![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Power Line | ||||||||||||||||
![]() |
||||||||||||||||
![]() |
||||||||||||||||
![]() |
||||||||||||||||
Find the tangent line of a hyperbola x^2/4-y^2/16=1 from point(1,2). Solution : Ensure first that point(1,2) doesn't lie on a hyperbola by substituting (1,2) on hyperbola. 1^2/4-2^2/16=1/4-4/16=1/4-1/4=0 differs from 1. Thus this point (1,2) doesn't lie on hyperbola Power line of point(1,2) to the hyperbola x^2/4-y^2/16=1 x1*x/4-y1*y/16=1 where (x1,y1)=(1,2) 1*x/4-2*y/16=1 x/4-y/8=1 2x-y=8 y=2x-8=2(x-4) substitute to hyperbola x^2/4-2^2*(x-4)^2/16=1 x^2/4-(x-4)^2/4=1 x^2-(x-4)^2=4 x^2-x^2+8x-16=4 8x=20 x=2.5 substitute to hyperbola (25/4)/4-y^2/16=1 25/16-y^2/16=1 25-y^2=16 y^2-9=0 (y-3)*(y+3)=0 y-3=0 y1=3 y+3=0 y2=-3 the cross connect points between power line and hyperbola are (2.5,3) and (2.5,-3) The tangent lines found by connecting point(1,2) to (2.5,3) and (2.5,-3) Connecting point(1,2) to (2.5,3) (y-y1)/(y1-y2)=(x-x1)/(x1-x2) where(x1,y1)=(1,2) (x2,y2)=(2.5,3) (y-2)/(2-3)=(x-1)/(1-2.5) (y-2)/(-1)=(x-1)/(-1.5) 3*(y-2)=2*(x-1) 3y-6=2x-2 2x-3y+4=0 [1] Connecting point(1,2) and(2.5,-3) (y-2)/(2+3)=(x-1)/(1-2.5) (y-2)/5=(x-1)/(-1.5) -3*(y-2)=10*(x-1) -3y+6=10x-10 10x+3y-16=0 [2] [1] and [2] are the tangent lines to be solved |
||||||||||||||||
My Favorite Links: | ||||||||||||||||
home | ||||||||||||||||
previous | ||||||||||||||||
next | ||||||||||||||||
Best Idea | ||||||||||||||||
|
||||||||||||||||