Web Application
MIS 2

Introduction To JavaScript (Part 1)

The most popular client-side scripting language on the Web is JavaScript, a scripting language originally developed by Netscape. Microsoft also supports JavaScript in the form of JScript, a JavaScript clone used in Internet Explorer.

JavaScript will seem very familiar to programmers. The syntax of JavaScript is fairly similar to C or Java with Perl-style regular expression handling.

The following is a simple example of JavaScript code that is used to greet the user:

<html>
<head>
<title>First JavaScript Example</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
<script type="text/javascript">
<!--

function greet()

 {

 alert("Hello user! Welcome to JavaScript.");

 }

//-->

</script>
</head>
<body>
<h1 align="center">First JavaScript Example</h1>
<div align="center">
<form action="#">
<input type="button" value="Press Me" onclick="greet()" />
</form>
</div>
</body>
</html>
Including Scripts in an XHTML Document

As suggested by the introductory examples, the primary way to include scriptswritten in any languagein a Web page is through the use of the <script> tag. There are actually four ways to include script code in a document:

· Within a <script> tag

· As a linked .js file indicated by the src attribute of a <script> tag

· Within an event handler attribute such as onclick

· Via the pseudo-URL javascript: syntax referenced by a link

The syntax of each of these approaches is presented in the following sections with simple examples.

The <script> Tag

The script element is used to section off any script included directly within a Web page. Within the element should be scripting statements in the particular language used. Any script code is executed by the browser and the results are then output to the document. If the output contains markup, CSS, or even more script code, it is then parsed further by the browser. For example, consider the short markup and script fragment here that might be found in a document body:

<h2>Before the JavaScript</h2>
<script type="text/javascript">
 document.write("Hello world from Javascript.");

</script>
<h2>After the Javascript</h2>
This would produce a heading of text, the short greeting from JavaScript, and then the second heading. Notice that the text generated by JavaScript includes the tag, which then would be interpreted by the browser before final display. A more telling example shows how the browser executes a few statements at a time:

<h2>Heading 1</h2>
<script type="text/javascript">
 alert("Script 1");

</script>
<h2>Heading 2</h2>
<script type="text/javascript">
 alert("Script 2");

</script>
<h2>Heading 3</h2>
<script type="text/javascript">
 alert("Script 3");

</script>
<h2>Done!</h2>
In this example, the browser will output a statement and then an alert allowing you to witness the incremental display and parse of the page.

The <script> tag can occur in either the head or the body elements numerous times. Because a document is read from top to bottom, many scripts will be found in the head; these must be read before the page is loaded. Programmers will find scripts in the head of the document useful to declare and initialize variables and set up functions for later use. For example, the following example sets up a function that can be triggered later on in the document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<title>JavaScript Example</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
<script type="text/javascript">
 function greet()

 {

 alert("Hello user! Welcome to JavaScript.");

 }

</script>
</head>
<body>
 markup and JavaScript that may eventually trigger script
found in the head of the document

</body>
</html>
In this particular example, the script in the head is only a function definition. It won't necessarily be executed unless you call it down in the <body> of the document. Later on in the page, you could have a special script block such as

<script type="text/javascript">
 greet();

</script>
which could invoke the short script defined in the <head> of the document.

Hiding Script

When using script markup within a document, you may have to address what to do when a browser doesn't support scripting. Traditionally when a browser encounters an element it doesn't support it simply skips it and prints out the contents within the element as plain text. A non-JavaScript-aware browser encountering an example such as

<script type="text/javascript">
 alert("I am a script.");

</script>
literally would print alert("I am a script."); rather than running the script first. In order to avoid this undesirable situation, you should attempt to hide the script code from older browsers using comments, in a fashion similar to the technique for hiding style sheets. An example of commenting on JavaScript is shown here:

<script type="text/javascript">
<!--
alert("I am a script.");

//-->

</script>
Notice how the HTML comment starts the exclusion of JavaScript, but //--> is used to close the comment. This is because JavaScript interprets lines with // as comments and does not attempt to run --> as a command.

	
	Note
	Other scripting languages such as VBScript may have different commenting styles for hiding the script code from older browsers.

