The locus of points from which the angular sizes
            of two legs of the 3-4-5 triangle are the same.

Coordinates of the vertices of the triangle are: C{0,0}, B{3,0}, A{4,0}.
The red line is the cubic:

      [Graphics:Images/eqang.hyml_gr_1.gif]= 0,

or in the parametric form:

    y = [Graphics:Images/eqang.hyml_gr_2.gif],   x = [Graphics:Images/eqang.hyml_gr_3.gif], [Graphics:Images/eqang.hyml_gr_4.gif]

The point with angle = [Graphics:Images/eqang.hyml_gr_5.gif] (Napoleon Point),
and the foot of altitude from C to hypotenuse are shown.
For Napoleon Point,  k = [Graphics:Images/eqang.hyml_gr_6.gif], and coordinates are:
     [Graphics:Images/eqang.hyml_gr_7.gif].
The point with angle = [Graphics:Images/eqang.hyml_gr_8.gif] corresponds to    k = [Graphics:Images/eqang.hyml_gr_9.gif] , and has coordinates
     [Graphics:Images/eqang.hyml_gr_10.gif].
     
     The limit of curve at point {3,0} corresponds to angle ArcTan[4/3] = [Graphics:Images/eqang.hyml_gr_11.gif]1301,
     and  k = -[Graphics:Images/eqang.hyml_gr_12.gif].
     The dashed blue right line  is the limit of the red curve near point {0,0}: y = x.
     

[Graphics:Images/eqang.hyml_gr_13.gif]

Note that the shown red curve is only the part of the full locus!!


Converted by Mathematica      December 23, 2001