2
>
0
=
s
λ
1
λ2
λ
- λxe
;
x
≥
0
= 0 elsewhere
2
-
1)1
2
(eσ
2
+
2)
2μ +
2
σ
(e
σ
2
1)
2
μ
<
∞;
σ
>
0
(
x)
=
1
σ
x
2π
≥
0
-
1?
2σ
2
?
(log
x
-
μ
)
= 3
+ (w - 1)(w
3
+ 3w
2
+ 6w + 6);
w = e
σ
2
2
+
12
σ
2
μ1
- μ
0
)
2
12
<
μ
1
where
1
(
x)
=
1?
μ
1
-
μ
?
,
μ
0
0
x
≤
μ
1
2
0
+
μ
1
2
0
1
,
μ