XHTML has a slightly different issue with the script element. Given that XHTML is an XML-based language, many of the characters found in a JavaScript, such as > or &, have special meaning so there could be trouble with the previous approach. According to the strict XHTML specification, you also are supposed to hide the contents of the script from the XHTML-enforcing browser using the following technique:

<script type="text/javascript">
<![CDATA[
 ..script here ..

]]>
</script>
Of course, this approach does not work in any but the strictest XML enforcing browsers, so authors will have to instead use linked scripts, traditional comment blocks, or simply ignore the problem. This is not the optimal solution to say the least, but it is typical of the compromises often made in Web development.

<noscript>

Like other elements that reference technologies beyond basic markup, the script element supports a special element to deal with browsers that don't execute a script. The <noscript> tag is used to enclose alternative text and markup for browsers that don't interpret a script. Furthermore, users can turn off support for a scripting language in their browsers. The <noscript> content renders onscreen, as shown in the following example, if the user has turned off scripting support or is using a browser that doesn't understand JavaScript:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<title>JavaScript and noscript</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
</head>
<body>
<script type="text/javascript">
<!--

 document.write('JavaScript is on');

//-->

</script>
<noscript>
This page requires JavaScript. Please turn on JavaScript if you

 have it and reload this page!
</noscript>
</body>
</html>
	
	Note
	It is possible to turn off JavaScript support in a browser rather easily by setting your preferences. This browser modification is performed by users primarily for security reasons, because there are many privacy exploits related to JavaScript usage.

Specifying the Scripting Language

By default, most browsers assume that the script language being used is JavaScript. As the previous examples have shown, the type attribute is used to indicate the MIME type of the script to run; for example, text/javascript. However, this indication of scripting dialect, while a specified standard, might not provide the flexibility provided by the nonstandard language attribute. For example, consider that not all versions of JavaScript support the same features. The language attribute can be used to indicate the version of JavaScript being used. The attribute can be set to "JavaScript1.1" or "JavaScript1.2" rather than simply" JavaScript". Only browsers that understand the particular dialect of JavaScript will execute the enclosed script code. To deal with this, you can make a fall-back situation with multiple versions of similar code, as shown here:

<script language="JavaScript">
 Traditional JavaScript version
</script>
<script language="JavaScript1.1">
 JavaScript 1.1 version
</script>
<script language="JavaScript1.2">
 JavaScript1.2 version
</script>
<script language="JavaScript1.5">
 JavaScript1.5 version
</script>
In the previous example, the browser will execute each script block in order and skip any versions of the language attribute it doesn't understand. This would allow the developer to put different versions of code in different blocks. One caveat to consider with the language attribute is that because a browser will ignore any element with any unknown language, a simple typo such as <script language="javascipt"> will cause the entire script to be skipped. Furthermore, while commonly used and more useful than the type attribute, markup using the language attribute will of course not validate.

Linked Scripts

While it is easy to put scripts directly in a document, it probably is better to separate them out in an external file and link to them, similar to linked style sheets. You can place the script code in a separate file and use the src attribute to specify the URL of the script to include. For example,

<script src="/scripts/myscript.js" type="text/javascript"></script>
loads a script called myscript.js, specified by the URL for the src attribute. The external file would contain only JavaScript and no HTML/XHTML markup, not even a <script> tag. For example, using the previous example, you would have

function greet()

{

 alert("Hello user! Welcome to JavaScript.");

}

in the file myscript.js.

One major advantage of external scripts is that a browser can cache the script file locally. If the same script code is used over and over again, the files that reference it require only another <script> tag and can reuse the cached copy. Considering how much script code is inserted in many pages, this could improve site efficiency. Furthermore, using an included script also keeps markup, script, and style elements separate.

Although external scripts seem the way to go, they do have problems. The most troubling issue has to do with load order. Given that each .js file is a separate request, some code may be downloaded and executed before related code is. This multirequest can lead to transitory network-related scripting errors, which can be very hard to pin down. There are other issues with compatibility with external scripts. Even today's modern browsers have occasional problems with certain constructs in external scripts and very old browser implementations of JavaScript—notably Netscape 2.0 and early versions of Internet Explorer 3.0—do not support external scripts at all. However, today these browser problems are rarely an issue, and linked scripts should be employed whenever possible.

