Page 12 of 112

 NUMPAGES 1

 AUTHOR talkingh
Page 12
2/23/2005

 PAGE 12

 NUMPAGES 1
Talking Hands – A Virtual Reality Project

Talking Hands

A Virtual Reality Project
Supervised by Netsol Int’l (pvt) Ltd
Final Report
Internal Supervisor: Prof. Dr. Anjum P. Saleemi (NUCES)
External Supervisor: Mr. Khawaja Hammad (Netsol)
Group Members:

Syed Atif Mehdi

674

Adeeb Ashraf

629

Yasir Niaz Khan

677

FAST - National University of Computer & Emerging Sciences,
Lahore campus.

Table of Contents

2INTRODUCTION

2Problem Statement

2Objective

2Goal

2BACKGROUND

2Previous Studies

2Gesture Recognition

4Interdisciplinary Research Project - Gesture Recognition with SensorGloves

7GloveGRASP Gesture Recognition

7Introduction

7Networking Functions

8Choosing Your Gesture Set

8GRASPmodel

8Extending the Application

9Previous Implementations

9Glove-TalkII: An Adaptive Gesture-to-Formant Interface

9ABSTRACT

9SUMMARY

10A Linguistic Approach to the Recognition of Hand Gestures

10ABSTRACT

10Glove Device

11Discussion

11CONCLUSIONS

12FUNCTIONAL REQUIRMENTS

12Scope

12Overview

13Constraints

13Assumptions

INTRODUCTION

Problem Statement
Disabled persons are an important part of our society. With the advent of science and technology, efforts are being made to develop certain systems that make them feel and behave normally. Especially dumb people face problems to communicate with normal people while expressing their feelings to them. So requirement of a system that solves this problem for them increases manifolds. As natural language of dumb people is hand language, development of a system, which translates their hand gestures into text and voice, is an ideal way to facilitate them to communicate with normal people. For this purpose a special type of glove is used, known as data glove. It is connected to the computer. This glove captures the sensors’ values from hand, which are then provided at the input of a neural network, which gives the corresponding gesture. This sequence of gestures is then converted into text and voice by our software.

Objective

The motivation behind this project is to provide dumb persons with a system that makes their communication with normal people easy for them. The sole objective of this software system is to convert the hand gestures of American Sign Language (ASL) into text and voice.

Goal

The goal of the system is to use it at public places like airports, railway stations and counters of banks, hotels etc. where there is communication between different people. Dumb people can easily communicate with normal people without any problem using this system. This system will help normal people to understand the language of dumb people.

Proposed hardware device.

BACKGROUND

Previous Studies

Gesture Recognition

The goal of gesture understanding research is to redefine the way people interact with computers. By providing computers with the ability to understand gestures, speech and facial expressions, we can bring human-computer interaction closer to human-human interaction. If a gesture interface is to be popularly accepted, we must create a system that is intuitive and unobtrusive.

To best design an appropriate gesture vocabulary we must exploit all a priori known information. Issues such as recognition accuracy, which tends to be gesture specific, along with gesture paradigms imposed by society (e.g., pointing is done with the index finger) must be considered. Furthermore, we must be able to recognize the context in which a gesture is being performed allowing us to assign dynamic meanings to the hand motions. Therefore, our current efforts focus on developing visual computing technology that will yield gesture understanding given a specific context and application.

[image: image1.png]R VLMK &

Figure 1: An example of a captured sequence of hands used to control a remote robot vehicle. The labels indicate the system's current interpretation of what gesture is occurring.

To date, we have used gestures to interact remotely with a robot vehicle. A sub sample of the gesture input stream, given in figure 1, provided the vehicle with the commands to accelerate, turn left, straighten out, stop, and finally go into reverse. By providing the operator with graphical feedback about the state of the vehicle and video information captured by cameras mounted on the robot, one can control the vehicle even when it is out of line of sight. This is an example of tele-presence. The process flow of the gesture controlled robot in given in figure 2.

[image: image2.png]

Figure 2: The processing of the gesture data begins with capturing the gesture data via a camera. Once the new information has been interpreted the appropriate command is sent to the robot.

Tele-presence is only one of several applications illustrated in figure 3 that can benefit from the incorporation of a gesture input system. Gesture enhanced CAD would enable the designer to describe 3D shapes with the same techniques a sculptor uses to mold clay, or to assemble components with actual grab and place motions. In addition, we are investigating the issues involved in the interpretation of natural language. A specific example of this, the understanding of American Sign Language, is the center of much gesture related research. In summary, our work will improve many existing applications and make possible previously unobtainable results.

[image: image3.png]Applications ol Gesture lnpuls

Figure 3: The possible uses of a gesture interface include tele-robotics, CAD input, scientific visualization and sign language interpretation.

Interdisciplinary Research Project - Gesture Recognition with SensorGloves

The Interdisciplinary Research Project (IFP) "Gesture Recognition with SensorGloves" was launched in August 1994 and is funded by the Technical University of Berlin.

Three university departments are involved:

The computer science department (Real-Time Systems and Robotics Research Group, Prof. Dr.-Ing. Günter Hommel),

The department of electrical engineering (Microperipherics and Microactuators Research Group, Prof. Dr.-Ing. Ernst Obermeier). The department of communications- and history sciences (department of linguistics, Research Center for Semiotics, Prof. Dr. Phil. Roland Posner).

