Definition Addition Subtraction Multiplication Division Real Life Situations
Integers are:
negative and positive numbers
and zero
a number with a + or 
sign
numbers with NO fraction
or decimal part
the "opposite of"
Rules for ADDING INTEGERS




If the signs are the same, add the numbers and keep the sign. 
Sign Sum 
m + n 
4 + 2 = 6 
If the signs are different, subtract the numbers and keep the sign of the larger number. 
Sign Difference 
m + n 
(think 82=6 and 8 is bigger than 2, so keep the positive sign) 7 + 3 = 4

(10 + 3) + (2 + 6) =
13 +  8 =
5
Rules for SUBTRACTING INTEGERS
Any subtraction problem involving integers can be rewritten as an addition problem. Then, the rules listed above apply. For example:
64 + 18 = 46 
154 + (83) = 237 
"Change the sign & the number behind" ~
Twostroke ~
Eliminate "double signs"
Rules for MULTIPLYING INTEGERS



If the signs are the same, the answer will be positive. 
(m)(n) 
8 * 6 = 48 
If the signs are different, the answer will be negative. 
(m)(n) 
4 * 5 = 20 
NOTE: An EVEN number of negative signs will produe an POSITIVE answer. An ODD number of negative signs will produce a NEGATIVE answer. (Every pair will "cancel" out.)
Rules for DIVIDING INTEGERS
Division follows the same odd/even rules as multiplication. Note
that when divison is written as a fraction, there are three locations for
the negative sign (top, middle, bottom):
3 
3 
 3 
Real Life Situations




























Email me if you think of others!