Event Handler Attributes

Script code can also be added to XHTML documents through special attributes called event handlers. What are events? Events occur as the result of a user action or, potentially, an external event, such as a page loading. Examples of events include a user clicking a button, pressing a key, scrolling a window, or even simply moving the mouse around the screen. XHTML provides a way to bind a script to the occurrence of a particular event, through an event handler attribute. This is the name of the event, prefixed by the word "on": for example, onclick. The following code shows how the onclick event handler attribute is used to bind a script to a button click occurrence:

<form action="#">
<input type="button" onclick="alert('This is JavaScript');"
 value="Press Me" />
</form>
Under standard HTML and XHTML, event handler attributes can be added to quite a number of elements, some of which may be unexpected. Consider the following:

<p onclick="alert('Under HTML 4 and XHTML you can!');">Can you click me?</p>

The core event model introduced in HTML 4 and supported in XHTML includes onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, and onmouseup. These core events are defined for nearly all markup elements in which the element is displayed onscreen. The specific elements and their events are discussed in Appendix A. Be careful, however, because some browsers, particularly slightly older ones, do not support core events on every element. In reality, it often doesn't make sense to associate events with some elements anyway.

In addition to the core events, certain elements have their own special events. For example, the body and frameset elements have an event for loading (onload) and unloading pages (onunload). In the case of the frameset element, the load and unload events don't fire until all the frames have been loaded or unloaded, respectively. The <form> tag also has two special events that typically are triggered when the user clicks the Submit or Reset button for a form. These events are onsubmit and onreset. For form text fields set with the <input> tag, you can catch the focus and blur events with onfocus and onblur. These events fire when the user accesses the field and moves on to another one. You also can watch for the select event with onselect, which is triggered when a user selects some text, as well as the change event (onchange), which is triggered when a form field's value changes and loses focus. Table 14-1 summarizes the main events supported by HTML and XHTML and their associated elements.

	Table 14-1: Events Defined in HTML 4 and XHTML

	Event Attribute
	Event Description
	Elements Allowed Under XHTML

	onblur
	A blur event occurs when a form field loses focus, typically meaning that the user has entered into another form field either typically by clicking the mouse on it, or by tabbing to it.
	a
area
button
input
label
select
textarea

	onchange
	A change event signals both that the form field has lost user focus and that its value has been modified during its last access.
	input
select
textarea

	onclick
	Indicates that the element has been clicked.
	Most elements

	ondblclick
	Indicates that the element has been double-clicked.
	Most elements

	onfocus
	The focus event describes when a form field has received focus, namely that it has been selected for manipulation or data entry.
	a
area
button
input
label
select
textarea

	onkeydown
	Indicates that a key is being pressed down.
	Most elements

	onkeypress
	Describes the event of a key being pressed and released.
	Most elements

	onkeyup
	Indicates that a key is being released.
	Most elements

	onload
	Indicates the event that occurs when a window or frame finishes loading a document.
	body
frameset

	onmousedown
	Indicates the press of a mouse button.
	Most elements

	onmousemove
	Indicates that the mouse has moved.
	Most elements

	onmouseout
	Indicates that the mouse has moved away from an element.
	Most elements

	onmouseover
	Indicates that the mouse has moved over an element.
	Most elements

	onmouseup
	Indicates the release of a mouse button.
	Most elements

	onreset
	Indicates that the form fields are to be cleared as indicated by the click of a Reset button.
	form

	onselect
	Indicates the selection of text by the user, typically by highlighting the text.
	input
textarea

	onsubmit
	Indicates a form submission by the clicking of a Submit button.
	form

	onunload
	Indicates that the browser is leaving the current document and unloading it from the window or frame.
	body
frameset

The following markup illustrates simple use of the core event attributes with form elements and links:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<title>Core Events</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
</head>
<body onload='alert("Event demo loaded");'
 onunload='alert("Leaving demo");'>
<h1 align="center">Core Events</h1>
<form action="#" onreset='alert("Form reset");'
 onsubmit='alert("Form submit");return false;'>

onblur: <input type="text" value="Click into field and then leave"
 size="40" onblur='alert("Lost focus");' />

onclick: <input type="button" value="Click Me"
 onclick='alert("Button click");' />

onchange: <input type="text" value="Change this text then leave"
 size="40" onchange='alert("Changed");' />

ondblclick: <input type="button" value="Double-click Me"
 ondblclick='alert("Button double-clicked");' />

onfocus: <input type="text" value="Click into field"
 onfocus='alert("Gained focus");' />

onkeydown: <input type="text"
 value="Press key and release slowly here" size="40"
 onkeydown='alert("Key down");' />

onkeypress: <input type="text" value="Type here" size="40"
 onkeypress='alert("Key pressed");' />

onkeyup: <input type="text" value="Type and release" size="40"
 onkeyup='alert("Key up");' />

onload: Alert presented on initial document load.

