Derivation Of Efficient Arctan Algorithm
by Satin Hinge

2 Ranges For Atan Argument
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An attempt at evaluating atan would be: X X
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Which suggests afan (xI<s<x2)=p+atan(—q) might be a formula that would allow
us to create more ranges.

Since -¢ is just another constant, we'll absorb it into a new constant t to give:
atan(s)=p+atan(t)
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Utilizing tan(x+B)=—————— we take the fan of both sides.
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To get rid of the tan p term, let us replace the constant in our orginal formula by an
equivalent constant k = tan p to give.




And since p = atan k, this translates our original formula into:
atan(s)=atan(k)+atan(t)
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and ifwe letk=0
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Which means we've derived a more generalized formula.

So far we've got 2 ranges:
0<s<l k=0 1<s<1
I<s<w k=ow

We'd like to insert more ranges:
0<s=<x, k=0
X, <s<x, k=k,

X, <s<x k=k
S 2 —r=<t<r and solve for the x's and k's

We know from the graph above that t jumps from positive to negative at each gap. We
therefore want to constrain the value of t at each gap to the magnitude r.



We can express these constraints in the form of equations:
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Or so it appears. After solving a few systems, a pattern begins to emerge:
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Apparently by making such symmetrical demands on the equations, the equations have
responded in kind.

So instead of p ranges requiring 2(p-1) variables, they only require p-1 variables. And if
we count the fact x1 =r, that's p-2 variables.

Because of this, exact solutions exist for up to 7 partitions:
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