{menu}

Fundamental Algorithm Analysis

Head Permutations Using a Linear Array of 5 Numbers
EXAMPLE_01 Output where N = 5

Sequence

Output

Indexes Swapped

1

1 2 3 4 5

No Swap

2

2 1 3 4 5

swapped(0, 1)

3

3 1 2 4 5

swapped(0, 2)

4

1 3 2 4 5

swapped(0, 1)

5

2 3 1 4 5

swapped(0, 2)

6

3 2 1 4 5

swapped(0, 1)

7

3 2 4 1 5

swapped(2, 3)

8

2 3 4 1 5

swapped(0, 1)

9

4 3 2 1 5

swapped(0, 2)

10

3 4 2 1 5

swapped(0, 1)

11

2 4 3 1 5

swapped(0, 2)

12

4 2 3 1 5

swapped(0, 1)

13

4 1 3 2 5

swapped(1, 3)

14

1 4 3 2 5

swapped(0, 1)

15

3 4 1 2 5

swapped(0, 2)

16

4 3 1 2 5

swapped(0, 1)

17

1 3 4 2 5

swapped(0, 2)

18

3 1 4 2 5

swapped(0, 1)

19

2 1 4 3 5

swapped(0, 3)

20

1 2 4 3 5

swapped(0, 1)

21

4 2 1 3 5

swapped(0, 2)

22

2 4 1 3 5

swapped(0, 1)

23

1 4 2 3 5

swapped(0, 2)

24

4 1 2 3 5

swapped(0, 1)

25

5 1 2 3 4

swapped(0, 4)

26

1 5 2 3 4

swapped(0, 1)

27

2 5 1 3 4

swapped(0, 2)

28

5 2 1 3 4

swapped(0, 1)

29

1 2 5 3 4

swapped(0, 2)

30

2 1 5 3 4

swapped(0, 1)

31

2 1 3 5 4

swapped(2, 3)

32

1 2 3 5 4

swapped(0, 1)

33

3 2 1 5 4

swapped(0, 2)

34

2 3 1 5 4

swapped(0, 1)

35

1 3 2 5 4

swapped(0, 2)

36

3 1 2 5 4

swapped(0, 1)

37

3 5 2 1 4

swapped(1, 3)

38

5 3 2 1 4

swapped(0, 1)

39

2 3 5 1 4

swapped(0, 2)

40

3 2 5 1 4

swapped(0, 1)

41

5 2 3 1 4

swapped(0, 2)

42

2 5 3 1 4

swapped(0, 1)

43

1 5 3 2 4

swapped(0, 3)

44

5 1 3 2 4

swapped(0, 1)

45

3 1 5 2 4

swapped(0, 2)

46

1 3 5 2 4

swapped(0, 1)

47

5 3 1 2 4

swapped(0, 2)

48

3 5 1 2 4

swapped(0, 1)

49

4 5 1 2 3

swapped(0, 4)

50

5 4 1 2 3

swapped(0, 1)

51

1 4 5 2 3

swapped(0, 2)

52

4 1 5 2 3

swapped(0, 1)

53

5 1 4 2 3

swapped(0, 2)

54

1 5 4 2 3

swapped(0, 1)

55

1 5 2 4 3

swapped(2, 3)

56

5 1 2 4 3

swapped(0, 1)

57

2 1 5 4 3

swapped(0, 2)

58

1 2 5 4 3

swapped(0, 1)

59

5 2 1 4 3

swapped(0, 2)

60

2 5 1 4 3

swapped(0, 1)

61

2 4 1 5 3

swapped(1, 3)

62

4 2 1 5 3

swapped(0, 1)

63

1 2 4 5 3

swapped(0, 2)

64

2 1 4 5 3

swapped(0, 1)

65

4 1 2 5 3

swapped(0, 2)

66

1 4 2 5 3

swapped(0, 1)

67

5 4 2 1 3

swapped(0, 3)

68

4 5 2 1 3

swapped(0, 1)

69

2 5 4 1 3

swapped(0, 2)

70

5 2 4 1 3

swapped(0, 1)

71

4 2 5 1 3

swapped(0, 2)

72

2 4 5 1 3

swapped(0, 1)

73

3 4 5 1 2

swapped(0, 4)

74

4 3 5 1 2

swapped(0, 1)

75

5 3 4 1 2

swapped(0, 2)

76

3 5 4 1 2

swapped(0, 1)

77

4 5 3 1 2

swapped(0, 2)

78

5 4 3 1 2

swapped(0, 1)

79

5 4 1 3 2

swapped(2, 3)

80

4 5 1 3 2

swapped(0, 1)

81

1 5 4 3 2

swapped(0, 2)

82

5 1 4 3 2

swapped(0, 1)

83

4 1 5 3 2

swapped(0, 2)

84

1 4 5 3 2

swapped(0, 1)

85

1 3 5 4 2

swapped(1, 3)

86

3 1 5 4 2

swapped(0, 1)

87

5 1 3 4 2

swapped(0, 2)

88

1 5 3 4 2

swapped(0, 1)

89

3 5 1 4 2

swapped(0, 2)

90

5 3 1 4 2

swapped(0, 1)

91

4 3 1 5 2

swapped(0, 3)

92

3 4 1 5 2

swapped(0, 1)

93

1 4 3 5 2

swapped(0, 2)

94

4 1 3 5 2

swapped(0, 1)

95

3 1 4 5 2

swapped(0, 2)

96

1 3 4 5 2

swapped(0, 1)

97

2 3 4 5 1

swapped(0, 4)

98

3 2 4 5 1

swapped(0, 1)

99

4 2 3 5 1

swapped(0, 2)

100

2 4 3 5 1

swapped(0, 1)

101

3 4 2 5 1

swapped(0, 2)

102

4 3 2 5 1

swapped(0, 1)

103

4 3 5 2 1

swapped(2, 3)

104

3 4 5 2 1

swapped(0, 1)

105

5 4 3 2 1

swapped(0, 2)

106

4 5 3 2 1

swapped(0, 1)

107

3 5 4 2 1

swapped(0, 2)

108

5 3 4 2 1

swapped(0, 1)

109

5 2 4 3 1

swapped(1, 3)

110

2 5 4 3 1

swapped(0, 1)

111

4 5 2 3 1

swapped(0, 2)

112

5 4 2 3 1

swapped(0, 1)

113

2 4 5 3 1

swapped(0, 2)

114

4 2 5 3 1

swapped(0, 1)

115

3 2 5 4 1

swapped(0, 3)

116

2 3 5 4 1

swapped(0, 1)

117

5 3 2 4 1

swapped(0, 2)

118

3 5 2 4 1

swapped(0, 1)

119

2 5 3 4 1

swapped(0, 2)

120

5 2 3 4 1

swapped(0, 1)


Click here to return to EXAMPLE_01.





[New Book: Practical Permutations]

[QuickPerm] | [EXAMPLE 02] | [EXAMPLE 03] | [EXAMPLE 04] | [MetaPerm]
[Download the Five C++ Examples] | [Permutation Exercises]
[Contact the Author] | [Make a Donation] | [Links]
[HOME]

Help keep public education alive! We need your donations, click here to help now...

{top}

Copyright © 2008 by Phillip Paul Fuchs, all rights reserved.
Abstracting with credit is permitted...