Research is done on sensor-based recognition of human gesture codes with particular attention to gestures produced with one's hands and arms. For this, hand movements have to be measured as accurately and completely as possible: The hands' position and orientation in 3-space, their position and orientation with respect to the human body, finger flexion and bending as well as the pressure distribution on the palms during grasping.

Measurements are conducted with several different sensors: An ultrasonic ranging system developed as part of a diploma thesis at the Real-Time Systems and Robotics Research Group measures the hands' absolute spatial position and orientation; in addition, finger flexion and grasp pressure distribution are captured by the TUB-SensorGlove, which was developed as part of a student's pre-diploma thesis at the same institute.

The patented SensorGlove was exhibited at the Hanover Industrial fair in 1993. Its variety of sensors and their high accuracy render it superior to many commercially available systems. An improved prototype was presented at the Hanover CeBIT'95. Twelve position sensors fastened on the glove's back measure the user's finger flexion with a resolution of approximately 1 to 1/3 of a degree. Twelve pressure sensors on the glove's palm measure forces occurring during object grasping.

Sensors currently used on the project will be supplemented by new ones that are being developed by the microsensorics research group. During the first phase of the project, the group will concentrate on developing acceleration sensors for the glove. Accelerometers have a much higher resolution measuring fast movements than ultrasonics. The glove's path in 3-space can be reconstructed mathematically if simultaneous acceleration measurements are made for all three dimensions. This calls for the development of new micro mechanical devices, as up to now, sensors capable of triaxial, on-chip acceleration measurements are not available.

It is very important to have a close working relationship between the microsensorics and the computer science research group, as sensor specifications, signal processing issues and sensor characteristics have to be thoroughly discussed. Only this ensures the developed sensors' correct and successful operation on the glove.

The semiotics research group will evaluate various gestural codes concerning their suitability for recognition with the SensorGlove. Mainly two types of gestures will be reviewed: Common, "everyday" gestures and specialist gestures. An important part of the work will be the compilation of a dictionary of Berlin emblems. This research is modelled on the examples of Ekman, Johnson, Sparhawk etc. Furthermore, some small repertoires of specialist gestures developed in or for working environments will be added. Examples are gestures for the control of cranes and other machinery utilized on building sites and "studio gestures" used by a radio producer to communicate with the announcer in his sound-proof radio cabin.

The semiotics research group systematically records gestural codes, after which they are transcribed and compiled into a dictionary for further use - such as their simulation and recognition based on the SensorGlove as input device. Gesture data is processed with the aid of modern video equipment including computer assisted image analysis. The collected material is made available to the project partners in the form of a CD-ROM image database.

The computer science research group concentrates on gesture recognition and on the further development of the TUB-SensorGlove. For the latter, the micosensorics group's newly developed accelerometers have to be integrated on the glove and suitable interfaces to existing hardware must be created. Then, the new prototype must be tested and calibrated. Only thereafter it is possible to obtain reliable data for gesture recognition applications.

Gesture data can be analyzed with many different pattern recognition methods and algorithms. Among other things, classical statistical methods, neural networks, genetic algorithms and fuzzy methods will be evaluated for gesture recognition. Partly, existing methods may be adapted to the new problem, partly; completely new methods must be developed. As data analysis is very time-consuming, a fast workstation is essential for real-time gesture recognition (in the project, a DEC Alpha is used).

Gesture material for automatic recognition is collected in close cooperation with the semiotics group: It is important to find a suitable language or notation for the symbolic representation of gestures in a computer with which both video image transcription and further symbolic gesture processing is possible. In a first step, gestures that are to be automatically recognized by the computer later on are selected by examining the semiotics group's material. Afterwards, test persons can enter the selected material via a SensorGlove into the computer in the framework of a specific application.

There are many applications for sensor-based gesture recognition: From navigation commands (catchword "cyberspace"), applications in medicine and industry (eg. precise telecontrol of surgical robots, telecontrol of robots and machinery in outer space or at other locations too dangerous for humans to access), right up to enabling applications such as communication enhancements for the deaf-mute (inter-communication between themselves and communication with hearing persons) - the list of examples is endless.

In the course of the project, a complete gesture recognition system will be built, consisting - amongst others - of modules for gesture input, gesture preprocessing and -analysis as well as of an integrated gesture database (containing multiple gesture dictionaries), graphics display routines for gesture data, and control modules for a robot and other devices. For demonstration purposes, one of the project's goals is the control of a robot and of a computer-simulated crane with simple gesture commands.

The complete automatic recognition of human sign languages is a long-term research goal, small parts of which we hope to achieve in this project. If feasible, it would allow the deaf-mute to communicate with their environment in a much simpler and more natural way. For example, a "gesture telephone" could then be realized transmitting gesture data (captured by two SensorGloves and some other devices) via an ordinary telephone line to a computer displaying the data on its screen - either as written text or as a graphical image of moving body limbs (the videophone is not a viable alternative, as its transmission bandwith and -rate are as yet far too low for the highly detailed and fast hand movements of a signing person). Instead of an optical display one could also imagine a direct outlet for speech, thus rendering the computer a translator between the hearing and the deaf-mute.

