3 . . 40
Prof. Rhys Price Jones

Final Project

Binary-tree visualization of the Yahoo
search engine bot crawling the experimental
website.

ntation

pular minigame where

i1s to “eat” randomly

g objects and grow without

ng walls or other elements of
Snake.

Implemented as
a grid of icons
whose values
can be “blank”,
“snake”, or
“heart”

and “‘heart” icon
snake” icon shows and
grows’ by one unit.

ake” icon and another
e” l1con overlap, game over.

eart” icons can only appear on
currently “blank” icons.

« If the a “"snake” icon wants to be
drawn off the grid, game over.

e Tf all i1cons are “snake” icons
(unlikely!) game won.

heart” icon
e” i1con shows and
s’ by one unit.

== heart)

= snake;

else
move () ;

and another
erlap, game

== snake)

gameOver () ;

}

(random(x) , random(y)); // recursive!

grid([x] [y] = heart;

Rather tedious, isn’t it? What happens if there
aren’t a lot of blank tiles left??

y<0 || x>SIZE || y>SIZE)

likely!) game won.

gameWon = false;
keepSearching = false;

else y++;

}
xX++;

e This looks particularly nasty! Don’t even read it!!

Basic Rules
(In pseudo-java)

« As Rhys would say..

// the rest is GUI stuff.

e “You can do this 1
sleep.”

e .That’s how
labs and
well re

What Data Structures Do We
Need???

- The Snake - elements get added
to the front, removed from the
back.

e The Grid - Two dimentions, set
number of elements

e HiScores? - Save a name and a
number, sort from highest to
lowest

What Data Structures Can
Make Our Code Better?

« Tnefficient searching for
random spaces for hearts..

« *REALLY* 1inefficient method of
checking 1f the game has been
won...

« Can you guess which DS’s we can
use..?

Overview of Useful Data
Structures

Array — Useful for set amounts of data with
random-access

Vector - Useful for (virtually) unlimited amounts
of data with random-access

Stack - Unlimited last in, first out data
structure

Queue - Unlimited first in, first out data
structure

Heap - Sorted list with efficient greatest/lowest-
value-out functionality

TreeSet - Alternative implementation of a heap
with slightly less efficiency, but increased
functionality

HashSet - Extremely fast storage and access—but
inefficient for sorting

Does that help?

Drum Roll Please.. ,/

Queue - For the snake, that one’s(
brainer!

2D Array - Perfect for a grid with easy
coordinates

Heap — Excellent for efficiently sortiﬁa
and storing high scores

1D Array/Vector/HashSet/Stack — Doesn’t
really matter which, but a collection of
readily randomized, currently unoccupied
(blank) coordinates would up the
efficiency of the code.
i.e. if(choices.isEmpty()) gameWon () ;
« As opposed to the garbage in Slide 8..

Or: setRandomHeart (choices.peek () .getX(),
choices.poll () .get¥()) ;

« As opposed to the garbage in Slide 6..

Wanna try i1t out?

