSearching)

{

while(y<SIZE && keepSearching)

{

gameWon = true; gameWon = true;

if(grid[x][y] != snake)

{

gameWon = false;

keepSearching = false;

}

else y++;

}

x++;

}

• This looks particularly nasty! Don’t even read it!!

Basic Rules

(In pseudo-java)

• As Rhys would say…

// the rest is GUI stuff.

• “You can do this in your

sleep.”

• …That’s how Rhys can write our

labs and still come to class

well rested. ;)

What Data Structures Do We What Data Structures Do We

Need???Need???

• The Snake – elements get added

to the front, removed from the

back.

• The Grid – Two dimentions, set • The Grid – Two dimentions, set

number of elements

• HiScores? – Save a name and a

number, sort from highest to

lowest

What Data Structures Can What Data Structures Can

Make Our Code Better?Make Our Code Better?

• Inefficient searching for

random spaces for hearts…

• *REALLY* inefficient method of

checking if the game has been checking if the game has been

won…

• Can you guess which DS’s we can

use..?

Overview of Useful Data Overview of Useful Data

StructuresStructures
• Array – Useful for set amounts of data with

random-access

• Vector – Useful for (virtually) unlimited amounts
of data with random-access

• Stack – Unlimited last in, first out data
structure

• Queue – Unlimited first in, first out data
structure

• Heap – Sorted list with efficient greatest/lowest-
value-out functionality

• TreeSet – Alternative implementation of a heap
with slightly less efficiency, but increased
functionality

• HashSet – Extremely fast storage and access—but
inefficient for sorting

• Does that help?

Drum Roll Please…Drum Roll Please…

• Queue – For the snake, that one’s a no
brainer!

• 2D Array – Perfect for a grid with easy
coordinates

• Heap – Excellent for efficiently sorting
and storing high scoresand storing high scores

• 1D Array/Vector/HashSet/Stack – Doesn’t
really matter which, but a collection of
readily randomized, currently unoccupied
(blank) coordinates would up the
efficiency of the code.
• i.e. if(choices.isEmpty()) gameWon();

• As opposed to the garbage in Slide 8…

• Or: setRandomHeart(choices.peek().getX(),
choices.poll().getY());
• As opposed to the garbage in Slide 6…

Click Here!Click Here!