GloveGRASP Gesture Recognition

Introduction

GloveGRASP is a set of C functions and C++ class libraries that will allow application developers to integrate the 5DT 5th Glove '95 into their SGI applications. The 5th Glove '95 is a low cost glove input device which measures finger flexure and the roll and pitch of the users hand. The affordability and accuracy of the 5th Glove make it an ideal alternative input device for many virtual reality and 3D graphics applications.

The GloveGRASP package is an essential toolkit for programmers wanting to add 5th Glove support to their applications. GloveGRASP has the following components:

A Reliable SGI Device Driver

C++ Libraries for Gesture Training

C++ Libraries for Gesture Recognition

TCP/IP Networking Functions for Client Server Applications

There is also sample application source code for:

Networked Gesture Input

A Stand Alone Device Driver

A Gesture Based Modeling Program

The low level device driver and networking libraries are written in C to ensure that they can be incorporated easily into existing applications while the gesture training and recognition functions are written in C++. The object libraries and sample source code have been successfully tested with IRIX 5.2 and 6.2.

This manual describes the GloveGRASP software in detail with example source code showing how to use each of the functions. This manual is available in html, postscript and Word6.0 format in the GloveGRASP distribution.

Networking Functions

GloveGRASP provides TCP/IP networking functions that can be used to build client/server applications. This allows users to use one machine for gesture recognition and run their application on another.

In order for the user to run a network application the TCP/IP socket must be opened first. Sockets can be opened in either read or write mode according to whether the user wants to retrieve data from them or send data to them. Once a socket is opened data can be written to it and read from it. The connection can be closed. The maximum length of a string that can be read from or written to a socket is defined constant.

Choosing Your Gesture Set

The set of gestures chosen largely determines the accuracy of the gesture recognition. Several factors should be considered when choosing gestures for your application, including the limitations of the hardware, the difficulty of forming certain gestures, and the most natural gestures for your particular application. For example in a modeling application a fist gesture would be a natural choice for picking objects up - it is easily detected by the hardware, a natural action and simple to remember.

For applications where gestures are going to be used as the primary command input, the developer should try and use context switching as much as possible to minimize the number of gestures that a user must remember. The average user will have difficulty in remembering more than six gestures, however these could be translated into dozens of commands by using different contexts.

It is also wise to use gestures that are markedly different from one another, for example gestures that bend different fingers such as a fist and pointing hand. Not only are these gestures easier to remember, but also almost impossible for the recognition system to misinterpret.

GRASPmodel

GRASPmodel is a more complex OpenGL-based modelling application that shows how gesture recognition can be used in practice. GRASPmodel allows the user to use two-handed input to create simple 3D scenes from a set of four primitives (cone, box, sphere, cylinder). The right hand is used for gestural commands while the left is used for 3D cursor control and specification of command parameters. Two separate interaction contexts are defined so although there are almost a dozen available commands the user needs only remember six gestures.

Extending the Application

GRASPmodel is a very simple application that can be extended in numerous ways. There are several fundamental functions missing, namely the ability to save or read in files, to scale the children of objects when the parents are scaled, and to change the users viewpoint. Other improvements could include the use of right and left handed gloves together for gestural input, more intuitive interface widgets and better collision detection and object selection. Six gestures may be too many for novice users to remember, and by adding extra contexts the size of the gesture set could be reduced while retaining the same command set. Despite these limitations, GRASPmodel shows how intuitive gestural input can be for 3D interactive graphics applications.

Full source code for GRASPmodel is included so the programmer can extend the application in any way they desire. This code and any applications based on it can be freely distributed with no licensing fees.

Previous Implementations

Glove-TalkII: An Adaptive Gesture-to-Formant Interface

ABSTRACT

Glove-TalkII is a system that translates hand gestures to speech through an adaptive interface. Hand gestures are mapped continuously to 10 control parameters of a parallel formant speech synthesizer. The mapping allows the hand to act as an artificial vocal tract that produces speech in real time. This gives an unlimited vocabulary, multiple languages in addition to direct control of fundamental frequency and volume. Currently, the best version of Glove-TalkII uses several input devices (including a Cyberglove, a ContactGlove, a polhemus sensor, and a foot-pedal), a parallel formant speech synthesizer and 3 neural networks. The gesture-to-speech task is divided into vowel and consonant production by using a gating network to weight the outputs of a vowel and a consonant neural network. The gating network and the consonant network are trained with examples from the user. The vowel network implements a fixed, user-defined relationship between hand-position and vowel sound and does not require any training examples from the user. Volume, fundamental frequency and stop consonants are produced with a fixed mapping from the input devices. One subject has trained for about 100 hours to speak intelligibly with Glove-TalkII. He passed through eight distinct stages while learning to speak. He speaks slowly with speech quality similar to a text-to-speech synthesizer but with far more natural- sounding pitch variations.

