De Moivre’s Theorem

If      and      is a natural number, then

          


Expressed in sines and cosines, this says that

          

In particular, if     , then

                  

This theorem can be proved using the method of mathematical induction.


     See Examples 1 – 2, pages 636 – 637, of the textbook



                          roots of  

We can use De Moivre’s Theorem to find all the the   roots of a complex number
For a natural number , we say that is an root of
                                                                                                              if     


                           Root Theorem

For a positive number greater than 1

                                                                           

are the distinct roots of , and there are no other roots


     See Example 3, page 638, of the textbook

     Solving a Cubic Equation –
                                                       See Example 4, pages 638 - 639, of the textbook


                    top
                    next    Conic Sections   Parabola
                               begin Module 4

                               Additional Topics in Analytic Geometry