Differentiation


Exercises for students
Differentiate the following with respect to x and check your working using the above applet:
y = 3x^2 sin (5x) y = x^2 exp(-3x) y = ln(x) / x^2 y = exp(3x) / x
y = (3 - 4x^2)1/2 y = ( sin x )2 y = sin ( x^3 + 4 ) y = ln (1 + sin x)



Summary
Product Rule: d (uv) = udv + vdu Quotient Rule: d u= v du - u dv
dxdxdx dxvv2
 d (f(x))n = n (f(x))n-1 f'(x)
dx
 d sin x = cos x  d cos x = - sin x  d tan x = sec2 x
dxdxdx
 d ex = ex  d ln x = 1 / x  d ax = ax ln a
dxdxdx
 d sec x = sec x tan x  d cot x = - cosec2 x  d cosec x = - cosec x cot x
dxdxdx
 d sin-1 x =        1         d cos-1 x =        - 1         d tan-1 x =     1    
dxsqrt(1 - x2) dxsqrt(1 - x2) dx1 + x2




You can define the function using the following operators:
+-*/^
sqrt( )ln( )exp( )pi
sin( )cos( )tan( )
asin( )acos( )atan( )
sinh( )cosh( )tanh( )




Right click here to download a summary of the topic of Differentiation.

Right-click here to download this page, the Java Class File and unzip the Javathings Math Package.

Back to H2 Mathematics Homepage


This applet uses the com.javathings.math package developed by:
Patrik Lundin
patrik@javathings.com
http://www.javathings.com