Binomial Formula

Factorial
For    a natural number, the factorial is the product of the first
        natural numbers.

       
In particular,
       
       .


Notice that we can group factors and write

     .
The product within the brackets is  
Therefore, we have the

Recursion Formula
     

See example 1, page 826.


Combinatorial Symbol
For nonnegative integers    and   ,  

      

           

Other notations for the combinatorial symbol are
          ,     ,    or     .
These symbols are also called binomial coefficients.

See Example 2, page 827.


Binomial Formula
For a positive integer
      .

Observations
1)
The expansion of      has     terms.
2)
As we move from the left of the expansion to the right of the expansion,
the powers of      decrease and the powers of      increase.
3)
In each term, the sum of the powers of  and of    always add up to .


Example 1
     

The number of terms in the expansion is 5+1.
As the powers of  a  decrease from 5 to 1, the powers of  b  increase from 1 to 5.
In each term, the sum of the powers of  a  and  b  always add up to 5.


Example 2
     Expand     .
In the binomial formula let   ,   , and  .

    

                       

Evaluate the binomial coefficients and do the algebra.

     

          


    

See Examples 4, page 830.


Suppose we want to determine only a particular term in an expansion.
The    Term of the Binomial Expansion    is
                                               .


Example 3
     Find the 5th term in the expansion of    .
We must write the number so it is in the form,   ,
given in the formula.
     , so   .
The other substitutions are
      ,   , and   .
Then the 5th term in the expansion is
                   
or

                       or     .


See Example 5, page 831.


                    top

                    next     Multiplication Principle, Permutations and Combinations