變換
要計算根的n次方與系數的關係可用此方法(n為整數)
例:計算方程x4+bx3+cx2+dx+e=0的根為原來3次的方程的系數
設x4+bx3+cx2+dx+e=0的根為α,β,γ,σ
代入x=y(1/3)
y(4/3)+by+cy(2/3)+dy(1/3)+e=0
y(1/3)(y+d)=-(by+cy(2/3)+e)
y(y3+3dy2+3d2y+d3)=-[(by+cy(2/3))3+3e(by+cy(2/3))2+3e2(by+cy(2/3))+e3]
y4+3dy3+3d2y2+d3y+[(b3y3+3b2cy(8/3)+3bc2y(7/3)+c3y2)+3e(b2y2+2bcy(5/3)+c2y(4/3))+3be2y+3ce2y(2/3)+e3]=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3+3b2cy(8/3)+3b2ey2+3bc2y(7/3)+3bcey(5/3)+3bcey(5/3)+3c2ey(4/3)+3ce2y(2/3)=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3+3b2y2(cy(2/3)+e)+3bcy(5/3)(cy(2/3)+e)+3cey(2/3)(by+cy(2/3)+e)=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3+[cy(2/3)+e][3by(by+cy(2/3))]+3cey(2/3)(-y(4/3)-dy(1/3))=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3+[cy(2/3)+e][3by(-y(4/3)-dy(1/3)-e)]-3cey2-3cdey=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3-3cey2-3cdey+3by[-cy2-dy-ey(2/3)-ey(4/3)-dey(1/3)-e2]=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3-3cey2-3cdey-3bcy3-3bcdy2-3de2y-3by[e(y(4/3)+cy(2/3)+dy(1/3))]=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3-3cey2-3cdey-3bcy3-3bcdy2-3de2y-3by[e(-by-e)]=0
y4+b3y3+3dy3+c3y2+3d2y2+d3y+3be2y+e3-3cey2-3cdey-3bcy3-3bcdy2-3de2y+3b2ey2+3be2y=0
y4+(b3-3bc+3d)y3+(c3+3d2-3ce-3b2e)y2+(d3+6be2-3cde-3de2)y+e3=0
∴α3+β3+γ3+σ3=-(b3-3bc+3d) & α3β3+α3γ3+α3σ3+β3γ3+β3σ3+γ3σ3=(c3+3d2-3ce-3b2e)
& α3β3γ3+α3β3σ3+α3γ3σ3+β3γ3σ3=-(d3+6be2-3cde-3de2) & α3β3γ3σ3=e3
然而,若要計算根為原來的q次方(q>4)的方程的系數,用此方法就會過於複雜,所以一般站長會用歸約公式先將次方數降低。