Pro dané 
A a 
X je 
LOGA(X)=LN(X)/LN(A), kde funkce 
LN je 
přirozený logaritmus. V této souvislosti se často užívá konstant  
LN(2) a 
LN(10) pro výpočet binárního (dvojkového) nebo dekadického logaritmu. Dále uvedené funkce vrací prvních 
200 platných desítkových číslic těchto konstant. Pro jejich výpočet jsem použil algoritmus podobný tomu z kapitoly 
Přirozený logaritmus, viz funkce 
LN2P, a program pro automatické vytváření funkce vracející hodnotu určité konstanty, viz 
Technika: Předem vypočtené konstanty. 
 
 LN2: procedure; V = '' 
 V = V || 0.69314718055994530941723212145817656807
 V = V || 5500134360255254120680009493393621969694
 V = V || 7156058633269964186875420014810205706857
 V = V || 3368552023575813055703267075163507596193
 V = V || 0727570828371435190307038623891673471123350
 return V
 
  | 
 
 LN10: procedure; V = '' 
 V = V || 2.30258509299404568401799145468436420760
 V = V || 1101488628772976033327900967572609677352
 V = V || 4802359972050895982983419677840422862486
 V = V || 3340952546508280675666628736909878168948
 V = V || 2907208325554680843799894826233198528393505
 return V
 
  | 
 
SOUVISLOSTI