Sigma2
= Population variance = Sum (X - u)
2
Desire to estimate this, using x instead of u
(sample mean instead of population mean)
Est {Sum [(x - x) - (u - x)]2
}
Est {Sum [(x - x)2
- 2(x - x)(u - x) + (u - x)]2
}
Since the sum of (x - x) = 0, the middle term is zero:
Estimate (Sigma2) = Est {Sum [(x - x)
2
+ (u - x)]2
}
The last term is the definition of standard error, or the variance of sample means
about the population mean:
Standard error = Sum [(u - x)2
] = Sigma
2
(Fromthe central limit theorem,standard erroris equal to the population
Estimate(Sigma
2) =
Est {Sum [(x - x)2
+ Sigma2]}
Multiply both sidesby N, then combineSigma terms:
Est [(Sigma2)(N - 1)] = Est {Sum [(x - x)2]}
Divide both sidesby (N - 1) to obtain samplevariance