|
DECODING SCHEME IN THE MOLECULE OF INSULIN C o de 931 (Fragment 1) Molecule of insulin Chain A Phe,(F), Val(V), Asn(N), Gln(Q), His(H), Leu(L), Cys(C), Gly(G), Ser(S), His(H), Leu(L), Val(V), Glu(E), Ala(A), Leu(L), Tyr(Y), Leu(L), Val(V), Cys(C), Gly(G), Glu(E), Arg(R), Gly(G), Phe(F), Phe(F), Tyr(Y), Thr(T), Pro((P), Lys(K), Ala(A) Chain B Glu(E), Ileu(J), Val(V), Glu(E), Gln(Q), Cys(C), Cys(C), Ala(A), Ser(S), Val(V), Cys(C), Ser(S), Leu(L), Tyr(Y), Gln(Q), Leu(L), Glu(E), Asn(N), Tyr(Y), Cys(C), Asn(N), Number of atoms: Chain A F=23; V=19; N=17, Q=20; H=20; L=22; C=14; G=10; S=14; H=20; L=22; V=19; E=19; A=13; L=22; Y=23; L=22; V=19; C=14; G=10; E=19; R=25; G=10; F=23; F=23; Y=23; T=17; P=17; K=24; A=13; = 556 atoms. Chain B E=19; J=22; V=19; E=19; Q=20; C=14; C=14; A=13; S=14; V=19;C=14; S=14; L=22; Y=23; Q=20; L=22; E=19; N=17; Y=23; C=14; N= 17;=378 atoms Decoding formula:
A & B= Amino acids in molecules of insulin,, S=Groups of numbers in arithmetic expressions 1,2,3,n, R(1,2,3,n)=Arithmetical expression for the phenomena 1,2,3,n, X= Code 931 Solution to this formula is: A=7; B=19; X = 931; Examples: Chain “A” R1=Phe(F); R2= Val(V); R3 = Asn(N); R4 = Gln(Q); R 5= His(H); Etc.R1= 23 atoms; R2= 19 atoms; R3 = 17 atoms; R4 = Gln(Q) = 20 atoms; R 5= 20 atoms; {[ (S7( 23) x 19) - (S19( 23) x 7)] + (7 x 19) } == {[ (S7( 19) x 19) - (S19( 19) x 7)] + (7 x 19) } == {[ (S7( 17) x 19) - (S19( 17) x 7)] + (7 x 19) } == {[ (S7( 20) x 19) - (S19( 20) x 7)] + (7 x 19) } == {[ (S7( 20) x 19) - (S19( 20) x 7)] + (7 x 19) } == 931 = 931 = 931 = 931 = 931; ........ S7(23)=(17+18+19+20+21+22+23) = 140 ;S19(23)= (5+6+7+8+9+10+11+12+13+14+15+16+ +17+18+19+20+21+22+23) = 266; S7(19) = (13+14+15+16+17+18+19) = 112; S19(19) = (1+2+3+4+5+6+7+8+9+10+11+12+13+ +14+15+16+17+18+19) = 190; S7(17) = (11+12+13+14+15+16+17) = 98; S19(17) = ((-1)+0 +1+2+3+4+5+6+7+8+9+10+11+ +12+13+14+15+16+17) = 152; S7(20) = (14+15+16+17+18+19+20) = 119; S19(20) = (2+3+4+5+6+7+8+9+10+11+12+13+14+ +15+16+17+18+19+20) = 209; S7(20) = (14+15+16+17+18+19+20) = 119; S19(20) = (2+3+4+5+6+7+8+9+10+11+12+13+14+ +15+16+17+18+19+20) = 209; …….. { [ (140 x 19) - (266 x 7)] + (7 x 19) } =={ [ (112 x 19) - (190 x 7)] + (7 x 19) } = = {[ (98 x 19) - (S19( 152 x 7)] + (7 x 19) } =={ [ (119 x 19) - (209 x 7)] + (7 x 19) } =={ [ (119 x 19) - (209 x 7)] + (7 x 19) } == 931 = 931 = 931 = 931 = 931; Chain “B” R1=Glu(E); R2= Ileu(I); R3 = Val(V); R4 = Glu(E); R 5= Gln(Q); Etc.R1= 19 atoms; R2= 22 atoms; R3 = 19 atoms; R4 = Gln(Q) = 19 atoms; R 5= 20 atoms;{ [ (S7( 19) x 19) - (S19( 19) x 7)] + (7 x 19) } == { [ (S7( 22) x 19) - (S19( 22) x 7)] + (7 x 19) } == { [ (S7( 19) x 19) - (S19( 19) x 7)] + (7 x 19) } == { [ (S7( 19) x 19) - (S19( 19) x 7)] + (7 x 19) } =={ [ (S7( 20) x 19) - (S19( 20) x 7)] + (7 x 19) } == (931 + 931 + 931 + 931 + 931); S7(19)=(13+14+15+16+17+18+19) = 112 ; S19(19)= (1+2+3+4+5+6+7+8+9+10+11+12+13+ +14+15+16+17+18+19) = 190; S7(22) = (16+17+18+19+20+21+22) = 133; S19(22) = (4+5+6+7+8+9+10+11+12+13+14+15+16+ +17+18+19+20+21+22) = 247; S7(19)= 112 ; S19(19)= 190; S7(19) = 112 ; S19(19) = 190; S7(20) = (14+15+16+17+18+19+20) = 119; S19(20) = (2+3+4+5+6+7+8+9+10+11+12+13+14+ +15+16+17+18+19+20) = 209; …….. { [ (112 x 19) - (190 x 7)] + (7 x 19) } =={ [ (133 x 19) - (247 x 7)] + (7 x 19) } =={ [ (112 x 19) - ( 190 x 7)] + (7 x 19) } =={ [ (112 x 19) - (190 x 7)] + (7 x 19) } =={ [ (119 x 19) - (209 x 7)] + (7 x 19) } == 931 = 931 = 931 = 931 = 931;
Etc. |
|