The
Steam-Engine of Today .
. . And, last of all, with inimitable power, and 'with whirlwind sound,' comes
the potent agency of steam. In comparison with the past, what centuries of
improvement has this single agent comprised in the short compass of fifty years
! Everywhere practicable, everywhere efficient, it has an arm a thousand times
stronger than that of Hercules, and to which human ingenuity is capable of
fitting a thousand times as many hands as belonged to Briareus. Steam is found in triumphant
operation on the seas; and, under the influence of its strong propulsion, the
gallant ship 'Against
the wind, against the tide, Still
steadies with an upright keel.' It is on the rivers, and the boatman may repose on his oars; it is on highways, and exerts itself along the courses of and conveyance; it is at the bottom of mines, a thousand feet below the earth's surface; it is in the mills, and in the workshops of the trades. It rows, it pumps, it excavates, it carries, it draws, it lifts, it hammers, it spins, it weaves, it prints. It seems to say to men, at least to the class of artisans: 'Leave off your manual labor; give over your bodily toil; bestow but your skill and reason to the directing of my power, and I will bear the toil, with no muscle to grow weary, no nerve to relax, no beast to feel faintness!' What further improvement may still be made in the use of this astonishing power it is impossible to know, and it were vain to conjecture. What we do know is, that it has most essentially altered the face of affairs, and that no visible limit yet appears beyond which its progress is seen to be impossible." DANIEL
WEBSTER, THE
PERIOD OF REFINEMENT 1850 TO DATE. BY
the middle of the present century, as we have now seen, the steam-engine had
been applied, and successfully, to every great purpose for which it was fitted.
Its first application was to the elevation of water; it next was applied to the
driving of mills and machinery; and it finally became the great propelling power
in transportation by land and by sea. At the beginning of the period to which we are now come, these
applications of steam-power had become familiar both to the engineer and to the
public. The forms of engine adapted to each purpose had been determined, and had
become usually standard. Every type of the modern steam-engine had assumed, more
or less closely, the form and proportions which are now familiar; and the most
intelligent designers and builders had been taught by experience rather than by
theory, for the theory of the steam engine had then been but little
investigated, and the principles and laws of thermodynamics had not been traced
in their application to this engine the principles of construction essential to
successful practice, and were gradually learning the relative standing of the
many forms of steam-engine, from among which have been preserved a few specially
fitted for certain specific methods of utilization of power. During the years succeeding the date 1850, therefore, the growth of the steam-engine had been, not a change of standard type, or the addition of new parts, but a gradual improvement in forms, proportions, and arrangements of details; and this period has been marked by the dying out of the forms of engine least fitted to succeed in competition with others, and the retention of the latter has been an example of "the survival of the fittest" This has therefore been a Period of Refinement. During this period invention has been confined to details; it has produced new forms of parts, new arrangements of details; it has devised an immense variety of valves, valve-motions, regulating apparatus, and a still greater variety of steam-boilers and of attachments, essential and non-essential, to both engines and boilers. The great majority of these peculiar devices have been of no value, and very many of the best of them have been found to have about equal value. All the well-known and successful forms of engine, when equally well designed and constructed and equally well managed, are of very nearly equal efficiency; all of the best-known types of steam boiler, where given equal proportions of grate to heating-surface and equally well designed, with a view to securing a good draught and a good circulation of water, have been found to give very nearly equally good results; and it has become evident that a good knowledge of principles and of practice, on the part of the designer, the constructor, and the manager of the boiler, is essential in the endeavor to achieve economical success; that good engineering is demanded, rather than great ingenuity. The inventor has been superseded here by the engineer. The knowledge acquired in the time of Watt, of the essential
principles of steam-engine construction, has since become generally familiar to
the better class of engineers. It has led to the selection of simple, strong,
and durable forms of engine and boiler, to the introduction of various kinds of
valves and of valve-gearing, capable of adjustment to any desired range of
expansive working, and to the attachment of efficient forms of governor to
regulate the speed of the engine, by determining automatically the point of
cutoff which will, at any instant, best adjust the energy exerted by the
expanding steam to the demand made by the work to be done. The value of high pressures and considerable expansion was reorganized as long ago as in the early part of the present century, and Watt, by combining skillfully the several principal parts of the steam-engine, gave it very nearly the shape which it has to-day. The compound engine, even, as has been seen, was invented by contemporaries of Watt, and the only important modifications since his time have occurred in details. The introduction of the " drop cut-off," the attachment of the governor to the expansion apparatus in such a manner as to determine the degree of expansion, the improvement of proportions, the introduction of higher steam and greater expansion, the improvement of the marine engine by the adoption of surface-condensation, in addition to these other changes, and the introduction of the double-cylinder engine, after the elevation of steam-pressure and increase of expansion had gone so far as to justify its use, are the changes, therefore, which have taken place during this last quarter-century. It began then to be generally understood that expansion of steam produced economy, and mechanics and inventors vied with each other in the effort to obtain a form of valve-gear which should secure the immense saving which an abstract consideration of the expansion of gases according to Marriotte's law would seem to promise. The counteracting phenomena of internal condensation and re evaporation, of the losses of heat externally and internally, and of the effect of defective vacuum, defective distribution of steam, and of back-pressure, were either unobserved or were entirely overlooked. It was many years, therefore, before engine-builders became convinced that no improvement upon existing forms of expansion-gear could secure even an approximation to theoretical efficiency. The fact thus learned, that the benefit of expansive working has a limit which is very soon reached in ordinary practice, was not then, and has only recently become, generally known among our steam-engine builders, and for several years, during the period upon which we now enter, there continued the keenest competition between makers of rival forms of expansion-gear, and inventors were continually endeavoring to produce something which should far excel any previously-existing device. In Europe, as in the United States, efforts to " improve
" standard designs have usually resulted in injuring their efficiency, and
in simply adding to the first cost and running expense of the engines, without
securing a marked increase in economy in the consumption of steam. |
Home Page Top of Page |