SUMMARY

The initial mapping for Glove-TalkII is loosely based on an articulatory model of speech. An open configuration of the hand corresponds to an unobstructed vocal tract, which in turn generates vowel sounds. Different vowel sounds are produced by movements of the hand in a horizontal X-Y plane that corresponds to movements of the first two formants that are roughly related to tongue position. Consonants other than stops are produced by closing the index, middle, or ring fingers or flexing the thumb, representing constrictions in the vocal tract. Stop consonants are produced by pressing keys on the keyboard. F0 is controlled by hand height and speaking intensity by foot pedal depression.

Glove-TalkII learns the user's interpretation of this initial mapping. The V/C network and the consonant network learn the mapping from examples generated by the user during phases of training. The vowel network is trained on examples computed from the user-defined mapping between hand-position and vowels. The F0 and volume mappings are non-adaptive.

One subject was trained to use Glove-TalkII. After 100 hours of practice he is able to speak intelligibly. The subject passed through 8 distinct stages while he learned to speak. His speech is fairly slow (1.5~to~3 times slower than normal speech) and somewhat robotic. It sounds similar to speech produced with a text-to-speech synthesizer but has a more natural intonation contour that greatly improves the intelligibility and naturalness of the speech. Reading novel passages intelligibly usually requires several attempts, especially with polysyllabic words. Intelligible spontaneous speech is possible but difficult.

A Linguistic Approach to the Recognition of Hand Gestures

ABSTRACT

Using an instrumented glove it becomes possible for a user to employ gestures to interact with a computer. Recognition of gestures using a glove is more complex than with a device such as a pen or mouse, since the movements of the fingers need to be considered as well as the path of the hand. (Gestures are distinguished from postures by their inclusion of a component of hand movement relative to the body, while postures are purely static. Hence postures are a sub-set of gestures.)

Several techniques for performing the gesture recognition exist, including template matching, discrimination nets, geometric feature recognition and neural networks. In contrast this paper describes the implementation of a system that recognizes hand gestures by matching them with a grammar specified by tokens and productions. This technique may easily be extended by using the tokens to specify new gestures, and hence enlarge the grammar. The grammar was derived from an existing taxonomy of hand positions, extended to include components of movement and thus represent gestures rather than postures.

During implementation emphasis was place on low computational and financial cost. A low-cost glove with ultrasonic position and orientation detection was used along with a modest PC-compatible machine.

The glove used has limited the performance of the system; some postures cannot be represented and the reliability of position and orientation data requires improvement. Current work involves the investigation of techniques for filtering this data in order to make movement recognition more reliable.

The grammar was devised by taking an existing taxonomy of hand postures and extending it to include components of movement.

Glove Device

In order to test the system a hand-tracking mechanism was required. The device used in this study was the Mattel PowerGlove, originally intended for use with video game consoles but often finding use in the research lab. This device has a very low cost compared to other gloves, but the quality of the data it provides is often less than ideal. It was considered to be a useful proving ground for the linguistic recogniser, since any scheme that works with the PowerGlove will almost certainly work well with any other glove device.

The PowerGlove represents finger flexion as four 2-bit values, one for each of the thumb, index, middle and ring fingers (no data are provided regarding the flexion of the little finger). An ultrasonic position and orientation measurement system is used to produce data for the x, y and z position of the glove as well as "roll" (ie. rotation of the wrist about the z-axis).

Discussion

The low recognition rates can be attributed to two major causes. Firstly, motion-related errors arose due to a naïve movement detection scheme that expected motion to be in a straight line parallel to the x, y or z-axis. This is not exactly what happens since the forearm pivots about the elbow, causing the path of the hand to be an arc rather than a straight line.

The second cause of errors was the lack of resolution of finger flexion data. Representing the state of the finger with only 2 bits leaves practically no room at all for noise rejection. Cross-talk between finger sensors arises through the fabric which covers flexed fingers pulling on the sensors of other, non-flexed fingers. Perhaps the major loss is in tracking thumb movement: the human thumb has a total of 5 degrees of freedom – 1 each for the interphalangeal (IP) and metacarpophalangeal (MCP) joints and 3 for the trapeziometacarpal joint at the base – while the PowerGlove simply combines the flexion of the IP and MCP joints to give one value. This over-simplified measurement contributed to several of the problems we encountered, for example confusing the pick and point gestures due to their start postures differing only in the thumb position (TIF versus IF).

CONCLUSIONS

Design of a hand-tracking device must pay careful attention to the workings of the thumb if gesture recognition using the device is to be successful. A resolution of 2 bits per finger is insufficient, since it makes no provision for a noise margin or for hysteresis. Other commercially available glove devices provide between 8 and 10 bits of flexion data per joint or finger.

In terms of tracking the position and orientation, ultrasonic systems have varying reliability depending on the acoustic qualities of their environment. Glitches and reflections mean that the raw data is unreliable.

Despite the obvious limitations of the device used and the relatively low recognition rates reported here, we are encouraged that the linguistic approach is viable and could prove useful, especially in a situation where it is desirable or necessary to add new gestures on-the-fly (new gestures can easily be defined in terms of the posture set and other gestures). Grammatical techniques are well understood in computer science, and this approach allows a formal analysis of the gestures to be made, as well as enabling the use of established tools such as parser generators.

Current work is concentrating on filtering the position and orientation data to remove noise, considering temporal coherency, and on providing greater resolution of finger flexion data.

