Tangent line circle
< ------------------------------------------------------------------------------------------------------------------->
Find the circle equation which passes through point(4,1) and one of the tangent line to this circle is x+3y=3
Solution :
Circle equation which its center(4,1) and its radius=0
(x-4)^2+(y-1)^2=0
x^2+y^2-8x-2y+16+1=0
x^2+y^2-8x-2y+17=0
p[x+3y-3]=0
-------------------- +
x^2+y^2+(p-8)x+(3p-2)y+(17-3p)=0
x+3y-3=0 is its tangent line
this means :
x1*x+y1*y+(p/2-4)*x1+(p/2-4)*x+(3p/2-1)*y1+(3p/2-1)*y+(17-3p)=0
where(x1,y1) lies on x+3y-3=0
or x1+3y1-3=0
x1=3-3y1
(3-3y1)*x++y1*y+(p/2-4)(3-3y1)+(p/2-4)*y
My Favorite Links:
home
previous
next
Best Idea
< ------------------------------------------------------------------------------------------------------------------->