rcisθ
解xn=p
當θ=2wπ (1≦w≦n,其中w為正整數),[cosθ+isinθ]=1
xn=p[cos2wπ+isin2wπ]
∵[cosθ+isinθ]k=[cos(kθ)+isin(kθ)],看證明
∴x=p(1/n)[cos2wπ+isin2wπ](1/n)
∴x=p(1/n)[cos(2wπ/n)+isin(2wπ/n)]
以x8=p為例
x=p(1/8)[cos(2π/8)+isin(2π/8)],p(1/8)[cos(4π/8)+isin(4π/8)],p(1/8)[cos(6π/8)+isin(6π/8)],p(1/8)[cos(8π/8)+isin(8π/8)],
p(1/8)[cos(10π/8)+isin(10π/8)],p(1/8)[cos(12π/8)+isin(12π/8)],p(1/8)[cos(14π/8)+isin(14π/8)],p(1/8)[cos(16π/8)+isin(16π/8)]
x=p(1/8)[cos(π/4)+isin(π/4)],p(1/8)[cos(π/2)+isin(π/2)],p(1/8)[cos(3π/4)+isin(3π/4)],p(1/8)[cosπ+isinπ],
p(1/8)[cos(5π/4)+isin(5π/4)],p(1/8)[cos(3π/2)+isin(3π/2)],p(1/8)[cos(7π/4)+isin(7π/4)],p(1/8)[cos(2π)+isin(2π)]
x=p(1/8)[2(1/2)/2+(i2(1/2))/2],p(1/8)[i],p(1/8)[-2(1/2)/2+i2(1/2)/2],p(1/8)[-1],
p(1/8)[-2(1/2)/2-i2(1/2)/2],p(1/8)[-i],p(1/8)[2(1/2)/2-i2(1/2)/2],p(1/8)[1]
x=p(1/8)[2(1/2)/2+(i2(1/2))/2],ip(1/8),p(1/8)[-2(1/2)/2+i2(1/2)/2],-p(1/8),
p(1/8)[-2(1/2)/2-i2(1/2)/2],-ip(1/8),p(1/8)[2(1/2)/2-i2(1/2)/2],p(1/8)