FUNCTIONAL REQUIRMENTS

Introduction

Purpose

The purpose of the Talking Hands application is to facilitate a mute person to communicate with the normal person.

Scope

This application can be used at public places like airports, railway stations and counters of banks, hotels etc. where there is communication between different people. In addition to this a mute person can deliver a lecture using it.

Overview

The mute person wearing a data glove performs gesture. Sensors (7 in number) attached with the data glove sense the gesture. The values of the sensors are available to the application. The application then provides these 7 values to the neural network. Neural Network guesses the gesture performed by the mute person based on these sensor values. The corresponding gesture then appears on the screen. The sequence of gestures constitutes a word. These words and phrases then can be converted into voice by the application.

Overall Description

Product Functions
The main functionalities of the application are as follows:

· Capturing the sensor information.

· Neural Network.

· Text To Speech component.

The library provided with the data glove is used to get the sensor values. There are there types of sensor values namely Raw, Scaled and Calibrated. Raw values have a fixed range for each sensor that is 0 to 4096. Scaled values have a range from 0 to 1 for each sensor based on the data glove’s maximum and minimum value. Calibrated values have a range according to the calibration of a particular user. The application operates on scaled values.

Supervised Back Propagation neural network is used in the application. It consists of three layers namely input, hidden and output. The number of neurons in these three layers is 7, 54 and 26 respectively. The scaled sensor values are provided at the input. The maximum of the output values is obtained and then compared with 0.5. If this value is greater than 0.5 its corresponding gesture is selected, otherwise the gesture is ignored.

Text To Speech component is used to convert the strings of gestures (i.e. words and phrases of English language) into voice.

User Characteristics

There are two users of Talking Hands application:

· Mute Person

· Receptionist

Mute person must know American Sign Language alphabets.

Receptionist must know how to operate the Talking Hands application.

Constraints

The constraints of the Talking Hands application are:

· Only American Sign Language can be used.
· A subset of American Sign Language is available with the application i.e. gestures for 24 English alphabets, excluding j and z, (which have dynamic gestures) and 2 gestures for space character and full stop.
· Only one 5-sensor data glove of 5DT can be used with the application at a time.
· The mute person must keep a gesture for one second.

Assumptions

The assumptions of Talking Hand application are:

· The subset of American Sign Language gestures will not change.

· The mute person will perform only those gestures that are defined in our subset.

SYSTEM MODEL

Analysis of Talking Hands Application

Talking Hands Application consists of two actors and four use cases.

Actors

An actor is the external entity that interacts with the system. The two actors of the application are:

1. DataGlove

2. Receptionist

DataGlove

A DataGlove is a device that provides input to the system.

Receptionist

A Receptionist is a person that operates the system.

Uses Cases

A use case is a sequence of transactions performed by a system that yield a measurable result of values for a particular actor. The four use cases of the application are:

1. Session

2. Neural Network

3. Text To Speech

4. Retrain Neural Network

Session

This use case is started by the Receptionist. It provides the capabilities of New, Save, Save As and Close Session.

Neural Network

This use case is used by the Session to recognize the input from the DataGlove.

Text To Speech

This use case is used by the Session to convert Text into Voice.

Retrain Neural Network

This use case is started by the Receptionist. It provides the capabilities of retraining the Neural Network.

[image: image4.wmf]Text to Speech

<<Use Case>>

Neural Network

<<Use Case>>

DataGlove

Retrain Neural Network

<<Use Case>>

Session

<<Use Case>>

<<Uses>>

<<Uses>>

+Provides input

Receptionist

+Initiates

Scenarios

Different scenarios corresponding to the use cases are as follows:

Working of Session

[image: image5.wmf] : Session

Handler

 : SessionInfo

 : Session

NNControl

 : Neural

Network

 : Session

TTSControl

 : TextTo

Speech

 : DataGloveInfo

1: GetSensorScaledValues(float *)

2: TakeSensorValues(float *)

3: CallNeuralNetwork(float)

4: FeedForward(float *)

5: TextForSpeech(String)

6: SpeakTheText(LPSTR)

In this scenario the session receives input from the DataGlove. It then passes this input to the Neural Network use case to recognize it. Then it gives the output of the Neural Network use case to the Text-to-Speech use case to generate voice.

Getting values for retraining

[image: image6.wmf] : Retrain

NNHandler

 : DataGloveInfo

 : Samples

1: GetSensorScaledValues(float *)

2: SetSampleInput(const int, const float *)

3: WriteToFile(const char *)

In this scenario the Receptionist collects the gesture readings from the DataGlove.

Retraining

[image: image7.wmf] : Retrain

NNHandler

 : RetrainNeural

Network

1: StartTraining(char)

2: StopTraining()

In this scenario the Receptionist retrains the Neural Network on the sample data stored in a file.

Design of Talking Hands Application

The design of Talking Hands Application consists of ten classes. The detail of the classes is as follows:

SessionHandler

[image: image8.wmf]SessionHandler

<<Boundary>>

$ m_DG_DataGloveObject : DataGloveInfo

m_CSI_SessionInformation : SessionInfo

SetUserDataString(CS_DataString : String) : void

GetDataGloveInformation(CS_DGInfo : String &) : void

GetUserDataString() : String

DisconnectDataGlove() : void

ConnectDataGlove(chr_PortName : char *) : bool

TakeDataGloveValues() : bool

SessionHandler()

~SessionHandler() : virtual

This class handles the SessionInfo class. It is data member of Document class of the MFC MDI Application.

