A lógica digital
tradicional lida com variáveis assumindo apenas
dois possíveis estados: falso e verdadeiro. Em
boa parte dos casos, esta representação é
suficiente, mas há situações em que desejamos
valores intermediários.
Poderíamos usar valores analógicos, mas aí
cairíamos em equações matemáticas complexas
que nem sempre nos resultariam no resultado
desejado. É aí que entra a lógica fuzzy.
Fuzzy, em inglês, significa incerto, duvidoso.
Expressa exatamente os valores com que lida. Com
lógica fuzzy, não tratamos uma variável como
tendo apenas um estado atual, mas sim com 'n'
estados, cada um com um grau de associação. Em
outras palavras, não afirmarmos que uma casa é
grande, mas sim que ela é 0.8 grande, 0.2 média
e 0.0 pe- quena. Isto faz com que definamos
conjuntos em que um dado valor pode ser
enquadrado. Voltando ao exemplo da casa teríamos
três conjuntos: casas grandes, médias e peque-
nas. Mas nada impede que tenhamos cinco
conjuntos: casas enormes, grandes, médias,
pequenas e minúsculas. O número de conjuntos
nos diz quão precisamente estamos lidando com
uma variável.
Assim como na lógica convencional, definimos
regras nas quais associamos entradas para
produzir saídas. Por exemplo, definimos em
lógica digital: a E b = c, isto significa que
quando a E b assumirem valores verdadeiros c
será verdadeiro, caso contrário será falso.
Podemos ainda utilizar os operadores OU e NÃO.
Com fuzzy, ao definirmos uma regra, informamos
que quando uma variável assumir um dado conjunto
E outra variável outro conjunto, teremos na
saída tal variável com tal conjunto. Uma
típica construção de uma regra fuzzy seria: se
a for muito positivo E b for pouco negativo
então c é zero.
Finalmente, definimos um sistema fuzzy, que será
uma coleção de variáveis de entrada (sendo
cada uma coleção de conjuntos), uma coleção
de conjuntos para a variável de saída e uma
coleção de regras que associam as entradas para
resultar em conjuntos para a saída.
É necessário ainda uma função que
"desfuzzifique" a saída, ou seja que a
partir dos graus de participação de cada
variável de uma regra, retorne o grau de
participação da saída e conseqüentemente o
valor real da saída.
Características da Lógica Fuzzy ou
Difusa:
- A Lógica Difusa está baseada em palavras e
não em números, ou seja, os valores verda- des
são expressos lingüisticamente. Por exemplo:
quente, muito frio, verdade, longe, per- to,
rápido, vagaroso, médio, etc.
- Possui vários modificadores de predicado como
por exemplo: muito, mais ou menos, pouco,
bastante, médio, etc.
- Possui também um amplo conjunto de
quantificadores, como por exemplo : poucos, vá-
rios, em torno de, usualmente.
- Faz uso das probabilidades lingüísticas, como
por exemplo : provável, improvável, que são
interpretados como números fuzzy e manipulados
pela sua aritmética.
- Manuseia todos os valores entre 0 e 1, tomando
estes, como um limite apenas.
Breve introdução ao sistema de controle
FUZZY:
As variáveis de entrada em um sistema de
controle fuzzy são em geral mapeadas dentro de
conjuntos de funções consecutivas -- o processo
de conversão de um valor de entrada
intermediário em um valor fuzzy é chamado de
"fuzificação". Note que um sistema de
con- trole pode ter tipos de entradas
chaveadas(on/off) junto com entradas analógicas,
e tais entradas(on/off) do percurso terá sempre
um valor verdadeiro igual a ou 1 ou 0 -- mas tais
entradas são realmente apenas um caso
simplificado de uma variável fuzzy e então o
sis- tema pode negociar com elas sem dificuldade.
Determinando o mapeamento das variáveis de
entrada dentro das funções consecutivas e
valores verdadeiros, o microcontrolador então
toma decisões para que as ações efetuadas
segundo as regras:
IF temperatura do freio IS morna AND velocidade
IS não muito rápida
THEN pressão do freio IS ligeiramente reduzida
-- onde, neste caso, as duas variáveis de
entrada são "temperatura do freio" e
"velocidade". A variável de saída,
"pressão do freio", é semelhantemente
gerada a partir de um conjunto fuzzy que pode ter
valores como "estáti- co",
"ligeiramente reduzido",
"ligeiramente acrescido", e assim por
diante.
De qualquer maneira ... esta regra por si só é
muito confusa desde que é observada como uma
simples regra que poderia ser usada sem
preocupação sobre lógica fuzzy -- mas
lembre-se que a decisão é baseada em um
conjunto de regras: todas as regras que apli-
camos são invocadas, usando as funções
consecutivas e valores verdadeiros obtidos das
entradas, para determinar o resultado da regra --
que em troca será mapeada dentro da função
consecutiva e valor verdadeiro controlando a
variável saída -- e depois estes resulta- dos
são combinados para gerar uma resposta
específica, a atual pressão do freio um pro-
cedimento conhecido como
"defusificação". A combinação de
operações fuzzy e regras baseadas na
"conclusão" descrevem um "sistema
fuzzy expert".
Tradicionais controle de sistemas são em geral
baseados em modelos matemáticos que descrevem o
sistema de controle usando uma ou mais equações
diferenciais que definem a resposta do sistema
para suas entradas; tais sistemas são
freqüentemente implemen- tados pelo chamado
controlador "PID"
(proporcional-integral-derivativo). Tais
controladores são produtos de décadas de
desenvolvimento e trabalho teórico e são
altamente eficazes.
Se controladores PID e outros sistemas de
controles tradicionais são tão bem desenvolvi-
dos, porque preocupar-se com lógica fuzzy?
Somente porque em alguns casos ele tem alguma
vantagem: em muitos casos, o modelo matemático
do processo pode não existir ou pode ser muito
"caro" em termos de poder de
processamento computacional e memó- ria -- e um
sistema baseado em regras empíricas pode ser
mais efetivo.
Além disso, lógica fuzzy é bem adaptado para
implementações de baixo custo baseado em
sensores baratos, conversores A/D de baixa
resolução, de chips microcontroladores de 4 ou
8 bits, e tais sistemas podem ser facilmente
atualizados através da soma de no- vas regras
para aperfeiçoar a performance ou somar novas
características. Em muitos ca- sos, controle
fuzzy pode ser usado para melhorar em sistema de
controle já existente so- mando uma capa extra
de inteligência ao método de controle corrente.
Aprendizado
Incremental Fuzzy - Arquivo sobre a lógica
fuzzy (português)
Aprendizado
Incremental Fuzzy - Arquivo sobre a lógica
fuzzy (inglês)
Para voltar a página
principal, clique aqui.
|