Trigonometric Equations

Summary
The solutions of tan x = k arex =... , tan-1 k , π + tan-1 k , 2π + tan-1 k ,
3π + tan-1 k , 4π + tan-1 k , 5π + tan-1 k , ...
Therefore the general solution of tan x = k isx =nπ + tan-1 k
=180°n + tan-1 k      for all integer n

The solutions of cos x = k arex =... , - cos-1 k , cos-1 k , 2π - cos-1 k ,
2π + cos-1 k , 4π - cos-1 k , 4π + cos-1 k ,
6π - cos-1 k , 6π + cos-1 k , ...
Therefore the general solution of cos x = k isx =2nπ ± cos-1 k
=360°n ± cos-1 k      for all integer n

The solutions of sin x = k arex =... , sin-1 k , π - sin-1 k , 2π + sin-1 k ,
3π - sin-1 k , 4π + sin-1 k , 5π - sin-1 k , ...
Therefore the general solution of sin x = k isx =nπ + (-1)n sin-1 k
=180°n + (-1)n sin-1 k      for all integer n


Exercises for students
Find the solutions of the following equations (in degrees & in radians) in the range 0o < x < 360o and check your answers using the above applet.
Write down the general solutions:
tan x = 1cos x = 0.5sin x = 0.5 tan x = -1cos x = -0.5sin x = -0.5


Find the general solution, in degrees, of the equation tan 3x = tan 30°.

Find the general solution, in degrees, of the equation cos 2x = 0.6 .

Find the general solution, in radians, of the equation sin 3x = 1/2.

Find all the solution of tan 2θ = 1 in 0 < θ < 360°.

Find the general solution of the equation sin 2x = cos 30°.



Right-click here to download this page and the Java Class File.