Private Attributes:

DataGloveInfo m_DG_DataGloveObject

This is a static data member because only one object of DataGloveInfo is needed to communicate with the Data Glove and different Sessions.

SessionInfo m_CSI_SessionInformation

This data member represents a session. Multiple SessionInfo Objects are created for different Sessions.

Public Operations:

void SetUserDataString (String CS_DataString)

This function passes the string to the SessionInfo object.

void GetDataGloveInformation (String & CS_DGInfo)

This function retrieves the Data Glove information from the DataGloveInfo object.

String GetUserDataString ()

This function retrieves the string from the SessionInfo object.

void DisconnectDataGlove ()

This function disconnects the Data Glove.

bool ConnectDataGlove (char * chr_PortName)

This function connects the Data Glove by passing the port name to the DataGloveInfo object and bool is returned to know whether Data Glove is connected or not.

bool TakeDataGloveValues ()

This function takes the sensor values from the DataGloveInfo object and passes to the SessionInfo object.

SessionHandler ()

Default Constructor.

It is a do nothing constructor.

virtual ~SessionHandler ()

Virtual Destructor.

It is a do nothing destructor.

SessionInfo

[image: image9.wmf]SessionInfo

m_CSNNC_SNNController : SessionNNControl

m_CSTTSC_STTSController : SessionTTSControl

m_CS_DataString : String

$ m_bol_IsTTSEngine : bool

SetString(CS_DataString : String) : void

GetString() : String

TakeSensorValues(flt_ptr_SensorValues : float *) : bool

SessionInfo()

~SessionInfo() : virtual

<<Entity>>

This class keeps the information about the Session.

Private Attributes:

SessionNNControl m_CSNNC_SNNController

This data member controls the Neural Network.

SessionTTSControl m_CSTTSC_STTSController

This data member controls the TextToSpeech component.

String m_CS_DataString

This data member contains the text of the Session.

bool m_bol_IsTTSEngine

This data member is a static flag for TextToSpeech object.

Public Operations:

void SetString (String CS_DataString)

This function gets the string from SessionHandler for storing purpose.

String GetString ()

This function passes the string to the SessionHandler for loading purpose.

bool TakeSensorValues (float * flt_ptr_SensorValues)

This function takes the sensor values from SessionHandler.

SessionInfo ()

Default Constructor.

virtual ~SessionInfo ()

Virtual Destructor.

DataGloveInfo

[image: image10.wmf]DataGloveInfo

m_DataGlove_ptr_fdGlove_fdGlovePtr : fdGlove *

m_DataGlove_sPortName[5] : char

m_DataGlove_sGloveHand[2][50] : char

m_DataGlove_sGloveType[5][50] : char

m_DataGlove_nNoOfSensors : int

m_DataGlove_us_UpperCalValues : unsigned short *

m_DataGlove_us_LowerCalValues : unsigned short *

m_DataGlove_sDataGloveInfo[33] : unsigned char

m_DataGlove_sDataGloveDriverInfo[33] : unsigned char

DataGloveInfo()

DataGloveInfo(sPortName : const char *, bStatus : Boolean &)

Connect(sPortName : const char *) : Boolean

DataGloveInfo(sDataGloveHand : char *, sDataGloveType : char *, nNoOfSensors : int &) : void

GetDataGloveDriverInfo(sDriverInfo : unsigned char *) : void

GetDataGloveInfoBlock(sGloveBlockInfo : unsigned char *) : void

ReSetCalibration() : void

Calibrate() : void

GetSensorRawValues(SensorsValues : unsigned short *) : void

GetSensorScaledValues(SensorsValues : float *) : void

DisConnect() : Boolean

~DataGlove() : virtual

InitializeDataMembers() : void

This class keeps information about Data Glove.

Private Attributes:

fdGlove * m_DataGlove_ptr_fdGlove_fdGlovePtr

This data member is pointer to fdGlove type.

char m_DataGlove_sPortName[5]

This data member represent Port Name that can be "COM1" to "COM8".

char m_DataGlove_sGloveHand[2][50]

This data member have strings about the data glove's hand, only two hands are possible.

char m_DataGlove_sGloveType[5][50]

This data member have strings about the type of data glove, 5 types of data glove are there.

int m_DataGlove_nNoOfSensors

This data member would be the number of sensors, the value returned by the function of data glove.

unsigned short * m_DataGlove_us_UpperCalValues

This data member contains the upper limit of the calibration of the sensors.

unsigned short * m_DataGlove_us_LowerCalValues

This data member contains the lower limit of the calibration of the sensors.

unsigned char m_DataGlove_sDataGloveInfo[33]

This data member contains the information data block of the Data Glove.

unsigned char m_DataGlove_sDataGloveDriverInfo[33]

This data member contains the information of the driver.

Public Operations:

DataGloveInfo ()

Default constructor

It might not be needed, as we have to initialize the pointers.

