MODELING OF ACCUMULATION MOS CAPACITORS Columbia University, New York NY 10027 [‡] Department of Electrical Engineering IN DIGITAL VLSI PROCESSES Shanthi Pavan[†], Yannis Tsividis[‡] Warren, New Jersey NJ 07059 FOR ANALOG DESIGN Krishnaswamy Nagaraj[†] [†]Texas Instruments

OUTLINE

- Introduction
- The two terminal MOS structure in accumulation
- Model implementation
- The polysilicon gate depletion effect
- Measurement results and discussion
- Conclusions

ω

OTHER BENEFITS OF MOS CAPACITORS

Example : Parasitics match integrating capacitors in filters

More accurate capacitor ratios because the integrating capacitors and parasitics track over process and temperature (useful in continuous-time filters)

MOS CAPACITOR STRUCTURES IN *n*-WELL CMOS PROCESSES

MOTIVATION

- It has been shown (by Behr et. al) that operation in accumulation is preferable to operation in inversion.
- For analog design, derivatives of the C-V curve must be accurately modeled.
- Existing SPICE models totally inadequate in accumulation.

THE POLY-n-WELL MOS CAPACITOR

In accumulation, holes in the n-well can be neglected

For a given V_{GB} , solve for ψ_s the equation

$$V_{GB} = V_{FB} + \psi_s + \gamma \sqrt{\phi_t \exp(\frac{\psi_s}{\phi_t}) - \psi_s - \phi_t}$$
(1)

Use the ψ_s obtained above in the following to get C_c'

$$C_c' = \frac{\gamma C_{ox}'(\exp(\frac{\psi_s}{\phi_t}) - 1)}{2\sqrt{\phi_t}\exp(\frac{\psi_s}{\phi_t}) - \psi_s - \phi_t}$$

(2)

• Use C_c' in the following to get C_{gb}'

$$C_{gb}' = \frac{C_{ox}' C_c'}{C_{ox}' + C_c'}$$

 (\mathfrak{Z})

An explicit model would be more convenient.

ω

AN EXPLICIT EXPRESSION FOR THE SURFACE POTENTIAL

It can be shown that an approximate explicit expression for the surface potential is :

$$\psi_s = 2\phi_t \left[\frac{V_{GB} - V_{FB} + 3\phi_t}{V_{GB} - V_{FB} + 6\phi_t} \right] \log \left(1 + \frac{V_{GB} - V_{FB}}{\gamma \sqrt{\phi_t}} \right)$$
(4)

Using this, the capacitance of the structure can be calculated.

comparison of numerical simulation and proposed models for changes in substrate doping concentrations (– numerical, \oplus proposed).

 $C'_{ox} = 3.84 \, \text{fF} / \mu \text{m}^2$, $V_{FB} = 0$, $T = 300 \, \text{K}$.

 $C'_{ox} = 3.84 \, \mathrm{fF} / \mu \mathrm{m}^2$, $V_{FB} = 0$, $N_D = 10^{17} \, \mathrm{cm}^{-3}$.

$Q'_G = C'_{ox}\psi_{ox} = C'_{ox}(V_{GB} - \psi_s - \phi_{MS})$ \Rightarrow Less sensitive to the value of ψ_s . (GOOD)	$Q'_{G} = -Q'_{c} - Q'_{o} = \sqrt{2q\epsilon_{s}N_{D}}\sqrt{\phi_{t}}\exp(\frac{\psi_{s}}{\phi_{t}}) - \psi_{s} - \phi_{t} - Q'_{o}$ $\Rightarrow \text{ Very sensitive to the value of } \psi_{s} \text{ ! (BAD)}$.TRAN analysis $\Rightarrow Q'_G$ (Gate charge per unit area) is neede There are 2 ways of doing this.
(6)	(5)	d.

MODEL IMPLEMENTATION IN SPICE

12

DISTORTION COMPARISON WITH A FINELY SPACED PWL DATA FROM DEVICE SIMULATION

Second harmonic relative to fundamental(-PWL, \oplus proposed)

DISTORTION COMPARISON WITH A FINELY SPACED PWL DATA FROM DEVICE SIMULATION

Third harmonic relative to fundamental(-PWL, \oplus proposed)

CIRCUIT CONSIDERATIONS AND CHOICE OF POLYSILICON TYPE

For circuit work, we need the structure to be in strong accumulation for as low a bias voltage as possible $\Rightarrow V_{FB}$ should be as negative as possible \Rightarrow Use n-type polysilicon.

THE POLYSILICON GATE DEPLETION EFFECT

- It is not possible to dope the gate infinitely high with donors.
- Finite doping levels in the gate cause a thin gate depletion layer.

 C_{c} The capacitance of this layer appears in series with C^{\prime}_{ox} and

$$\frac{1}{C_{gb}'} = \frac{1}{C_{ox}'} + \frac{1}{C_c'} + \frac{1}{C_{dep}'}$$

$$C_{dep}' \approx \frac{\gamma_p^2 C_{ox}'}{2(V_{GB} - \phi_{MS} - \psi_s)}$$
where
$$\gamma_p = \frac{\sqrt{2q\epsilon_s N_{POLY}}}{C_{ox}'}$$
(8)
(9)

17

Comparison for a 84 Å gate oxide capacitor (-model, \oplus data).

COMPARISON WITH MEASURED DATA

Comparison for a 45 Å gate oxide capacitor (-model, \oplus data).

CONCLUSIONS

- An explicit model has been proposed for a MOS capacitor in accumulation.
- The polysilicon gate depletion effect has been incorporated into the model.
- analog design. The model accurately predicts distortion, which is useful in
- The model has been implemented in SPICE.