IMAGE section101.gif
IMAGE section102.gif
IMAGE section174.gif
IMAGE section104.gif
IMAGE section105.gif
IMAGE section177.gif
IMAGE section178.gif
IMAGE section179.gif
IMAGE section180.gif
IMAGE section181.gif
IMAGE section182.gif
IMAGE section120.gif
IMAGE section184.gif

Sigma2= Population variance = Sum (X - u)2

N

Desire to estimate this, using x instead of u

(sample mean instead of population mean)

Estimate (Sigma2) =

Est {Sum [(x - x) - (u - x)]2}

N

Estimate (Sigma2) =

Est {Sum [(x - x)2- 2(x - x)(u - x) + (u - x)]2}

N

N

N

IMAGE section185.gif
IMAGE section186.gif
IMAGE section187.gif
IMAGE section186.gif
IMAGE section186.gif
IMAGE section186.gif
IMAGE section186.gif
IMAGE section186.gif
IMAGE section193.gif
IMAGE section194.gif
IMAGE section195.gif
IMAGE section101.gif
IMAGE section102.gif
IMAGE section198.gif
IMAGE section104.gif
IMAGE section105.gif

continued

Since the sum of (x - x) = 0, the middle term is zero:

Estimate (Sigma2) = Est {Sum [(x - x)2

+ (u - x)]2}

N

N

The last term is the definition of standard error, or the variance of sample means

about the population mean:

Standard error = Sum [(u - x)2] = Sigma2

N

N

IMAGE section171.gif
IMAGE section171.gif
IMAGE section171.gif
IMAGE section1104.gif
IMAGE section171.gif
IMAGE section1104.gif
IMAGE section1107.gif
IMAGE section1108.gif
IMAGE section101.gif
IMAGE section102.gif
IMAGE section1111.gif
IMAGE section104.gif
IMAGE section105.gif

continued

(Fromthe central limit theorem,standard erroris equal to the population

variance / N)

Estimate(Sigma2) =

Est {Sum [(x - x)2+ Sigma2]}

N

N

Multiply both sidesby N, then combineSigma terms:

Est [(Sigma2)(N - 1)] = Est {Sum [(x - x)2]}

Divide both sidesby (N - 1) to obtain samplevariance

IMAGE section1114.gif
IMAGE section171.gif
IMAGE section1116.gif

[made with GoClick]