IMAGE section1157.gif
IMAGE section102.gif
IMAGE section1159.gif
IMAGE section104.gif
IMAGE section105.gif
IMAGE section1162.gif
IMAGE section1163.gif

Skew = 0

Positive Skew

Negative Skew

IMAGE section1164.gif
IMAGE section1165.gif
IMAGE section101.gif
IMAGE section102.gif
IMAGE section1168.gif
IMAGE section104.gif
IMAGE section105.gif
IMAGE section1171.gif

β2=μ4
s4

IMAGE section1172.gif

The fourth momentabout the meanis relatedto the peakedness—alsocalled

kurtosis—ofthe distributionand is defined as

The quantity

is a relativemeasureof kurtosis.Belowtwo probability densitiesare shown:

The

uniformor rectangular distribution,and the bell-shapedcurve that representsthe

normal distribution.

The values ofβ2for these two distributions are 1.8 and 3.0,

respectively.

Comparison of normal and uniform probability density functions.

Kurtosis =

μ
4=(x-x

IMAGE section1173.gif

)4

n

IMAGE section1174.gif
IMAGE section1175.gif
IMAGE section101.gif
IMAGE section102.gif
IMAGE section1178.gif
IMAGE section104.gif
IMAGE section105.gif

Parameters

Probability DensityFunction

ExpectedValue

Variance

µ

σ2

0

3

IMAGE section1181.gif
IMAGE section1182.gif

-∞ <x< ∞

σ>0

β1

1

IMAGE section1183.gif
IMAGE section129.gif

f(x)=1e-(s-μ)3/ 2σ2
σ2π,

2

IMAGE section1185.gif

[made with GoClick]