DataGloveInfo (const char * sPortName, Boolean & bStatus)

Argument constructor

Connect to the given port and returns the status. This constructor will call the Connect(sPortName)

bool Connect (const char * sPortName)

This function connects the DataGlove to the given port.

void DataGloveInformation (char * sDataGloveHand, char * sDataGloveType, int & nNoOfSensors)

This function retrieves the information about Data Glove. i.e.

1. Hand

2. Type

3. Number of sensors

void GetDataGloveDriverInfo (unsigned char * sDriverInfo)

This function returns the glove driver information.

void GetDataGloveInfoBlock (unsigned char * sGloveBlockInfo)

This function returns the glove info as in the information block of the Data Glove.

void ReSetCalibration ()

This function resets the calibration to its original values as set by the EEPROM in Data Glove.

void Calibrate ()

This function calibrates the Data Glove.

void GetSensorRawValues (unsigned short * SensorsValues)

This function returns the raw sensor values.

void GetSensorScaledValues (float * SensorsValues)

This function returns the scaled sensor values.

bool DisConnect ()

This function disconnects the DataGlove.

virtual ~DataGlove ()

Virtual Destructor.

It will call the DisConnect() if Data Glove is still connected.

Private Operations:

void InitializeDataMembers ()

This data member will initialize the data members.

SessionNNControl

[image: image11.wmf]SessionNNControl

$ m_CNN_NNObject : NeuralNetwork

m_int_Count : int

m_CS_Alphabet : String

CallNeuralNetwork(flt_arr_SensorValues[7] : float) : String

SessionNNControl()

~SessionNNControl() : virtual

FindAlphabet(int_DataNo : int) : String

<<Control>>

This class implements the logic for the recognition of gestures.

Private Attributes:

NeuralNetwork m_CNN_NNObject

This data member represents the Neural Network.

int m_int_Count

This data member is used to keep track of the number of times a particular gesture performed within a second.

String m_CS_Alphabet

This data member stores the alphabet retured by the FindAlphabet function.

Public Operations:

String CallNeuralNetwork (float flt_arr_SensorValues[7])

This function calls the Neural Network to recognize the gesture performed.

SessionNNControl ()

Default Constructor.

virtual ~SessionNNControl ()

Virtual Destructor.

Private Operations:

String FindAlphabet (int int_DataNo)

This function finds the alphabet corresponding to the gesture recognized by the Neural Network.

SessionTTSControl

[image: image12.wmf]SessionTTSControl

$ m_TTS_TTSObject : TextToSpeech

$ m_bol_IsSpeechEngine : bool

m_CS_DataString : String

TextForSpeech(CS_AlphabetToSpeak : String) : bool

Initialize(bol_StatusTTS : bool &) : void

ClearTTSString() : void

SessionTTSControl()

~SessionTTSControl() : virtual

<<Control>>

This class implements the logic for Text to Speak.

Private Attributes:

TextToSpeech m_TTS_TTSObject

This data member represents the Text To Speech component. It is static because there should be only one object for the TextToSpeech.

bool m_bol_IsSpeechEngine

This data member is a flag to indicate that a speech engine found.

String m_CS_DataString

This data member is a data string, which saves the data to be spoken.

Public Operations:

bool TextForSpeech (String CS_AlphabetToSpeak)

This function buffers the coming characters from the session and send them to speak when '.' arrives.

void Initialize (bool & bol_StatusTTS)

void ClearTTSString ()

This function clears the text in the buffer.

SessionTTSControl ()

Default Constructor.

virtual ~SessionTTSControl ()

Virtual Destructor.

NeuralNetwork

[image: image13.wmf]NeuralNetwork

m_NB_network : NeuralB *

NeuralNetwork()

Initialize() : void

FeedForward(ptr_flt_values : float *) : float *

~NeuralNetwork() : virtual

GetInputOutput(values : float *) : void

<<Entity>>

This class implements the Neural Network.

Private Attributes:

NeuralB * m_NB_network

This data member is pointer to NeuralB class. This class internally implements the Neural Network.

Public Operations:

NeuralNetwork ()

Default constructor

void Initialize ()

This function reads weights from file and initializes the data members.

float * FeedForward (float * ptr_flt_values)

This function provides the output against the input values, this output then can be compaired with the desired output.

virtual ~NeuralNetwork ()

Virtual Destructor.

void GetInputOutput (float * values)

This function gets inputs and outputs of neural network against a specific gesture.

TextToSpeech

[image: image14.wmf]TextToSpeech

m_pIAMM : LPUNKNOWN

m_TTSModeInfo : TTSMODEINFO

m_pIBufNotifySink : PCBufNotify

m_pITTSCentral : PITTSCENTRAL

TextToSpeech()

~TextToSpeech() : virtual

FindAndSelectEngine() : bool

SpeakTheText(lpstrTextBuffer : LPSTR) : bool

<<Entity>>

This class implements the Text to Speech component.

Private Attributes:

LPUNKNOWN m_pIAMM

TTSMODEINFO m_TTSModeInfo

PCBufNotify m_pIBufNotifySink

PITTSCENTRAL m_pITTSCentral

Public Operations:

TextToSpeech ()

Default Constructor.

virtual ~TextToSpeech ()

Virtual Destructor.

bool FindAndSelectEngine ()

This function finds and initializes the text to speech engine.

bool SpeakTheText (LPSTR lpstrTextBuffer)

This function converts the text into voice.

