% Training a linear layer (general_linear.m).
clf;
figure(gcf)
setfsize(400,300);
echo on
clc
% INITLIN - Initializes a linear layer.
% TRAINWH - Trains a linear layer with Widrow-Hoff rule.
% SIMULIN - Simulates a linear layer.
% TRAINING A LINEAR LAYER:
% Using the above functions a linear layer is trained
% to respond to specific inputs with target outputs.
pause % Strike any key to continue...
clc
% DEFINING A PROBLEM
% ==================
% P defines input patterns (column vectors):
load P.dat
P
% T defines associated targets (column vectors):
load T.dat
T
pause % Strike any key to design the network...
clc
% DEFINE THE NETWORK
% ==================
% INITLIN generates initial weights and biases for our neuron:
[W,b] = initlin(P,T)
W
b
clc
% TRAINING THE NETWORK
% ====================
% TRAINWH uses the Widrow-Hoff rule to train PURELIN networks.
me = 200; % Maximum number of epochs.
eg = 0.001; % Sum-squared error goal.
% Training begins...please wait...
[W,b,epochs,errors] = trainwh(W,b,P,T,[NaN me eg NaN]);
% ...and finishes.
W
b
pause % Strike any key to see a plot of errors...
clc
% PLOTTING INDIVIDUAL ERRORS FOR EACH VECTOR
% ==========================================
barerr(T-simulin(P,W,b))
pause % Strike any key to see predictions of model
A = round(simulin(P,W,b))
T
E = T - A
echo off
disp('End of general_linear.m')
This page hosted by
Get your own Free Home Page