onmousedown: <input type="button" value="Click and hold"
 onmousedown='alert("Mouse down");' />

onmousemove: Move mouse over this

link

onmouseout: Position

mouse here

and now leave.

onmouseover: Position mouse over this

link

onmouseup: <input type="button" value="Click and release"
 onmouseup='alert("Mouse up");' />

onreset: <input type="reset" value="Reset Demo" />

onselect: <input type="text" value="Select this text" size="40"
 onselect='alert("Selected");' />

onsubmit: <input type="submit" value="Test Submit" />

onunload: Try to leave document by following this

link.

</form>
</body>
</html>
Whereas HTML and XHTML specifies numerous events, Netscape and Internet Explorer support many more events beyond the core set. A more detailed discussion of the various events unique to browsers can be found in Appendix A.

The javascript: URL

Most JavaScript-aware browsers introduced the use of a new URL style in the form of javascript:, which can be used with links. For example,

Click for script
creates a link that, when clicked, executes the specified JavaScript code. Although this pseudo-URL form is commonly used in many scripts, it does have a downside in that the link will not function at all when scripting is turned off. Designers should at minimum make sure to include a <noscript> tag to warn users of this situation or to avoid the use of pseudo- URL script triggers. A better solution would be to avoid using the javascript: pseudo-URL, as demonstrated here:

<a href="errors/noscript.html"
 onclick="alert('Danger! JavaScript ahead!');return false;">
Click for script
In this situation, notice that with the scripting on, the alert is displayed and then the link load is canceled by returning a false value. Some events such as link loads, right-clicks, and form submissions can be controlled by returning a value to the handler. You'll see this used later on with form validation. In this particular case, you see that by providing both an event handler approach and a set URL, you handle all user cases. With the scripting off, the link could be directed to send the user to an error page, as shown in the previous code listing, or to an alternative version of the content.

JavaScript Language Overview

Readers familiar with programming should be able to inspect an existing JavaScript program with little trouble. A quick overview of the language to orient a reader familiar with programming is presented here. However, readers new to programming or looking for a detailed explanation are encouraged to learn JavaScript from any of the numerous online tutorials or books available, and might want to skip directly to the section "Common Scripts" to find a few useful copy-pasteable scripts.

As a programming language, JavaScript itself is not terribly difficult to learn. It shares syntax similarities with C, Perl, and Java and has only a few commands. As a language, it has only a few basic types: numbers such as 3, -45, 56.78; strings such as "Hello" and "Thomas Powell"; and the Boolean values true and false. The language also supports a few more complex data types such as arrays and objects that should be familiar to anyone who has programmed before.

Variables in JavaScript can be declared at any time. For example,

var x = 5;

would set a variable named x to a number and

var today="Wednesday";

sets the variable today to the string "Wednesday". As a loosely typed language, it is possible to set variables to other types at any time, so a statement such as

today = x;

is perfectly legal and just changes the value of today to a number value of 5.

	
	Note
	Although loosely typed languages such as JavaScript ease a burden on the programmer for keeping track of what type of data is variable, they also tend to introduce significant run time errors as a result of sloppy programming.

JavaScript is a case-sensitive language, so invoking the built-in alert method with a call such as alert('hello'); is okay, whereas Alert('hello'); is not. Note that most objects, properties, and methods in JavaScript should initially be lowercase with other words in the string capitalized. For example, alert() is all lowercase but document.lastModified does have the second part of the property initially capitalized. This follows the casing scheme found in many other languages. Remember that JavaScript is case sensitive while HTML is not. Of course, with the rise of XHTML, you will always want to use lowercase in HTML.

Statements in JavaScript are terminated with semicolons (;) or the return character, so

alert("hi");

alert("there");

is equivalent to

alert("hi")

alert("there")

However, if you remove the return in the second example, an error will occur, whereas putting two statements on the same line with semicolons between, as in

alert("hi"); alert("there");

is perfectly fine.