RetrainNNHandler

[image: image15.wmf]RetrainNNHandler

m_CDG_glove : DataGloveInfo

m_CRNN_network : RetrainNeuralNetwork

m_bol_saved : bool

m_CS_sample : Samples

m_int_sampleNo : int

m_CBB_signButton : CBitmapButton

m_bol_retraining : bool

RetrainNN() : void

RetrainNNHandler()

<<Boundary>>

This class handles the RetrainNeuralNetwork class. It is data member of the CDialog class.

Private Attributes:

DataGloveInfo m_CDG_glove

This data member is an object of DataGloveInfo class to get values of sensors.

RetrainNeuralNetwork m_CRNN_network

This data member is an object of Neural Network for retraining.

bool m_bol_saved

This data member is a flag to check whether the currently taken sample has been saved or not.

Samples m_CS_sample

This data member is an object to hold the currently performed gestures (samples) by the user.

int m_int_sampleNo

This data member is a counter to count the sample number being displayed.

CBitmapButton m_CBB_signButton

This data member represents a button that displays bitmaps of the signs to be performed by the user.

bool m_bol_retraining

This data member is a flag to check whether the Neural Network is currently retraining or not.

Public Operations:

RetrainNN ()

This function calls the RetrainNN function of RetrainNeuralNetwork class.

RetrainNNHandler ()

Default Constructor.

RetrainNeuralNetwork

[image: image16.wmf]RetrainNeuralNetwork

m_NB_network : NeuralB2 *

m_bol_training : bool

RetrainNeuralNetwork()

~RetrainNeuralNetwork() : virtual

StartTraining(chr_upload : char) : void

StopTraining() : void

<<Entity>>

This class retrains the Neural Network.

Private Attributes:

NeuralB2 * m_NB_network

This data member is pointer to NeuralB2 class. This class internally implements the retraining of Neural Network.

bool m_bol_training

This data member is a flag to check whether the retraining is in progress or not.

Public Operations:

RetrainNeuralNetwork ()

Default Constructor.

virtual ~RetrainNeuralNetwork ()

Virtual Destructor.

void StartTraining (char chr_upload)

This function starts training of the network on samples in file sample.trn argument:'u' if weights are to be read from the file (network.dat), any other letter for otherwise saves the weights in file "network.dat" after every 1000 iterations.

void StopTraining ()

This function stops the training process after it has been started.

Samples

[image: image17.wmf]Samples

m_chr_arr_SampleAlphabets[26] : char

m_str_PersonName[20] : char

m_flt_SampleInput[26][7] : float

$ m_lng_FileReadCount : long

Samples()

~Samples() : virtual

WriteToFile(str_fileName : const char *) : bool

ReadFromFile(str_fileName : const char *) : bool

GetSampleInputValue(flt_arr_arr_SampleOutput[26][7] : float, chr_arr_SampleAlphabets[26] : char) : void

SetPersonName(str_name : const char *) : void

SetSampleInput(int_sampleNo : const int, ptr_flt_values : const float *) : void

<<Entity>>

This class stores 26 samples (i.e. 26 gesture values) for a person.

Private Attributes:

char m_chr_arr_SampleAlphabets[26]

This data member stores the alphabets corresponding to samples.

char m_str_PersonName[20]

This data member stores the name of the person giving the current sample.

float m_flt_SampleInput[26][7]

This data member is a matrix to store the sensor values.

long m_lng_FileReadCount

This data member is a counter to count the number of bytes read from the samples file.

Public Operations:

Samples ()

Default Constructor.

virtual ~Samples ()

Virtual Destructor.

bool WriteToFile (const char * str_fileName)

This function writes the current sample to the file specified by str_fileName.

bool ReadFromFile (const char * str_fileName)

This function reads the current sample from the file specified by str_fileName.

void GetSampleInputValue (float flt_arr_arr_SampleOutput[26][7], char chr_arr_SampleAlphabets[26])

This function gets the value of variables m_chr_arr_SampleAlphabets[26] and m_flt_SampleInput[26][7].

void SetPersonName (const char * str_name)

This function sets the value of variable m_str_PersonName[20].

void SetSampleInput (const int int_sampleNo, const float * ptr_flt_values)

This function sets the value of one sample i.e. m_flt_SampleInput[int_sampleNo].

Class Diagram

The class diagram of the Talking Hands Application is as follows:

[image: image18.wmf]NeuralNetwork

<<Entity>>

TextToSpeech

<<Entity>>

SessionNNControl

<<Control>>

SessionTTSControl

<<Control>>

SessionInfo

<<Entity>>

SessionHandler

<<Boundary>>

DataGloveInfo

RetrainNNHandler

<<Boundary>>

RetrainNeuralNetwork

<<Entity>>

Samples

<<Entity>>

Future enhancements

Coding standards (Appendix).

Speech

English Lexicon

Words

Rules

ASL Lexicon

Words

Rules

Neural Networks OR HMM

Text

To

Speech

Machine Translation System

ASL Recognition

Data Glove

PAGE
1