JavaScript has a simple set of operators including basic arithmetic (+,-, /, *), Boolean comparisons (>, <, >=, <=, !, and = =), string operators, and so on.

The statements of the language include conditional statements using an if-else syntax. Consider the following script, which alerts the user based on the value of the variable x.

x=5;

if (x > 4)

 alert('Greater than 4');

else

 alert('Less than or equal to 4');

More complex types of conditions also can be handled using a switch statement, whose syntax is similar to the C programming language. For example, rather than using a multitude of if statements, you could use a single switch with multiple case statements, as shown here:

var x=3;

switch (x)

{

 case 1: alert('x is 1');

 break;

 case 2: alert('x is 2');

 break;

 case 3: alert('x is 3');

 break;

 case 4: alert('x is 4');

 break;

 default: alert('x is not 1, 2, 3 or 4');

}

In the previous example, the value of x would determine which message was printed by comparing the value of the variable to the various case statements. If no match were found, the default statement would be executed. The break statement is also used commonly within switch to exit the statement once the appropriate choice is found. However, the break statement's use is also commonly associated with loops, which are discussed next.

Loops are primarily specified with while or for. Consider the short script here that alerts the user three times:

x=1;

while (x < 4)

{

 alert(x);

 x++;

}

This also could be written as a for loop like so:

for (var x = 1; x < 4; x++)

{

 alert(x);

}

Like most modern program languages, it is possible to abort a loop or modify the number of loop iterations using the break and continue statements.

The language also supports the use of functions. For example, you could define a function called sayHi that you use over and over in the document:

function sayHi()

{

 alert('hi');

}

This function could be called at any time with a simple call such as sayHi(). Good programming practice suggests that developers try to encapsulate commonly used code in functions.

	
	Tip
	For more information on core JavaScript, visit Netscape's developer site at http://developer.netscape.com/. Information about Microsoft's implementation of JavaScript, called JScript, can be found at http://msdn.microsoft.com/scripting/.

While I have glossed over a great deal of issues including regular expressions, weak typing, functions, variable scope, and so on, the point to take home is simply that the JavaScript language itself is relatively simple for an experienced programmer to learn. The key to doing anything terribly useful with the language, however, is figuring out how to access the built-in objects of the browser as well as the objects related to the markup of an HTML or XHTML document. It is, in fact, the relationship of markup to JavaScript objects, dubbed the Document Object Model, that is the key to understanding the true power of scripting.

Dynamic HTML

The previous examples have shown script interaction with HTML elements in the traditional fashion, manipulating form elements. However, with the rise of the 4.x generation of browsers, a new concept called Dynamic HTML or DHTML was introduced. DHTML describes the ability to dynamically manipulate the page elements, potentially changing the document's structure in a significant way. In its most obvious form, DHTML is an HTML document that displays dynamic characteristics such as movement or the showing or hiding of page content. These sophisticated features are made possible through the intersection of HTML, CSS, and JavaScript. So in some sense, the idea of DHTML can be summarized in the formula

DHTML = HTML + CSS + JavaScript
In the case of DHTML, we generally assume that all page content from form fields to bold tags can be modified. For example, consider if you had a paragraph in HTML like so:

<p id="para1">This is a test</p>
It could be referenced under Internet Explorer 4 or later DHTML style object mode using window.document.all['para1'], document.all['para1'] or simply para1. The simple example that follows moves the paragraph around the page by changing the align attribute of the paragraph tag through its corresponding align property:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<title>The Dynamic Paragraph: DHTML Style</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
</head>
<body>
<h1 align="center">The Dynamic Paragraph</h1>
<hr />
<p id="para1">I am a dynamic paragraph. Watch me dance!</p>
<hr />
<form action="#">
<input type="button" value="Right" onclick="para1.align='right';" />
<input type="button" value="Left" onclick="para1.align='left';" />
<input type="button" value="Center" onclick="para1.align='center';" />
</form>
</body>
</html>
We can even consider modifying the content. For example, consider adding the button here,

<input type="button" value="Change" onclick="para1.innerText='Changed!';" />

which modifies the actual contents of the paragraph tag.

While the Dynamic HTML approach is quite powerful, it suffers from extreme compatibility problems. Other browsers may not expose all the same objects and even when they do, their syntax is not always the same, which can cause developers great annoyance.

Mr. G. Brown
Nov 23, 2007
Page 1

